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The Gaussian distribution

A Gaussian, or normal, distribution is pervasive density model for continuous variables

For a single random variable X

p(x |µ, σ2) =
1

(2πσ2)1/2
exp

(
− 1

2
(x − µ)

1

σ2
(x − µ)

)

• µ is the mean value

• σ2 is the variance

For a D-dimensional variable X

p(x |µ,Σ) =
1

(2π)D/2

1

|Σ|1/2 exp
(
− 1

2
(x − µ)T

1

Σ
(x − µ)

)

• µ is the D-dimensional mean vector

• Σ is the D ×D covariance matrix

• |Σ| is the determinant of Σ
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The Gaussian distribution (cont.)

p(x |µ,Σ) =
1

(2π)D/2

1

|Σ|1/2 exp
(
− 1

2
(x − µ)T

1

Σ
(x − µ)

)
Gaussians depends on x through the quadric form ∆2 = (x − µ)TΣ−1(x − µ)

• Quantity ∆ is the Mahalanobis distance from µ to x

• It reduces to the Euclidean distance when Σ = ID

Thence, the Gaussian density is constant on surfaces for which ∆2 is constant

To be well-defined, all of the eigenvalues of Σ need be real and strictly positive

• Otherwise, the Gaussian cannot be properly normalised

Gaussian densities for which one or more eigenvalues of Σ are zero are singular

• They are confined to a subspace of lower dimensionality
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The Gaussian distribution | Expectations

The expectation of f (x) = x under the Gaussian distribution

E[x ] =
1

(2π)D/2

1

|Σ|1/2
∫

exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)
x︸︷︷︸ dx

= µ

We refer to it as the mean vector of the Gaussian distribution

There are D2 expectations E[xixj ] under the Gaussian distribution

E[xxT ] =
1

(2π)D/2

1

|Σ|1/2
∫

exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)
xxT︸︷︷︸ dx

= µµT +Σ

We refer to Σ as the covariance matrix of the Gaussian distribution

• Its inverse Λ = Σ−1 is denoted as the precision matrix
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Marginals, conditionals, and posteriors
The Gaussian distribution
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The Gaussian distribution | Conditionals

If two vectors Xa and Xb are jointly (as X ) distributed as a Gaussian, then the condi-
tional distribution of one vector conditioned on the other one is a Gaussian distribution

X =

(
Xa

Xb

)

p(x) =
1

(2π)D/2

1

|Σ|1/2 exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)
︸ ︷︷ ︸

p(xa ,xb)

µ =

(
µa

µb

)
Σ =

(
Σaa Σab

Σba Σbb

)
Λ =

(
Λaa Λab

Λba Λbb

)
The conditional distribution p(xa |xb)

p(xa |xb) =
1

(2π)Da/2

1

|Σa|b |1/2
exp

(
− 1

2
(xa − µa|b)

TΣ−1
a|b(xa − µa|b)

)

• µa|b = µa +ΣabΣ
−1
bb (xb − µb)

• Σa|b = Σaa − ΣabΣ
−1
bb Σba

The covariance matrix of the conditional distribution of Xa |Xb is independent of xb

The mean vector of the conditional distribution of Xa |Xb is a linear function of xb
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The Gaussian distribution | Marginals

If two vectors Xa and Xb are jointly (as X ) distributed as a Gaussian, then each of the
marginal distributions of the two components vectors area also Gaussian distributions

X =

(
Xa

Xb

)

p(x) =
1

(2π)D/2

1

|Σ|1/2 exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)
︸ ︷︷ ︸

p(xa ,xb)

µ =

(
µa

µb

)
Σ =

(
Σaa Σab

Σba Σbb

)
Λ =

(
Λaa Λab

Λba Λbb

)
The marginal distribution p(xa )

p(xa ) =

∫
p(xa , xb)dxb

=
1

(2π)Da/2

1

|Σaa |1/2
exp

(
− 1

2
(xa − µa )

TΣ−1
aa (xa − µa )

)
The marginal distribution p(xb)

p(xb) =

∫
p(xa , xb)dxa

=
1

(2π)Db/2

1

|Σbb |1/2
exp

(
− 1

2
(xb − µb)

TΣ−1
bb (xb − µb)

)
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The Gaussian distribution | Conditionals and marginals

p(x) =
1

(2π)D/2

1

|Σ|1/2 exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)

xa

xb = 0.7

xb

p(xa, xb)

0 0.5 1
0

0.5

1

xa

p(xa)

p(xa|xb = 0.7)

0 0.5 1
0

5

10

p(xa |xb) =
1

(2π)Da/2

1

|Σa|b |1/2
exp

(
− 1

2
(xa − µa|b)

TΣ−1
a|b(xa − µa|b)

)
p(xa ) =

1

(2π)Da/2

1

|Σaa |1/2
exp

(
− 1

2
(xa − µa )

TΣ−1
aa (xa − µa )

)
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The Gaussian distribution | Posteriors

Suppose we are only given some p(xa ) and p(xb |xa ) and we are interested in p(xa |xb)

For the conditional p(xb |xa ), a likelihood function, we have

p(xb |xa ) =
1

(2π)Db/2

1

|Σb|a |1/2
exp

(
− (xb − µb|a )

T
Σ−1

b|a

2
(xb − µb|a )

)
,

µb|a = Axa + b

Σb|a

The mean µb|a is linear in xa

For the marginal p(xa ), a prior, we have

p(xa ) =
1

(2π)Da/2

1

|Σaa |1/2
exp

(
− 1

2
(xa − µa )

TΣ−1
aa (xa − µa )

)
,

µa

Σaa

From Bayes, we get a posterior p(xa |xb)

p(xa |xb) =
p(xb |xa )p(xa )

p(xb)

=
p(xa , xb)∫
p(xa , xb)dxa
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The Gaussian distribution | Posteriors (cont.)

For the joint distribution p(xa , xb) = p(xb |xa )p(xa ), we have

p(xa , xb) =
1

(2π)D/2

1

|Σ|1/2 exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)
The parameters µ and Σ can be determined

µ =

(
µa

Aµa + b

)
Σ =

(
Σaa ΣaaAT

AΣaa Σb|a +AΣ−1
aa AT

)

For the marginal p(xb), a marginal likelihood or model evidence

p(xb) =
1

(2π)Db/2

1

|Σb |1/2
exp

(
− 1

2
(xb − µb)

TΣ−1
b (xb − µb)

)
,

µb = Aµa + b

Σbb = Σb|a +AΣaaA
T

The parameters µb and Σbb are from µ and Σ
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The Gaussian distribution | Posteriors (cont.)

For the posterior p(xa |xb), we have

p(xa |xb) =
1

(2π)Da/2

1

|Σa|b |1/2
exp

(
− 1

2
(xa − µa|b)

TΣ−1
a|b(xa − µa|b)

)
The mean µa|b and covariance Σa|b

µa|b =
(
Σ−1

aa +ATΣ−1
b|aA

)−1 (
ATΣb|a (xb − xa ) + Σ−1

aa µa

)
Σa|b =

(
Σ−1

aa +ATΣb|aA
)−1

We discussed an example of the linear-Gaussian model, the building block of many
unsupervised techniques, like probabilistic principal component analysis and factor
analysis, and many supervised techniques, like linear dynamical systems (Kalman filter)
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Inference
The Gaussian distribution
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The Gaussian | Inference
How to estimate the parameters of some multivariate Gaussian distribution from data?

We got data {x1, . . . , xN } which we assume to be independent draws from the Gaussian

p(x1, . . . , xN |µ,Σ) =
N∏

n=1

p(xn )

=
N∏

n=1

1

(2π)D/2

1

|Σ|1/2 exp
(
− 1

2
(xn − µ)TΣ−1(xn − µ)

)

We can assume that µ and Σ are sure variables and maximise the likelihood function
p(x1, . . . , xN |µ,Σ) with respect to µ and Σ or by minimising the negative log-likelihood

ln p({xn}|µ,Σ) =
1

2

N∑
n=1

(xn − µ)TΣ−1(xn − µ) +
N

2
ln (|Σ|) + ND

2
ln (2π)

Optimisation yields the usual maximum likelihood estimates

µ̂ML =
1

N

N∑
n=1

xn

Σ̂ML =
1

N (−1)

N∑
n=1

(xn − µ̂ML)(xn − µ̂ML)
T
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The Gaussian | Inference (cont.)

The maximum likelihood framework gave us point estimates for µ and Σ, in a Bayesian
treatment one models the parameters as random variables and introduces their priors

We define a probabilistic model for all the random variables

p({xn}, λ,Σ) = p({xn}|µ,Σ)p(µ,Σ)

Then, we can use the Bayes rule to determine the posterior

p(µ,Σ|{xn}) =
p({xn}|µ,Σ)p(µ,Σ)

p({xn})

The conjugate prior for µ, assuming a known Σ−1 is a Gaussian distribution

The conjugate prior for Σ−1, assuming a known µ is a Wishart distribution

The conjugate joint prior for µ and Σ−1 is a Gaussian-Wishart distribution
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The Gaussian | Inference | Mixtures

While the Gaussian distribution has some important analytical properties, this density
model suffers from significant limitations when it comes to characterising real data sets

1 2 3 4 5 6
40

60

80

100

A Gaussian distribution inferred by maximum likelihood

The distribution fails to capture the two data clumps
and places much of its probability mass in the centre
between the clumps where the data are relatively sparse

A linear combination of two Gaussians distributions

• Inference by maximum likelihood

Linear superpositions improve data representation

1 2 3 4 5 6
40

60

80

100

Superpositions obtained taking linear combinations of basic distributions, such as
Gaussians, can be formulated as probabilistic data models, or Gaussian mixture models
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The Gaussian | Inference | Mixtures (cont.)

x

p(x) The one-dimensional mixture of Gaussians

Three Gaussians (in blue, scaled by a coef-
ficient) and their weighted sum (in red)

We can get very complex densities

With sufficient number of Gaussians we can
approximate almost any continuous density

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

• The contours at constant density for each of the Gaussian components
• The contours at constant density of the mixture distribution p(x)
• The surface plot of the mixture distribution p(x)
• The numbers (first plot) are the weights
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The Gaussian | Inference | Mixtures (cont.)

We consider a linear superposition of K Gaussians

p(x) =
K∑

k=1

πkp(x |µk ,Σk )

with{
πk ∈ [0, 1], k = 1, . . . ,K∑K

k=1 πk = 1

Such a density model is amixture of Gaussians in which each Gaussian density p(x |µk ,Σk )
is a component of the mixture, with its own mean vector µk and covariance matrix Σk

Mixing coefficients {πk}, means {µk}, and covariances {Σk} are the model parameters

A way to infer the model parameters from data {xn} is to maximise the (log) likelihood

ln p({xn}|{πk}, {µk}, {Σk}) =
N∑

n=1

ln
( K∑

k=1

πkp(xn |µk ,Σk )
)

This solution treats parameters as sure variables and their point-estimates are inferred

• Standard non-linear program

• Expectation-maximisation
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The Gaussian | Inference | Mixtures (cont.)

A discretised parameter space for a two-Gaussian mixture with π1 = 0.6 and π2 = 0.4

• The standard deviations of {Σ1 = σ2
1I ,Σ2 = σ2

2I} vary vertically

• The mean vectors {µ1, µ2} vary horizontally

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

298 21 — Exact Inference by Complete Enumeration

Figure 21.6. Enumeration of the
entire (discretized) hypothesis
space for a mixture of two
Gaussians. Weight of the mixture
components is π1,π2 = 0.6, 0.4 in
the top half and 0.8, 0.2 in the
bottom half. Means µ1 and µ2

vary horizontally, and standard
deviations σ1 and σ2 vary
vertically.

coefficients π1 and π2, satisfying π1 + π2 = 1, πi ≥ 0.

P (x |µ1,σ1,π1, µ2,σ2,π2) =
π1√
2πσ1

exp
(
− (x−µ1)2

2σ2
1

)
+

π2√
2πσ2

exp
(
− (x−µ2)2

2σ2
2

)

Let’s enumerate the subhypotheses for this alternative model. The parameter
space is five-dimensional, so it becomes challenging to represent it on a single
page. Figure 21.6 enumerates 800 subhypotheses with different values of the
five parameters µ1, µ2,σ1,σ2,π1. The means are varied between five values
each in the horizontal directions. The standard deviations take on four values
each vertically. And π1 takes on two values vertically. We can represent the
inference about these five parameters in the light of the five datapoints as
shown in figure 21.7.

If we wish to compare the one-Gaussian model with the mixture-of-two
model, we can find the models’ posterior probabilities by evaluating the
marginal likelihood or evidence for each model H, P ({x} |H). The evidence
is given by integrating over the parameters, θ; the integration can be imple-
mented numerically by summing over the alternative enumerated values of
θ,

P ({x} |H) =
∑

P (θ)P ({x} |θ,H), (21.9)

where P (θ) is the prior distribution over the grid of parameter values, which
I take to be uniform.

For the mixture of two Gaussians this integral is a five-dimensional integral;
if it is to be performed at all accurately, the grid of points will need to be
much finer than the grids shown in the figures. If the uncertainty about each
of K parameters has been reduced by, say, a factor of ten by observing the
data, then brute-force integration requires a grid of at least 10K points. This
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The Gaussian | Inference | Mixtures (cont.)

p(x) = 0.6︸︷︷︸
π1

p(x |µ1,Σ1) + 0, 4︸︷︷︸
π2

p(x |µ2,Σ2)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

21.2: Exact inference for continuous hypothesis spaces 299

Figure 21.7. Inferring a mixture of
two Gaussians. Likelihood
function, given the data of
figure 21.3, represented by line
thickness. The hypothesis space is
identical to that shown in
figure 21.6. Subhypotheses having
likelihood smaller than e−8 times
the maximum likelihood are not
shown, hence the blank regions,
which correspond to hypotheses
that the data have ruled out.

-0.5 0 0.5 1 1.5 2 2.5

exponential growth of computation with model size is the reason why complete
enumeration is rarely a feasible computational strategy.

Exercise 21.3.[1 ] Imagine fitting a mixture of ten Gaussians to data in a
twenty-dimensional space. Estimate the computational cost of imple-
menting inferences for this model by enumeration of a grid of parameter
values.

The likelihood function p({xn}|{πk}, {µk}, {Σk}) for some {xn} shown as line thickness

• Sub-hypothesis for which the maximum likelihood is smaller than e−8 blanked
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The Gaussian | Inference | Mixtures (cont.)

A discretised parameter space for a two-Gaussian mixture with π1 = 0.8 and π2 = 0.2

• The standard deviations of {Σ1 = σ1I ,Σ2 = σ2I} vary vertically

• The mean vectors {µ1, µ2} vary horizontally

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

298 21 — Exact Inference by Complete Enumeration

Figure 21.6. Enumeration of the
entire (discretized) hypothesis
space for a mixture of two
Gaussians. Weight of the mixture
components is π1,π2 = 0.6, 0.4 in
the top half and 0.8, 0.2 in the
bottom half. Means µ1 and µ2

vary horizontally, and standard
deviations σ1 and σ2 vary
vertically.

coefficients π1 and π2, satisfying π1 + π2 = 1, πi ≥ 0.

P (x |µ1,σ1,π1, µ2,σ2,π2) =
π1√
2πσ1

exp
(
− (x−µ1)2

2σ2
1

)
+

π2√
2πσ2

exp
(
− (x−µ2)2

2σ2
2

)

Let’s enumerate the subhypotheses for this alternative model. The parameter
space is five-dimensional, so it becomes challenging to represent it on a single
page. Figure 21.6 enumerates 800 subhypotheses with different values of the
five parameters µ1, µ2,σ1,σ2,π1. The means are varied between five values
each in the horizontal directions. The standard deviations take on four values
each vertically. And π1 takes on two values vertically. We can represent the
inference about these five parameters in the light of the five datapoints as
shown in figure 21.7.

If we wish to compare the one-Gaussian model with the mixture-of-two
model, we can find the models’ posterior probabilities by evaluating the
marginal likelihood or evidence for each model H, P ({x} |H). The evidence
is given by integrating over the parameters, θ; the integration can be imple-
mented numerically by summing over the alternative enumerated values of
θ,

P ({x} |H) =
∑

P (θ)P ({x} |θ,H), (21.9)

where P (θ) is the prior distribution over the grid of parameter values, which
I take to be uniform.

For the mixture of two Gaussians this integral is a five-dimensional integral;
if it is to be performed at all accurately, the grid of points will need to be
much finer than the grids shown in the figures. If the uncertainty about each
of K parameters has been reduced by, say, a factor of ten by observing the
data, then brute-force integration requires a grid of at least 10K points. This
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The Gaussian | Inference | Mixtures (cont.)

p(x) = 0.8︸︷︷︸
π1

p(x |µ1,Σ1) + 0, 2︸︷︷︸
π2

p(x |µ2,Σ2)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

21.2: Exact inference for continuous hypothesis spaces 299

Figure 21.7. Inferring a mixture of
two Gaussians. Likelihood
function, given the data of
figure 21.3, represented by line
thickness. The hypothesis space is
identical to that shown in
figure 21.6. Subhypotheses having
likelihood smaller than e−8 times
the maximum likelihood are not
shown, hence the blank regions,
which correspond to hypotheses
that the data have ruled out.

-0.5 0 0.5 1 1.5 2 2.5

exponential growth of computation with model size is the reason why complete
enumeration is rarely a feasible computational strategy.

Exercise 21.3.[1 ] Imagine fitting a mixture of ten Gaussians to data in a
twenty-dimensional space. Estimate the computational cost of imple-
menting inferences for this model by enumeration of a grid of parameter
values.

The likelihood function p({xn}|{πk}, {µk}, {Σk}) for some {xn} shown as line thickness

• Sub-hypothesis for which the maximum likelihood is smaller than e−8 blanked
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The Gaussian | Inference | Mixtures (cont.)

A mixture of K Gaussians in terms of latent variables

p(x) =
K∑

k=1

πkp(x |µk ,Σk )

with{
πk ∈ [0, 1], k = 1, . . . ,K∑K

k=1 πk = 1

A mixing coefficient πk can be understood as the prior probability p(k) of selecting the
k-th Gaussian and p(x |µk ,Σk ) as the conditional probability density at x , given the k

p(x) =
K∑

k=1

p(x |k)p(k)︸ ︷︷ ︸
p(x ,k)

Using the Bayes’ rule, we obtain the posterior probability of selecting the k-th Gaussian

p(k |x) = p(k)p(x |k)∑
l p(l)p(x |l)

This solution treats means and covariance matrixes as sure variables, weights random
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The Gaussian | Inference | Mixtures (cont.)

We can draw samples from the joint distribution p(x , k)), using ancestral sampling,
and show them at the corresponding of x after colouring them according to the k value

Samples from the marginal p(x) are obtained by sampling the joint and ignoring the k

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1 (a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

For each sample, we can depict the posterior probability for each Gaussian component

(c)

0 0.5 1

0

0.5

1

A point x for which p(k = 1(2, 3)) = 1|x) is red (blue, green)

Other points x have weighting doses of red, blue, and green
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