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A Gaussian, or normal, distribution is pervasive density model for continuous variables

The Gaussian

Distributions

For a single random variable X

Inference

el o) = Geserzenp (= 5o =0 250 = )

® 4 is the mean value

® 52 is the variance

For a D-dimensional variable X

1 1 1 1
p(z|p,X) = WWQXP ( - 5(93 - #)TE(I - #))

® 4 is the D-dimensional mean vector
® ¥ is the D x D covariance matrix
® |X| is the determinant of 3
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The Gaussian distribution (cont.)

1 1 1 1
zlp,¥) = ——=5——75¢€ (—71— T _(z— )
p(z|p, ) (om) D72 [1/2 P 5@ = @ —p)
Gaussians depends on z through the quadric form A2 = (z — p) TS~ (z — )
® Quantity A is the Mahalanobis distance from p to z
® [t reduces to the Euclidean distance when X = Ip

Thence, the Gaussian density is constant on surfaces for which A? is constant

To be well-defined, all of the eigenvalues of ¥ need be real and strictly positive

® Otherwise, the Gaussian cannot be properly normalised

Gaussian densities for which one or more eigenvalues of ¥ are zero are singular

® They are confined to a subspace of lower dimensionality
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The Gaussian distribution | Expectations

The expectation of f(z) = z under the Gaussian distribution

1 1 1 Tt
E[I]:WW/QXP(_i(Z_M) by (I—u)) z dz
=p

We refer to it as the mean vector of the Gaussian distribution
There are D? expectations E[z;z;] under the Gaussian distribution
1 1 1
T~ NI =1 T
Elzz'] = (2W)D/2|2‘1/2/exp< Q(w w) X (z u)) zz’ dz
=up” +3

We refer to ¥ as the covariance matrix of the Gaussian distribution

® Its inverse A = X1 is denoted as the precision matrix



Marginals, conditionals, and posteriors
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If two vectors X, and X} are jointly (as X) distributed as a Gaussian, then the condi-
tional distribution of one vector conditioned on the other one is a Gaussian distribution

Distributions
Inference X = (Xa) nw= Ha
Xp Ho

1 1 1 Tew—1 Yaa Eab
= - (z— - Y=
p(z) (2m)D/2|5[1/2 exp ( 2(95 p) I (z H)) (zba gbb>
~ (Aaa A
p(za,mp) A= (Aba Abb)

The conditional distribution p(z,|zy)

1 1

p(zalzp) = (2m)Da/?2 ‘Ea\b‘l/z

1 _
exp (= (@ = papp) TS} (@ — rap))
® oy = ta + TSy, (T — pp)
® Zopp = Saa — SabSp;' Dea

The covariance matrix of the conditional distribution of X4|X} is independent of

The mean vector of the conditional distribution of X4| X} is a linear function of
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The Gaussian distribution | Marginals

If two vectors X, and X are jointly (as X) distributed as a Gaussian, then each of the
marginal distributions of the two components vectors area also Gaussian distributions

= (%) =)

1 1 1 Yaa  Xab
_ e NTs =1, = a
p(@) (2m)P/2|x|1/2 eXp( Q(z woET (e ”')) (Zba Ebb)
; . _ Aaa Aab
p(2a,zp) A= (Aba Abb)

The marginal distribution p(zg)

p(%a)

/m%wwmb

1 1 1 -
= le L[172 exp ( - 5(% — 1a) "85 (w0 — #a))

The marginal distribution p(z;)
p(a) = [ (oo, a)de,

: ! ! Te—1
- WWeXP ( B 5(% R C #b))
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Ts—1
= ———-——exp| — =(z — X7 (- )
p@) = oo (- 5@ -n e -
Distributions 1 10
zp
zp = 0.7 p(2alzy = 0.7)
0.5
p(@a,p)
0
0 0.5 Zq 1 0 0.5 Zq
1 1 1
Tyw—1
p(ze|zp) = Wmexp ( — E(m,l — alp) Ealb(xa - ,u,l|b)>
1 1 1 B
exp ( - 5(33(1 - ,U'a)Tzaal (%0 — Ma))

p(.Ta) = (QTI')D“/Q ‘Eaa|1/2
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The Gaussian distribution | Posteriors

Suppose we are only given some p(z,) and p(zp|z.) and we are interested in p(zq|zp)
For the conditional p(zp|z,), a likelihood function, we have

-1

1 1 Bbla = ATa + b

T "bla )
Tp|Te) = ————7~¢ — (xp — Tp — ,
Pl = G mats, 73 xp (= (o = nja) " 5@ — o) Sy
The mean fip|4 is linear in zq
For the marginal p(z,), a prior, we have
1 1 1
o S Tsv—1(,. _ Ha
p@) = o (e — ) TE e — pa), .

From Bayes, we get a posterior p(zq|zp)

P(@]7a)p(Ta)
p(p)

. P(Ta, 20)

o J (%4, zp)dza

p(zalmp) =
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For the joint distribution p(za, zp) = p(zp|2e)p(2a), we have

Distributions

Inference 1 1 1 Ty—1
p(xav%):WWexp(‘g(”‘“) 2l —w)

The parameters p and X can be determined

_ Ha
w= (A,ua + b)

Eaa ZGE-AT
%= 1
AXgq Zb|a + A¥a A

For the marginal p(zp), a marginal likelihood or model evidence

By = Apa+b

1 1 1
p(am) = s —rgexp ( — =(m — pe) "X, (@ — ) ),
(271—)Db/2 ‘2b|1/2 ( b ) Spp = Eb\a + AE,MAT

2

The parameters p;, and X, are from p and X
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The Gaussian distribution | Posteriors (cont.)

For the posterior p(zq|zp), we have

1 1

p(za|zp) = (27r)Da/2 \Za\b‘lﬂ

1 -
exp (= S(@n = papp) "S5} (@ = rap))
The mean p1,|; and covariance X,y
—1
:U'a\b = (Ea_al +ATZI)_|;A) <ATEb\a(zb _ma)+2a_alll‘a)

Ea\b = (Za_al + ATZHaA)_

We discussed an example of the linear-Gaussian model, the building block of many
unsupervised techniques, like probabilistic principal component analysis and factor
analysis, and many supervised techniques, like linear dynamical systems (Kalman filter)
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The Gaussian | Inference

How to estimate the parameters of some multivariate Gaussian distribution from data?

We got data {1, ..., zy } which we assume to be independent draws from the Gaussian

p(zl, ... an|p, X)) = H p(zn)

1 1
- H L (2m) D/2|2|1/2 (_ i(ﬂﬁn—u)TZ*l(;pn_u))

We can assume that p and ¥ are sure variables and maximise the likelihood function

p(z1,...,2zn|p, X) with respect to p and 3 or by minimising the negative log-likelihood
L& N ND
In p({an i D) = 5 37 (0~ 0) 7S am — )+ In (5]) + 5 In (27)
n=1

Optimisation yields the usual maximum likelihood estimates
1
ﬁML = N 2_: Tn

S = Z (zn — Amr) (w0 — Ar) ™

nl
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Distributions
Inference The maximum likelihood framework gave us point estimates for 1 and %, in a Bayesian
treatment one models the parameters as random variables and introduces their priors

We define a probabilistic model for all the random variables

p({zn}, A 2) = p({zn }p, B)p(p, X)

Then, we can use the Bayes rule to determine the posterior

(Sl {om}) = p({znilé,j)}z))(#, %)

The conjugate prior for p, assuming a known =1 is a Gaussian distribution

The conjugate prior for ¥~1, assuming a known p is a Wishart distribution

The conjugate joint prior for x and £~ is a Gaussian-Wishart distribution
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The Gaussian | Inference | Mixtures

While the Gaussian distribution has some important analytical properties, this density
model suffers from significant limitations when it comes to characterising real data sets
100

80 A Gaussian distribution inferred by maximum likelihood
The distribution fails to capture the two data clumps
60 and places much of its probability mass in the centre
between the clumps where the data are relatively sparse
40
1 2 3 4 5 6 100
A linear combination of two Gaussians distributions 80

® Inference by maximum likelihood

. ™ . . 60
Linear superpositions improve data representation

40
1 2 3 4 5 6

Superpositions obtained taking linear combinations of basic distributions, such as
Gaussians, can be formulated as probabilistic data models, or Gaussian mixture models



- The Gaussian | Inference | Mixtures (cont.)
2025

p(z) The one-dimensional mixture of Gaussians
The Gaussian Three Gaussians (in blue, scaled by a coef-
RRae ficient) and their weighted sum (in red)

Inference

‘We can get very complex densities

With sufficient number of Gaussians we can
approximate almost any continuous density

05

0 05 1 0 0.5 1

® The contours at constant density for each of the Gaussian components
® The contours at constant density of the mixture distribution p(z)

® The surface plot of the mixture distribution p(z)

The numbers (first plot) are the weights
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The Gaussian | Inference | Mixtures (cont.)

K
p(z) =Y mp(z|pr, Tr)
k=1
We consider a linear superposition of K Gaussians
with
mr € [0,1,k=1,...,K
K
Zk=1 =1
Such a density model is a mixture of Gaussians in which each Gaussian density p(z |, Xk)
is a component of the mixture, with its own mean vector py and covariance matrix 3

Mixing coefficients {7y}, means {uy}, and covariances {2} are the model parameters

A way to infer the model parameters from data {z,} is to maximise the (log) likelihood

n=1

N K
Inp({azn}{me} dunh A63) = 3 In (D2 mep(@nliar, )
k=1

This solution treats parameters as sure variables and their point-estimates are inferred
® Standard non-linear program

® Expectation-maximisation
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The Gaussian | Inference | Mixtures (cont.)

A discretised parameter space for a two-Gaussian mixture with 71 = 0.6 and 72 = 0.4

® The standard deviations of {¥1 = 0%], Yo = O'%I} vary vertically

® The mean vectors {u1, u2} vary horizontally

N N N .
[N N N S S
A A A A
A A A A=A

D AN S A A
A AL A s A
AN A A A an
AA_A A ~n

AN A A A
AN AN, Sy, W
AN AN NI, SN N
A A m noan

AN A A A
AN A A A
AN MM An
An momona

AL A A A A

AL AL AL
AL AL AL e
AN A A ~n
AN A A ~n

AN NN A
AN\ AN AN/, O
AN N~ nAn
MDA A~ na

NN AL A
AN A A
AN N A A
AN A moaa

s s s
[ e NpaNas
Lo DN N n
A AN A A

PN NNV PN
AL AL~
F-NVANGVANRVANRPZVN
NN A

NN NN N
AN N N A
AN NN
me NN A

AN AN A
AN NN
AN NN A
oA A

N =N
o~ S A A
FSSA S A A W
A N NN A

NN AN AN A
N N A A N
FENVANVANGVA PN
e NN N A

AN NN
AN AN N
oA NN
o AN

AN NN A
AN NN
A AN N
o NN

—_—— e~
—e— e~
Bom D S s N

Am Am N N N

— = e e 4
e e~
nmnn o N
A An D M N

PN, S\
SN N N NN
AN an on o N
an an an N

A A A _A_A
AN A AN
Al Al oA AN
aA ah an oA N



- The Gaussian | Inference | Mixtures (cont.)
2025

= 0.6 s 0,4 )
p(z) p(z|p1,X1) + 0,4 p(z|pe, X2)

Distributio T o

Inference

e e e e R o N e N o - - N R R R e .
N e s s DA A A A = A AN A e OSPNDN  em m— m r
AL AAL s DA A A A S AN AN o e A NAANA Lo P S~ N
A A A A AN A A A AA A AN A A A P N N
o~ A DN AN AN O e AN L DAL o e s
~_ ~ AN A s DA AN DA NN, o en D
NN AN A A, SN AN 2 SN N P .
NN AAA A M A AA A NN A A Ln B
. AN NDANND D AANAANANAL AN NN AN PV, S\
[ .. AN ANANANA LN AN NN A P, SN
~ A Anrn ANNAA M~ A AN N PPV SPIN
M Ansn daeANANA AN m AA
AANAA AAAANA AANANAANA AN A
Al A AA AAAAMA A ANNANNL AN
Ny AN AAAAAM A AANL  2AAA

N Arn AAANAMaA AL M AA

The likelihood function p({zn }{7r}, {ux}, {Ek}) for some {z, } shown as line thickness

® Sub-hypothesis for which the maximum likelihood is smaller than e~8 blanked



NPCW
2025

Distributior

Inference

The Gaussian | Inference | Mixtures (cont.)

A discretised parameter space for a two-Gaussian mixture with 71 = 0.8 and w2 = 0.2
® The standard deviations of {¥1 = 011,32 = 021} vary vertically

® The mean vectors {u1, u2} vary horizontally
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p(z) = 0.8 p(z|u1,X1) + 0,2 p(z|u2, X2)

Distributio 1 T

Inference
nierence S s s s A A A S A A AAA A S S A A e

e SN S s A A AL A e S A A A s A AN s e m
AL e O AL AL e S AN o SN A s e o~
A ASA A A A S A A A A S AN N a v S~ N

DA A NN DA AN AN -~~~

[aN - ANA AN e ADANADAAN L AN NALSN o~
~ o~ DA AN ADNAN L AN NDNA A P = A
AA A A An DDA ra AN A POV S EN

ANANN AANAAN AANAANANNAMN
NN A AAANANANA AN AANA
ANDNDe ANANANANA AANANNNANM
AN A ANANANM A A NAAM

AALAAA LA AN
A A iLA.A..Li.\ NN N A A
A A ALLﬁ A A NN A
A NANAALAAM ALANAA

bLL BALL
N

The likelihood function p({zn }{7r}, {ux}, {Ek}) for some {z, } shown as line thickness

® Sub-hypothesis for which the maximum likelihood is smaller than e~8 blanked
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The Gaussian | Inference | Mixtures (cont.)

K
p(z) =Y mp(|pr, Sk

k=1
A mixture of K Gaussians in terms of latent variables h
wi
T € [071]7k = 17"'7K
Zf:l T =1

A mixing coefficient 75 can be understood as the prior probability p(k) of selecting the
k-th Gaussian and p(z|p, Xg) as the conditional probability density at z, given the k

K

Z z|k)p(k)

k=1 ‘f—l
p(z,k)

Using the Bayes’ rule, we obtain the posterior probability of selecting the k-th Gaussian

p(k)p(z|k)
\

> p(Dp(z|l

p(klz) = )

This solution treats means and covariance matrixes as sure variables, weights random
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The Gaussian | Inference | Mixtures (cont.)

We can draw samples from the joint distribution p(z, %)), using ancestral sampling,
and show them at the corresponding of z after colouring them according to the k value

Samples from the marginal p(z) are obtained by sampling the joint and ignoring the k

A point z for which p(k = 1(2,3)) = 1|z) is red (blue, green)

Other points z have weighting doses of red, blue, and green
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