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Recap

We studied how Lp, r(h) depends on the training sample S, which is randomly picked
® Thus, also Lp, f(hs) is a random variable

This fact has led us to recognise the randomness in the choice of ERMy; predictors hs

We cannot always expect that sample S is sufficient to guarantee e-good predictors hg
® At least, not with respect to D, and f
® That is, that Lp, s(hs) < e

There is always some probability that S is non-representative of the underlying data

If we accept the realisability and other assumptions, this probability is upperbounded

Dy({Ss : Lp, f(hs) > €}) < [H] exp (—|Sle)



NWPC
2025

Confidence
Learner

omplexity

»ility

Data mode

Recap (cont.)

Before the data, we select a finite hypothesis class H including labelling function f and
asked what is the probability that sample S is e-wrong (Lp, f(hs) > €) for the ERMy

We considered all possible samples of size  For each sample, the ERMy would select
|Sz| and labelled them with function f a rule hs whose true error is Lp,_ f(hs)

Lp, r(hs)

{Se}

The true risk cannot be calculated, as both the probability distribution D, and the
exact labelling function f are not accessible to the learner (here, based on the ERMy)
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Recap (cont.)

We only know that certain samples S will lead to a failure of the learner (Lp, r(hs) > €)

Yet, we are interested in understanding
how the probability of drawing such a
sample depends on the learning set up

® Sample size |S|

® Class size |H|

{s:}

{Sz : LDz,f(hS) > E}

This probability cannot be calculated {S:}

and we ended up determining an up- (Su:L (hs) > &}
w L, f(hs

per bound, depending on S and H

® A distribution-free quantity Ps,~py [Se : Lp, f(hs) > e] < |H|exp—(|Sle)
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DY ({Ss : Lp, s (hs) > €}) < [H|exp (—|Sle)
Confidence

Learner

iple complexity Let 6 be the acceptable probability of drawing a non-representative sample S for ERMy
o ® We use § € [0,1] to define (1 — ) as the confidence on hg

Data mode

ic PAC An ERMy; hypothesis is then said to be probably (1 — ) approximately (¢) correct, PAC

DY ({Sr : Lp, s (hs) > €}) < [H|exp (—|Sle) < &

The given notion of probably approximately correct contains two parameters (¢ and ¢)
® Accuracy ¢ indicates what is the tolerable magnitude of the true error
® Confidence (1 — §) shows how likely the solution is to meet accuracy
The two quantities are inevitable parameters under the typical data generating model
Informally, with PAC we are asking under which condition the learner (here, ERMy )
is at least e-correct most of the time, that is with a probability which is at least (1 —¢)
® The learner has only access to the hypothesis class H and the data S

® This requirement is guaranteed when enough instances |S| are given
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Accuracy and confidence (cont.)

For some fixed domain set X, label set )/, and hypothesis class H, we have these steps
The user chooses the accuracy ¢ € (0, 1) and the confidence (1 — ) € (0,1)
® The pair (g, 4) is accessible to the ERMy

To ensure success, the ERMy, requires a minimum amount of instances
® The requirement is independent of D, and f

® They are unaccessible to the ERMy,, anyway

The user provides the ERMy; with a sample S; ~ D, labelled by f € H

The ERMy; returns a predictor hs
® The ERMy, may succeed (Lp, f(hs) < €)
® The ERMy may fail (Lp, s(hs) > ¢€)

If this is repeated many times, the ERMy is guarantees with high probability, (1 — §)
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Although given for the ERMy, the notion of probably approximately correct is general
To extend and utilise it beyond the ERMyy, firstly we revise our definition of a learner
Definition

Formally, we redefine the learner as a function A that takes any possible sample S =
{(zn, yn)}N_; of any possible size N = |S| as input, and outputs a hypothesis h € XY

A

s

(@, y)}S S (R X 5 V), with (20, y0) € X x 2
{0.1}

n=1

The weighty bit is that the output h = A(S) is no longer required to be in a class H
® Moreover, function f no longer need be in class ‘H

® (For now, we still hold on to this assumption)
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oot PAE For any hypothesis class H and €,6 € (0, 1), we define a function nyg : (0,1)x(0,1) = N

Such a function determines the sample complexity of learning from hypothesis class H

® Tt is a function of the accuracy and the confidence

It quantifies how many examples guarantee a probably approximately correct solution
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PAC learning | Learnability

We use the definition of sample complexity to introduce the notion of PAC learnability

® We provide a definition which is valid for any learning algorithm A

Definition

Class H is said to be PAC learneable, if there exists a function ny; such that, for all
|S| > ny(g,0), for every Dy, and every f : X — ), there is a learner A for which the
probability over samples that the error Lp, ;(A(S)) is larger than € is smaller than ¢

For all sample sizes N > ny (e, d)
Ps.pn s [S:Lp, s(A(S)) >¢e] <6 For all data distributions Dy
For all labelling functions f € XY

It follows that ny;(g,d) is the minimum number of data needed for learning through H
® ... with confidence (1 — §) and accuracy ¢, at least

® ... given that f exists and belongs to that class ‘H
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PAC learning | Learnability (cont.)

For some fixed domain set X, label set ), and hypothesis class H, we have these steps

The user chooses the accuracy ¢ € (0, 1) and the confidence (1 — ) € (0,1)

® The pair (g,0) is accessible to the learner A

To ensure success, the learner A requires a minimum amount ny of instances
® The requirement is independent of D, and f

® They are unaccessible to A, anyway

The user provides the learner A with a sample S, ~ D, labelled by f € H

The learner A returns a predictor A(S)
® A may succeed (Lp, ;(A(S)) <€)
® A may fail (Lp, ;(A(S)) > ¢€)

If this is repeated many times, the learner A is guarantees with high probability, (1—4¢)

If there exists at least one learner A such that this is satisfied, class H is PAC learnable
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PAC learning | Learnability (cont.)

Example
We can establish whether any finite class H is PAC learneable under the ERMy; trick

Ps.py s [S: Lp, s(hs) > €] < [M|exp(~|S|e) <
v — —————

By taking the natural log of the second inequality, we get
In (|H]) — £|S| < In(4)

Rearranging to get |S| and rounding up, we have

S| > Fn(ml/ﬂ

N————
nq(€,0)
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PAC learning | Learnability (cont.)

If H is PAC-learnable, there may be several functions ny that satisfy the requirements

This motivates a definition of the sample complexity of learning H as the minimal ny

® From all triplets (g, d, ng ), we choose the one returning the smallest integer

We will show that what determines the PAC-learnability of a class is not its finiteness
® Rather, it is a combinatorial measure called the VC-dimension

We will also show that there are infinite classes of hypothesis which are PAC-learnable
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We extend the learning model discussed so far to account for cases in which the real-
isability and exact labelling assumption are relaxed, and then to other learning tasks

Realisability assumption
Requiring that the learning algorithm succeeds on D; and f when the realisability

assumption is satisfied may be too strong an assumption for practical learning tasks

® We assumed that there exists a h* € H such that Pyop, [z : h*(z) = f(z)] =1

1—Lp, ;(h*)

® This assumption does not hold for the majority of real-world problems

Deterministic labelling
Unrealistically, we also assumed that label attribution is deterministic, given features

® We assumed that labels are fully determined by the features via y = f(z)

These are the main limitations of the PAC definition that we are interested to overcome
® How far can we go without assuming that f exists?

® How far can we go without assuming that f € H?
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Formal model (cont.)
Realisability can be, naturally, relaxed by replacing the exact labelling process f as-
sumed so far with a certain (conditional) probability distribution over the label set Y
® We assume that labels are stochastically determined, given the features
® Implicitly, we also relax the assumption that labelling is deterministic
Though arbitrary and unknown to the leaner A, this distribution over Y, like the
distribution over X, characterises how the domain-label generating process is modelled

® We are assuming that both domain instances and labels are picked randomly
Dy = DyyDy
=Dy D

Pragmatically, we introduce a more realistic data (domain-label) generating model and
we are interested in the best prediction rule h = A(S) that the learner could output

® (Keeping in mind that A has access to a finite sample S only)

For binary classification, that rule is a h that predicts the y for which D, (y|z) > 1/2

® We discuss how to construct such an intuition

® We discuss why this rule cannot not used
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Data model
Firstly, we will introduce an arbitrary (and marginal) distribution D, over label set )

® This distribution allows us to introduce a joint domain-label distribution Dy,
® The joint distribution Dy, is over X x Y and it is assumed to be arbitrary
Dzy kN DzlyDy
=Dy, D

Probability distribution Dy, though unknown, models the data generating mechanism

The data model Dy implies the existence of two probability distributions over set )

From the factorisation of the joint distribution Day

Day = Dyjy Dy ® A conditional distribution, D,
~~
® A marginal distribution, D,
=TDy|e Dx

—— We characterise them both, from Dy towards D,
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The marginal distribution D, over X’
We already assumed the existence of

e a probability distribution D, over X e
Learner

Sample complexity Dzy e Dylz D$

Learnability ~~

De—— Training instances {z,} are random

Agnostic PAC and independent draws from DY

Y= {07 1}
The marginal distribution D, over )
For presentation, we consider an arbi-
trary probability distribution D, over )

Dy
Dyy = Dy, Dy
0
. . Y C No
Again, D, is unknown to the learner
This probability distribution is not di- D,

rectly relevant for our learning purposes

O
—

no
o b
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The joint probability distribution D, (or D) over X x Y

Confidence
Learner
Sample complexity D, y D,,
Learnability Y v
Formal model
Data model \ \ \ \
Agnostic PAC . .. .
1 The data model is a joint domain-
Ge >ral losses e . . .
I label probability distribution Dy,
Agnostic PAC
Uniform convergence
Day = Dy|;Ds
\ ~~
N N N =D, ,Dy
0

Also Dyy is unknown to the learner

—X
xy Z2 z3 Ty
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The conditional probability distribution over ), given (the elements in) X’

PAC learning

e It determines the probability of all the labels for all possible values of the domain set
Learner
Sample complexity D, y Dyjor, Dyl Doy Dyoez, Dyle
Learnability
Formal model Dy = Dyja Du
Data model

— — - —

1

The probability distribution D, is
the principal objective of learning

The best possible prediction rule h
® The Bayes rule
0 h*(3) = 1, if Dylz(l\i) >1/2
0, otherwise

X

The Bayes rule h* is optimal in the sense that no other rule k € X{%1} has lower error
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e o The conditional probability distribution over X, given (the elements in) )

(LH It determines the probability of all the domain instances for all values of the label set
Sample complexity

Learnability Dy y Dm

Formal model
Data model

Agnostic PAC

General losses 1

Daly= =
Agnostic PAC ly=1 Dzy Dy Dz|y
Uniform convergence ——

The probability distribution D,
is not the objective of learning

\/\f—ﬂ" ly=0

X
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Formal model | Agnostic PAC

Restating our assumptions and goals
Training instances {(zn, yn)} are assumed to be from a joint distribution D over X x Y

® For our learning tasks, we again allow D to be an arbitrary distribution

® Again, a learner has no access to the probability distribution D

For a probability distribution D over X X ), we are interested in determining how
likely hypothesis h is to make an error when labelled points are drawn from such a D

® That is, we need to refine what we mean by successful learning

Definition
We redefine the generalisation error, or risk, or loss, of the classifier h € X'V as the
probability that the label y of a pair (z,y) drawn according to D, is predicted wrongly

LD(h) = P(z,y)ND [h(I) # y]
[y —
D({(z,y):h(z)#y})

The error occurred by h is the probability of sampling a pair (z, y) for which h(z) # y
® D indicates that the risk L of h = A(S) is evaluated with respect to D
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Formal model | Agnostic PAC (cont.)

LD(h) = IP)(an,y)fv’l") [h(.’t) # y]

Graphically Lp(h) is the volume under the portion of D associated to errors of h on Y

We are interested in a predictor h that, without knowing D, minimises such an error
® Again, the learner has access to the training sample S only
® More importantly, there is no fixed f to compare against

The empirical risk remains unchanged and computable for any function h : X — {0,1}

{(@n, yn)} * hay # yn}n_|

Ls(h) = N
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Formal model | Agnostic PAC | Learnability
No algorithm can find a hypothesis whose risk is smaller than the minimal possible one

It can be shown that, without prior assumption about the data-generating distribution,
no algorithm is guaranteed to find a predictor that matches the minimal possible risk

Agnostic PAC learnability

A hypothesis class H is said to be agnostic PAC learnable if there exists some function
nyg : (0,1) X (0,1) — N and a learning algorithm A such that, for the hypothesis A(S)
from |S| independent examples from D, the following upper-bound can be satisfied

For all sample sizes |S| > nyy (e, 0)

Psp |S: Lp(A(S in Lp(h é,
S~D p(A(5)) > hHg?l}L ol )+€:| . {For all data distributions D

That is, the leaner A is guaranteed to succeed if its error is at worst e-worse than the
best h € H, if at least ny (g, ) examples are available for learning and regardless of D

Hypothesis A(S) is said to be probably (1—¢) approximately (miny, -3, Lp(h)+¢) correct

If realisability holds (f € H), agnostic PAC learning and PAC learning provide the same
guarantee, thus rendering agnostic PAC learning a more general notion of learnability

in Lp(h) =0
gg;o()
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For some fixed domain set X, label set ), and hypothesis class H, we have these steps

The user chooses the accuracy ¢ € (0,1) and the confidence (1 —§) € (0,1)

® The pair (g, §) is accessible to the learner A

Confidence
Learner

Sample complexity

To ensure success, the learner requires a minimum number ng of instances

Data model ® The requirement is independent of the distribution D
Agnostic PAC

® D is not accessible to the learner, anyway

The user provides the learner A with a sample S ~ D

The learner A returns a predictor A(S)
® The learner may succeed (Lp(A(S)) < € + minpey Lp(h))
® The learner may fail (Lp(A(S)) > € + minpeyy Lp(h))

If this is repeated many times, the learner is guaranteed to succeed with high probability

(1-19)

If there exists at least a learner A such that this holds, class H is agnostic PAC learnable
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Formal model | Agnostic PAC | Learnability (cont.)

For all |S| > ny (e, d)

Psop |S:  Lp(A(S in Lp(h 5
S~D Lo(AS) > min Ip(h)+¢| < {ForallD

Py, y)~D[A(S)#Y]

For binary classification, the Bayes rule h* would be the best possible prediction rule

® If it were available in some form and if it that form were included in H

W (z) = 1, if Dy\z(”i) >1/2  Agonistic PAC learnability would provide a rel-
0, otherwise ative guarantee of success for a learner A on S

The learning algorithm A, which does not necessarily outputs a hypothesis A(S) € H,
is asked to compete against the best predictor in some benchmark hypothesis class H

® We can see that classes Hq, C H; are easier to compete against (to learn)

It is also important to notice that the learning algorithm A has access to H and to S
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Formal model | Agnostic PAC | Learnability (cont.)

A weaker notion of success Lp(A(S)) < minpey Lp(h)+¢ is a much more modest one

® Though, it is also a much more realistic one

We started getting an intuition as for why larger hypothesis classes H harder to learn
® It can be shown that all finite hypothesis classes are agnostic PAC learnable
® It can be shown that there are infinite classes that are agnostic PAC learnable

® It can be shown that there exist classes that are not agnostic PAC learnable
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General losses

We are interested in extending the formal learning model to a wider variety of problems

Classification (multi-class)
® The domain set X = {z : 2 € RNy}
® The label set ) C Np
The training set S = {(zn, yn)}gzl with z, € X and y, € Y

Regression
® The domain set X = {z : 2 € Ry}
® The label set Y C R
The training set S = {(zn, yn)}ﬁ:1 with z, € X and y, € Y

It is easy to convince ourselves that what makes regression and multi-class classification
different from the perspective of learning is the notion of error, or failure of the learner

Though we are protected against this discrepancy, at least terminology-wise, by the
notion of loss, we need a more general set to discuss these (supervised) learning tasks

® (As well as other, unsupervised, ones)
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For discussing these learning tasks on a general setup, we introduce the set Z = X' x )

Loss functions
We let [ be any function from Z x H to the set of non-negative reals, [ : Z X H — R4

We define the risk function to be the expected loss of rule h, with respect to D over Z
Lp(h) =E,wp [l(h, 2)]

This is the expected loss hypothesis h € H over instances z € Z drawn according to D

Similarly, we define the empirical risk to be the expected loss over sample S = {zn}gzl

N

Ls(h) = = > I(h, 20)

n=1

Because of the law of large numbers, the empirical risk tends to the true risk as N — oo
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Lp(h) = E;np [U(h, 2)]
Confidence

Learner Z
Sample complexity ‘Sl l h Zn

Learnability

Date model In classification, no matter whether binary of multi-class, a common way to evaluate
R A the quality of the hypothesis function h : X — ) is obtained by considering a 0 — 1 loss

General losses

Agnostic PAC Yy C NO

Uniform convergence
The loss function
0, ifh(z)=y

lo—1(h,(z,9)) = {1 if h(z) #y

The risk function
p(h) = Ez,y)~p llo—1 (ks (7, 9))]
Because lo—1(h, 2) is a binomial variable, we have E;) | (n)y~p = Py, (n)~p [lo—1(h) = 1]

~ E(z,y)ND [lO—l (h7 (Ir y))] = P(z,y)N’D [h(x) # y]
—_— ———

D({(z,y):h(z)7#y})
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Data model
Agnostic PAC
General losses
L\‘““ ‘“ In regression, a common way to evaluate the quality of the hypothesis function h :
X — ) is obtained by the using squared difference between true and predicted labels
YCR

The loss function
I (h, (,9)) = (h(z) — y)*

The risk function
Lp(h) = E(g y)~p 2 (h, (z,9))]
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General losses | Loss functions | Unsupervised learning

LD(h) = Ez~‘D [l(h Z)}

\5|Z (h20)

Unsupervised tasks likes like dimension reduction, density estimation, and clustering?

In clustering, we are interested in representing a collection of unlabelled domain points
{z}]_,, such that z, € X, with a collection K < N code-words {¢;}_ |, with ¢;, € X

X =RNe
V=4
Z=XxX

‘H = All possible K-tuples h = {¢;}

The loss function

i (hy (@) = i ey — o]

The risk function
Lp(h) = E(z,c)ND [ZK (h7 (=, C))]
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Agnostic PAC learning with general loss functions

A hypothesis class H is agnostic PAC learnable with respect to Z and a loss function
l:H x Z — Ry, if there is a function ny : (0,1) x (0,1) — N and a learner A such
that, for the hypothesis A(S) from |S| independent examples from D, the bound holds

For all sample sizes |S| > nyy (e, §)
Ps~p |S: Lp(A(S)) > irll’g% Lp(h)+¢| <4, For all data distributions D
For LD(h) =E,.p [l(h7 Z)]

Agnostic PAC learnability for general loss functions is the most important concept in
the statistical theory of learning, most machine learning problems are built around it
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AeEE PAG The definitions of agnostic PAC learnability required that the learning algorithm re-
turns a hypothesis h = A(S) from H, but we may also require A(S) € H with H C H’

Ageriis PG ® The loss function needs to be extended to H' (that is, I : H' x Z — R4)

Unifor

Allowing H C H' is often denoted to as representation independent or improper learning
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We are interested in showing that finite hypothesis classes H are agnostic PAC learnable

® That is, there is at least one learning strategy that be used to learn them

For all sample sizes |S| > ny (e, d)

Psop |S: Lp(A(S in Lp(h é,
S~P o(4(5)) > flznel?ri ol )+E:| 3 {For all data distributions D

To prove the claim, it would suffice to show that ERMy; can learn any finite class H
® In an PAC agnostic sense and with general loss functions

® (For concreteness, we consider binary classification)

For the chosen hypothesis class H and given some training set S, an ERMy (S) learner
uses ERMy, (S) strategy to pick rules {hs} in H with smallest loss Ls over that sample

{an : h(an) # g}
S|

ERMy (S i
#(5) € arg min

Ls(h)
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For all hypothesis hs € ERM(S)
Ps~p |S: Lp(hs) > }n’él?l:lt Lp(h) +€] <6, For all sample sizes |S| > ny (e, §)
L
For all data distributions D

We are interested in showing that all the hs € ERMy; also minimise the true loss Lp

One strategy is to show that it is true for samples such that |Ls(hs) — Lp(h*)| is small
® That is, for samples S such that hg is close to h*, the best h € H

Definition

A sample S ~ DV is said to be e-representative sample of the distribution D over Z,

with respect to a hypothesis class H and a loss function [(h, z), if the following holds

|[Ls(h) — Lp(h)| <e, forallheH

That implies that, if we draw such &, minimising Ls also approximately minimises Lp
® Then, for learnability, it only remains to guarantee that N is large enough

® (And, as always, how likely we are to be drawn one such S for training)
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General losses | Uniform convergence (cont.)

We can prove the existence of an upper bound on the sample complexity of the ERMy¢
® We did it for PAC learnability, we need to show it also for agnostic PAC

. 5> | 02/
- £

nyy(€,0)
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General losses | Uniform convergence (cont.)

Theorem
It can be shown that if a sample S is e-representative of D over Z, with respect to class
H and loss function I(h, z), then the following bound holds for all ERMy, (S) predictors

Lp(hs) < min Lp (k) +2

D s)_;gg}[ p(h) +2¢
——
Lp(h*)

Proof
Because S is e-representative, we know that Lp(hs) < Ls(hs)+e and, because we are
considering the ERMy, learner, we also know that Lg(hs) + ¢ < minpey (Ls(h) +¢€)

Lp(hs) < Ls(hs) + €
< min Lg(h
< min Ls(h) +e
—_——
Ls(hs)
< min Lp(h
< min Lp(h) +e +e
——
Lp(h*)
| —
Ls(hs)

Because sample S is e-representative, the last inequality is true, and this ends the proof
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General losses | Uniform convergence (cont.)

< mi
Lp(hs) < min Lp(h) + 2¢e

We proved that on a e-representative sample S, the true risk of ERM is upper bounded

To prove that the ERM can learn agnostically, we need to prove that large enough
samples S are likely to be e-representative (that is, with probability at least (1 — §))

Definition

We say that a hypothesis class ‘H has the uniform convergence, with respect to D over Z
and a loss function [(h, z) if there exists a function n}_{c :(0,1) x (0,1) — N such that
samples S ~ DY are e-representative with high probability (that is, at least (1 — §))

That is, the definition quantify the sample complexity needed for uniform convergence

® How large S must be to make it e-representative, with probability at least (1 — §)
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Confidence

Learner

N By combining Lp(hs) < minpey Lp(h)+2¢ and the definition of uniform convergence
ility with function n}ic, we can show that any finite class H is PAC learnable agnostically
with sample complexity ny (e,d) < n}_{c (e/2,6) and that ERMy, is a successful learner

Data mode

Agnostic PAC Informally, we have the two following steps

® For some (g,d), we need to determine the sample size N which guarantees with
probability (1 — §) that for a S ~ DY regardless of D, all h € H are such that

Agnostic PAC

Uniform convergence
|Ls(h) — Lp(h)| < e

For all h € H, the probability of drawing a e-representative S is at least (1 — d)
® We need that for any h € H, |Ls(h) — Lp(h)| is small enough if N is large enough

We followed similar steps when we discussed ERMy, for finite classes under realisability
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2025

Step 1

S For some (g,d), we need to determine the sample size N which guarantees with prob-
Learnex ability (1 — §) that for a S ~ DV, whatever D, all h € H with |H| < co are such that

Sample complexity

Learnability |L5(h) — LD(h)| S &€

D ekl Equivalently, we have
Agnostic PAC

DN({S:3h € H,|Lp(h) — L)l < €}) >1—6
Agnostic PAC

Uniform convergence OI‘,
DN({S:3h € H,|Lp(h) — Ls(n)| > €}) <6

We also have,

{S:3h € H,|Lp(h) — Lsn)l > e} = |J {S: ILp(h) — Lsny| > €}
heH

Using the union bound, we get

DN({S:3h € H,|Lp(h) — Lsgy| > e}) < > DV{S: |Lp(h) — Lsn)| > ¢}
heH
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General losses | Uniform convergence | Step 2

DN({S:3h € H,|Lp(h) — Lspy| > e}) < > DV{S : |Lp(h) — Lsn)| > ¢}
heH

Step 2

We want to show that each of the summands is small enough when N is large enough
® For a single h, the true risk Lp(h) need be e-close to the empirical risk Ls(h)
® With high probability, for samples S ~ DV whose size N is large enough

We have the notions of true and empirical risk, an expectation and empirical estimate

LD(h) = Ez~’D[l(h7 Z)}

N
Ls(h) = N~ S i(h, 20)
n=1

However, the expectation of the loss function I(h, z) is not accessible, as D is unknown

® This implies that we cannot determine how far apart its sample average is
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General losses | Uniform convergence | Step 2 (cont.)
Lp(h) = E.upli(h, 2)]

N
Ls(h) = Z (h, zn)

We need a statistical tool, a concentration inequality, to quantify how close the expec-
tation Lp(h) is to its empirical estimate Lg(h) is calculated using samples S ~ DN

® The Hoeffding’s inequality is the statistical tool for this purpose
For a single h and for I(h, z) € [0, 1], we have

1 N

P |NZl(h,zn)—LD(h)|>s < 2exp (2Ne?)

n=1

Ls(h)

DN{S:|Lp(h)~Lg)l>e}
Over all the h € H, we have
DN({S:3h € H,|Lp(h) — Lsyl>e¢}) < Z 2exp (2Ne?)
he|H
= 2|H|exp (2N€?)
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Confidence log (2|H]|/6
Learner By choosing for ny > #7 we have
Sample complexity &
L,(uu]nu\nlu\‘
DN ({S:3h € H,|Lp(h) — Lg(y| >€}) <6
Data model
Agnostic PAC Uniform convergence property is satisfied
Agnostic PAC IOg (2|H‘/6)
Uniform convergence ngtc (5,0) < [262

The sample complexity for the ERMy

'H(E’ 6) < n’ELC(Z/Er 6)
3 [2log (2|H|/6>}

= 22
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