

Aalto University

Probabilistic machine learning | Intro (E) Introduction to machine learning

Francesco Corona

Chemical and Metallurgical Engineering School of Chemical Engineering

Formulation and training

Formulation

Training

Learning and predictions

Learning

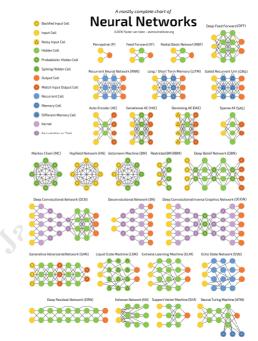
Prediction

Simulation

Energy-base

Shape-based

Outro



Intro

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Outro

Many neural network models are made of neurons

 \sim A single lonely \odot neuron can learn, too

It _must_ be interesting to understand it in detail

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-based

Outro

Formulation and training

The neuron

12111C

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-based

Outro

Formulation

The neuron

1 3 milio

Formulation and training

Formulation

Training

Learning and predictions Learning

Prediction

Simulation Energy-based

Shape-based

Outro

Architecture

Formulation

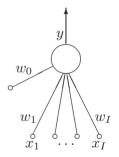
A neuron has a number I of inputs x_i and one output y

Associated with each input is a weight w_i (i = 1, ..., I)

- There may be an additional parameter w_0
- The bias, the weight for the input x_0
- Input x_0 is permanently set to 1

The neuron is a feedforward computational device

• Connections go from inputs to output



Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Outro

Formulation (cont.)

Activity

The activity of the neuron consists of two steps

() In response to the presented input $\mathbf{x} = (x_1, \ldots, x_I)$, the activation

Sum is over i = 0, ..., I if there is a bias $\sim (i = 1, ..., I$ otherwise)

2 The output y, or activity, is set as a function f(a) of the activation

$$y = f(a) = f(\sum_{i} w_i x_i)$$

 $a = \sum_i w_i x_i$

There are several activation functions

 $\rightsquigarrow\,$ Deterministic and stochastic

Formulation and training

Formulation

- Training
- Learning and predictions
- Learning
- Prediction
- Simulation
- Energy-based
- Outro

Formulation (cont.)

Popular activation functions (deterministic)

• Linear (identity) y(a) =• Sigmoid (logistic function) $y \in (0,1)$ y(a)5 -5 • Sigmoid (tanh) $y(a) = \tanh(a), \quad y \in (-1, +1)$ 0 c • Threshold (sign) 1 $y(a) = \operatorname{sign}(a) = \begin{cases} +1, & a > 0 \\ -1, & a < 0 \end{cases}$ 0 -1 1 5 -5

Formulation and training

Formulation

Training

- Learning and predictions
- Learning
- Prediction

Simulation

Energy-based

```
Outro
```

Formulation (cont.)

Popular activation functions (stochastic)

Stochastic activation functions, y is randomly selected from $\{-1, +1\}$

• Heat bath

• . . .

$$y(a) = \begin{cases} +1, & \text{with probability } \frac{1}{1+e^{-a}} \\ -1, & \text{with probability } 1 - \frac{1}{1+e^{-a}} \end{cases}$$

Formulation (cont.)

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based Shape-based

Outro

The neuron implements a function $y(\mathbf{x}|\mathbf{w}) = y[a(\mathbf{x}, \mathbf{w})]$, with $a = \sum_{i} w_{i} x_{i}$

The output y is often a nonlinear function of the inputs **x**

• The function is parameterised by weights ${\bf w}$

The logistic sigmoid

We study a neuron which produces an output $y \in (0, 1)$, as function of **x**

• We consider the logistic function (sigmoid)

$$y(\mathbf{x}|\mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

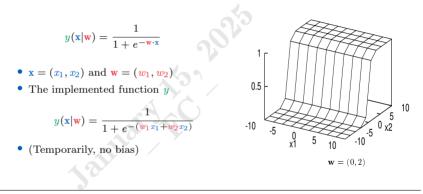
Formulation (cont.)

Formulation and training

Formulation

- Training
- Learning and predictions
- Learning
- Prediction
- Simulation
- Energy-based
- Outro

The case where input vector and parameter vector are two-dimensional



Along a line perpendicular to the direction of \mathbf{w} , the output is constant Along a line in the direction of \mathbf{w} , the output is a sigmoid function

Formulation and

Formulation

Training

Learning and predictions

Prediction

Simulation

Energy-based

Outro

The weight space

Formulation (cont.)

The parameter/weight space of the neuron is a space whose dimensionality equals the number of weights and onto which weights can take on values

• Each point w in weight space corresponds to a function of x

In our case study, there are two parameters (weights) w_1 and w_2

- The weight space is two-dimensional
- We see functions $y(\mathbf{x}|\mathbf{w})$ in place

Formulation and training

Formulation

Training

Learning and predictions

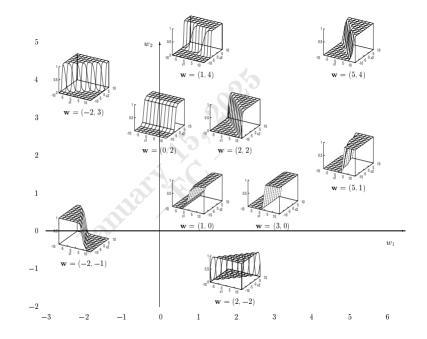
Learning

Prediction

Simulation

Energy-based Shape-based

```
Outro
```



Training

Training The E-uD-uE-uA-uF-AN(u)N

Training

Formulation and training

- Formulation
- Training
- Learning and predictions
- Learning
- Prediction
- Simulation Energy-based
- Outro

The central idea of a supervised neuron (and also neural networks, I suppose) \rightsquigarrow Given examples of the relation between input vectors **x** and targets t

 $\left\{ (\mathbf{x}^{(n)}, t^{(n)}) \right\}_{n=1}^{N}$

 \rightsquigarrow We wish to make the neuron $y(\mathbf{x}|\mathbf{w})$ learn the map from \mathbf{x} to t

For any given **x**, a successfully trained neuron will return some output y

• Output is expected to be close (in some sense) to target value t

Training the neuron means searching in weight space for some optimal $\hat{\mathbf{w}}$

- A value $\hat{\mathbf{w}}$ that produces a function $y(\mathbf{x}|\hat{\mathbf{w}})$ that fits the data well
- That is, output values y that are close to target values t

Formulation and training

Formulation

Training

Learning and predictions

Prodiction

Simulation Energy-based Shape-based

Outro

Training (cont.)

The error function

A function that measures how well a neuron with weights ${\boldsymbol w}$ solves the task

Often, the error function is a sum of terms, one for each input/target pair

- It measures how close output $y(\mathbf{x}|\mathbf{w})$ is to target t
- Each term is a function of w, given the input x

Training the neuron is an exercise in function minimisation (optimisation) \sim Find the w so that the error (objective) function is minimal

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Outro

Training (cont.)

Binary classification

We have a lonely neuron whose output $y(\mathbf{x}, \mathbf{w})$ is bounded in (0, 1)

• The activation function is the logistic sigmoid

$$\mathbf{v}(\mathbf{x}|\mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

 $\{(\mathbf{x}^{(n)}, t^{(n)})\}_{n=1}^{N}$

They gave us a set of input data with binary labels

How do we train the neuron to binary classify the data?

- Firstly, we need to define some error function
- $\bullet\,$ Then, we need to find a w that minimises it

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-based

Outro

Training (cont.)

We consider the following error function

$$G(\mathbf{w}) = -\sum_{n} \left\{ t^{(n)} \ln \left[y(\mathbf{x}^{(n)} | \mathbf{w}) \right] + (1 - t^{(n)}) \ln \left[1 - y(\mathbf{x}^{(n)} | \mathbf{w}) \right] \right\}$$
The term in error function
Bounded below, by zero
When $y(\mathbf{x}^{(n)} | \mathbf{w}) = t^{(n)}$
(for each n)
The neur(on)al model
$$y(\mathbf{x} | \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

Training (cont.)

$$G(\mathbf{w}) = -\sum_{n} \left\{ t^{(n)} \ln \left[\underbrace{y(\mathbf{x}^{(n)} | \mathbf{w})}_{y^{(n)}} \right] + (1 - t^{(n)}) \ln \left[1 - \underbrace{y(\mathbf{x}^{(n)} | \mathbf{w})}_{y^{(n)}} \right] \right\}$$

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Shape-based

Outro

The derivative $\mathbf{g} = (\cdots, g_j, \cdots)$ of $G(\mathbf{w})$ with respect to \mathbf{w}

$$g_j = \frac{\partial G(\mathbf{w})}{\partial w_j}$$
$$= \sum_{n=1}^N - \left[t^{(n)} - y^{(n)}\right] x_j^{(n)}$$
$$= \sum_{n=1}^N - e^{(n)} x_j^{(n)}$$

Quantity $e^{(n)} \equiv [t^{(n)} - y^{(n)}]$ is the mismatch on case n

The derivative $\frac{\partial G(\mathbf{w})}{\partial \mathbf{w}}$, the gradient $\nabla_{\mathbf{w}} G(\mathbf{w})$, is a sum of terms $\mathbf{g}^{(n)}$ $g_i^{(n)} \equiv -\left[t^{(n)} - y^{(n)}\right] x_i^{(n)}$, for $n = 1, \dots, N$

An online algorithm is designed by feeding each input to the neuron, one at a time, and then adjusting **w** a bit in the direction opposite to $\mathbf{g}^{(n)}$ (a stochastic gradient descent)

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base Shape-based

Outro

Training (cont.)

Sequential training

Architecture: A lonely \odot neuron with I inputs x_i and one output y

• Associated with each input is a weight w_i (i = 1, ..., I)

Activity: In response to inputs x, we compute the neuron activation

 $a = \mathbf{w} \cdot \mathbf{x}$ $= \sum_{i} w_{i} x_{i}$

The output y is set as a logistic sigmoid of the activation $a = \mathbf{w} \cdot \mathbf{x}$

$$y(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

Formulation and training

- Formulation
- Training
- Learning and predictions
- Learning
- Prediction
- Simulation
- Energy-based
- Outro

Training (cont.)

Training

The teacher supplies a target value $t \in \{0, 1\}$

• The correct label t of input **x**

We compute the neuron error with weights w

e = t - q

We adjust all the weights to reduce the error

 $\Delta w_i = \eta \underbrace{(t-y)x_i}_{-q_i^{(\cdot)}}$

• They call η the 'step-size'

Activity and training are repeated for each supplied pair (\mathbf{x}, t)

• A change in weight is made after every pair is presented

With fixed-size sets of data, we can cycle thru multiple times

Formulation and training

- Formulation
- Training
- Learning and predictions
- Learning
- Prediction
- Simulation
- Energy-based
- Outro

Training (cont.)

An alternative training paradigm is to go through a batch of examples

- Compute all the outputs $y^{(n)}$ and errors $e^{(n)}$
- Accumulate all the changes, $\Delta w_i = \eta e x_i$
- Apply cumulative change at the end

Batch training

For each input-output pair $\{\mathbf{x}^{(n)}, t^{(n)}\}$, we compute $y^{(n)} = y(\mathbf{x}^{(n)}|\mathbf{w})$

1

$$y(\mathbf{x}|\mathbf{w}) = \frac{1}{1 + \exp\left(-\sum_{i} w_{i} x_{i}\right)}$$

Define the term $e^{(n)} = \begin{bmatrix} t^{(n)} - y^{(n)} \end{bmatrix}$ and compute for each weight w_{i}

$$g_i^{(n)} = -\frac{e^{(n)}x_i^{(n)}}{x_i^{(n)}}$$

Then, let

$$\Delta \boldsymbol{w_i} = -\eta \sum_n g_i^{(n)}$$

Formulation and training

Formulation

Training

Learning and predictions

Learning

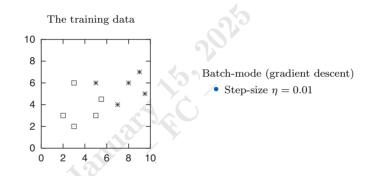
Prediction

Simulation

Energy-base Shape-based

Outro

Training (cont.)



Each data point consists of a two-dimensional input vector \mathbf{x} and a t value

- \times for t = 1
- \square for t = 0

Formulation and training

Formulation

Training

Learning and predictions

Learning

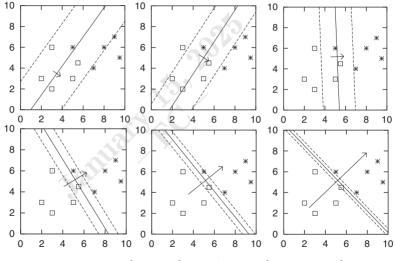
Prediction

Simulation Energy-based

Outro

Training (cont.)

The performed function after 30, 80, 500, 3K, 10K and 40K iterations



Contours correspond to $a \in \{-1, 0, +1\}$, namely at $y \in \{0.27, 0.50, 0.73\}$

Formulation and training

Formulatic

Training

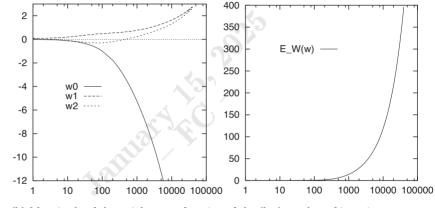
Learning and predictions Learning Prediction Simulation

Energy-base Shape-based

Outro

Training (cont.)

(a) Evolution of the weights as a function of the (log) number of iterations



(b) Magnitude of the weights as a function of the (log) number of iterations

$$E_W(\mathbf{w}) = 1/2 \sum_i w_i^2$$

Formulation and raining

Formulation

Training

Learning and predictions

Learning

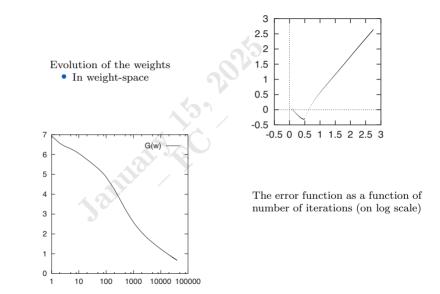
Prediction

Simulation

Energy-base

Outro

Training (cont.)



Formulation and training

Formulation

Training

Learning and predictions

Learning

Simulation Energy-based Shape-based

Outro

Training (cont.)

This training algorithm works, if η is set to an appropriate value

 $\bullet\,$ It finds a w that correctly classifies examples

For linearly separable examples, the neuron finds the separation

- With time, weights diverge to ever-larger values
- It is a manifestation of overfitting (undesirable)

Note to self: It's dumb to early-stop an algorithm meant to do minimisation

• It is more principled to use regularisation

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Outro

Training (cont.)

Regularisation

We augment the error function so that we penalise solutions we dislike (large weights)

- Them sharp boundaries arising from large weight values
- We penalise large (half-)norms of the parameter vector

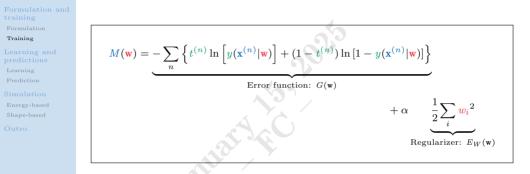
$$egin{aligned} E_{W}(\mathbf{w}) &= rac{1}{2}{\sum_{i}{w_{i}}^{2}} \ &= rac{1}{2}||\mathbf{w}||_{2}^{2} \end{aligned}$$

We augment the error function $G(\mathbf{w})$ with a weight-decay regulariser $E_W(\mathbf{w})$

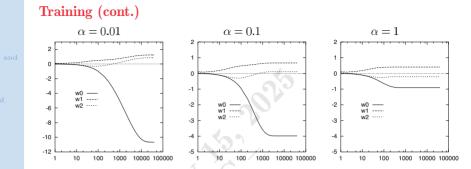
 $M(\mathbf{w}) = G(\mathbf{w}) + \alpha E_W(\mathbf{w})$

• α is a regularisation constant (it is a hyper-parameter)

Training (cont.)

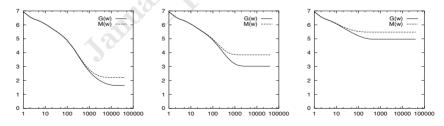


Influence of weight decay on the neuron batch training, gradient descent • $\alpha \in \{0.01, 0.1, 1\}$



Training

(a) Evolution of weights w_0 , w_1 and w_2 , as a function of number of iterations



(c) Objective $M(\mathbf{w})$ and error function $G(\mathbf{w})$, against number of iterations

ormulation and

Formulation

Training

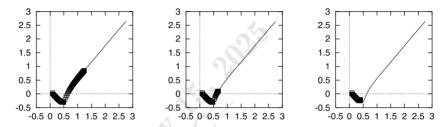
Learning and predictions Learning

Simulation Energy-based Shape-based

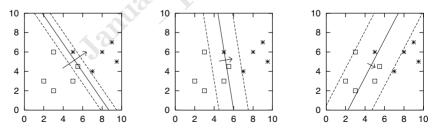
Outro

Training (cont.)

(b) In weight space, with trajectory in the case of zero weight-decay



(d) The function performed by the neuron, after 40 000 iterations



Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-based

Outro

Learning and predictions

The neuron

1 antic

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-based

Outro

Learning

The neuron

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-base

 \mathbf{Outro}

Learning

We trained the neuron to behave as a linear classifier

• Minimisation of an objective function

$$M(\mathbf{w}) = \underbrace{-\sum_{n} \left\{ t^{(n)} \ln \left[y(\mathbf{x}^{(n)} | \mathbf{w}) \right] + (1 - t^{(n)}) \ln \left[1 - y(\mathbf{x}^{(n)} | \mathbf{w}) \right] \right\}}_{\text{Error function: } G(\mathbf{w})} + \alpha \qquad \underbrace{\frac{1}{2} \sum_{i} w_{i}^{2}}_{i}$$

Regularizer: $E_W(\mathbf{w})$

The neuron's output $y(\mathbf{x}, \mathbf{w})$ defines the probability that an input \mathbf{x} belongs to class t = 1, rather than to the alternative t = 0, when the parameter values \mathbf{w} are all given

Values of ${\bf w}$ define the different hypothesis about the probability of class 1

• Relative to class 0, as function of input \mathbf{x}

Formulation and raining

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Outro

Learning (cont.)

Assume the inputs $\{\mathbf{x}_n\}_{n=1}^N$ to be given (sure variables, not to be modelled) Let D be the observed target data $D = \{t_n\}_{n=1}^N$

To infer parameters w given data D, we require a likelihood function
The joint probability of all of the data, given parameters
Plus some prior probability over w

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Outro

Learning (cont.)

p

The likelihood measures how well various parameters ${\boldsymbol w}$ predict the observed data

• It is the probability assigned by the model to the observed data t

 $p(t = 1 | \mathbf{w}, \mathbf{x}) = y(\mathbf{w}, \mathbf{x})$ $p(t = 0 | \mathbf{w}, \mathbf{x}) = 1 - y(\mathbf{w}, \mathbf{x})$

Each observed datum is assumed to be Bernoulli with parameter y

$$p(t|\mathbf{w}, \mathbf{x}) = y^{t} (1 - y)^{1 - t}$$

= exp [t ln (y) + (1 - t) ln (1 - y)]

For independent and identically distributed data, the probability of the data

$$\begin{aligned} (\{t\}|\mathbf{w}, \{\mathbf{x}\}) &= \prod_{n} \left\{ y(\mathbf{w}, \mathbf{x}_{n})^{t_{n}} \left[1 - y(\mathbf{w}, \mathbf{x}_{n}) \right]^{t_{n}} \right\} \\ &= \prod_{n} e^{\left\{ t_{n} \ln \left[y(\mathbf{w}, \mathbf{x}_{n}) \right] + (1 - t_{n}) \ln \left[1 - y(\mathbf{w}, \mathbf{x}_{n}) \right] \right\}} \\ &\sim \exp\left(\underbrace{\sum_{n} \left\{ t_{n} \ln \left[y(\mathbf{w}, \mathbf{x}_{n}) \right] + (1 - t_{n}) \ln \left[1 - y(\mathbf{w}, \mathbf{x}_{n}) \right] \right\}}_{-G(\mathbf{w})} \right) \end{aligned}$$

Learning (cont.)

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Outro

$$p(\lbrace t \rbrace | \mathbf{w}, \lbrace \mathbf{x} \rbrace) = \exp\left(\underbrace{\sum_{n} \left\{ t_n \ln \left[y(\mathbf{w}, \mathbf{x}_n) \right] + (1 - t_n) \ln \left[1 - y(\mathbf{w}, \mathbf{x}_n) \right] \right\}}_{-G(\mathbf{w})}\right)$$

This is the probabilistic interpretation of the cross-entropy objective

The error function $G(\mathbf{w})$ can be interpreted as negative log likelihood

$$p(\lbrace t \rbrace | \mathbf{w}) = \exp \left[- G(\mathbf{w}) \right]$$

formulation and

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-based

Outro

Learning (cont.)

The regulariser is interpreted as log prior probability over the parameters \boldsymbol{w}

$$P(\mathbf{w}|\alpha) = \frac{1}{Z_W(\alpha)} \exp\left[-\alpha E_W\right]$$

If E_W is quadratic, then the corresponding prior distribution is Gaussian

$$P(\mathbf{w}|\alpha) = \frac{1}{Z_W(\alpha)} \exp\left[-\alpha E_W\right]$$
$$= \frac{1}{Z_W(\alpha)} \exp\left[-\frac{\alpha}{2} \sum_i w_i^2\right]$$

- \rightsquigarrow I is the number of parameters in **w**
- $\sim Z_W^{-1}(\alpha)$ is equal to $(\alpha/2\pi)^{I/2}$
- \rightsquigarrow The variance $\sigma_W^2 = 1/\alpha$
- \rightsquigarrow The mean $\mu = 0$

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Outro

Why is it natural to interpret the error functions as log probabilities?

- Probabilities are multiplicative, for independent events
- Error functions are often additive, over multiple data
- The log fixes the correspondence

Generalised Gaussian priors

Learning (cont.)

$$E_W(\mathbf{w}) = \frac{1}{2} \sum_i |w_i|^q$$

If E_W is a q-norm, the prior distribution is a generalised Gaussian

$$p(\mathbf{w}|\alpha) = \left[\frac{q}{2}\left(\frac{\alpha}{2}\right)^{1/q} \frac{1}{\Gamma(1/q)}\right]^{I} \exp\left[-\frac{\alpha}{2}\sum_{i} |w_{i}|^{q}\right]$$

Learning (cont.)

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Shape-based

 \mathbf{Outro}

The objective function $M(\mathbf{w})$ is inference of parameters \mathbf{w} , given data D

$$P(\mathbf{w}|D, \alpha) = \frac{P(D|\mathbf{w})P(\mathbf{w}|\alpha)}{P(D|\alpha)}$$
$$= \frac{1}{P(D|\alpha)}e^{-G(\mathbf{w})}\frac{1}{Z_W(\alpha)}e^{-\alpha E_W(\mathbf{w})}$$
$$= \frac{1}{Z_M(\alpha)}\exp\left[-M(\mathbf{w})\right]$$

The **w** by minimising $M(\mathbf{w})$ is interpreted as the most probable vector $\hat{\mathbf{w}}$

The partition function (normalisation constant)

$$Z_M(\alpha) = \int d\mathbf{w} \exp\left[-M(\mathbf{w})\right]$$

Formulation and raining

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based Shape-based

Outro

Learning (cont.)

Estimator $\hat{\mathbf{w}}$, the product of traditional learning is a point in the weight-space • $\hat{\mathbf{w}}$ maximises the posterior probability density

In a sensible sense, the product of learning is an ensemble of plausible values

- We do not choose one particular hypothesis ${\bf w}$
- We rather evaluate the posterior probabilities

The posterior distribution, the likelihood times a prior distribution over ${\bf w}$

Learning (cont.)

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Shape-based

Outro

For a neuron with two inputs and no bias

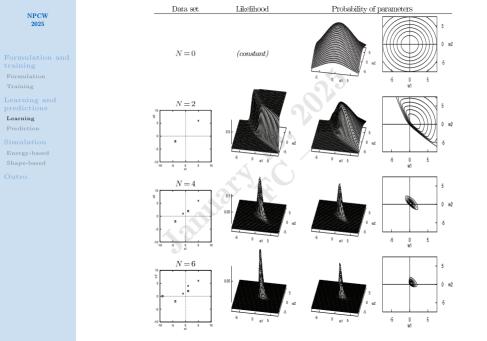
$$y(\mathbf{x}|\mathbf{w}) = rac{1}{1 + e^{-(w_1 x_1 + w_2 x_2)}}$$

We can plot the posterior probability of \mathbf{w}

$$p(\mathbf{w}|D, \alpha) \propto \exp\left[-M(\mathbf{w})\right]$$

Each data point consists of a two-dimensional input vector ${\bf x}$ and a t value

- \times for t = 1
- \square for t = 0



Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-based

Outro

Prediction

The neuron

13Inition

Prediction

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

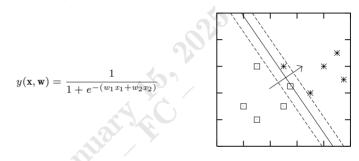
Simulation

Energy-base

Shape-based

Outro

The task is making predictions using the neuron we trained as classifier



Training by minimising $M(\mathbf{w}) = G(\mathbf{w}) + \alpha E(\mathbf{w})$, optimized for $\alpha = 0.01$

We consider the task of predicting class $\mathbf{t}^{(N+1)}$ for a new input $\mathbf{x}^{(N+1)}$

• We could just use the neuron, weights set to $\hat{\mathbf{w}}$

Prediction (cont.)

Learning and predictions

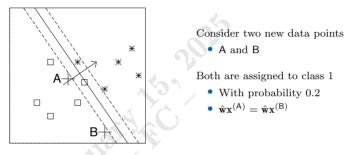
Learning

Prediction

Simulation

Energy-base

Outro



These predictions would be correct, if we really really knew w was \hat{w}

- But we do not, parameters are uncertain
- We placed a prior over them
- We even got its posterior

Formulation and training

- Formulation
- Training
- Learning and predictions
- Learning
- Prediction
- Simulation
- Shape-based
- Outro

Prediction (cont.)

Prediction of a new datum $\mathbf{t}^{(n)}$ involves marginalising over the parameters

- Well, over anything else that is endowed with uncertainty
- We assume that we only have the weight \boldsymbol{w} uncertain
- Weight-decay α and model \mathcal{H} are assumed to be sure

$$p(\mathbf{t}^{(N+1)}|\mathbf{x}^{(N+1)}, D, \alpha) = \int d^{K} \mathbf{w} P(\mathbf{t}^{N+1}|\mathbf{x}^{(N+1)}, \mathbf{w}, \alpha) P(\mathbf{w}|D, \alpha)$$

Predictions are weighted by weighting the predictions, for all possible ${\bf w}$

- $P(\mathbf{t}^{(N+1)} = 1 | \mathbf{x}^{(N+1)}, \mathbf{w}, \alpha) = y(\mathbf{x}^{(N+1)} | \mathbf{w})$
- $P(\mathbf{t}^{(N+1)} = 0 | \mathbf{x}^{(N+1)}, \mathbf{w}, \alpha) = 1 y(\mathbf{x}^{(N+1)} | \mathbf{w})$

The weights are given by the posterior probabilities of ${\bf w}$

- $P(\mathbf{w}|D, \alpha) = 1/Z_M \exp[-M(\mathbf{w})]$
- $Z_M = \int d^K \mathbf{w} \exp[-M(\mathbf{w})]$

Formulation and

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Outro

Prediction (cont.)

We get predictions if we find a way of computing the integral

$$p(\mathbf{t}^{(N+1)}|\mathbf{x}^{(N+1)}, D, \alpha) = \int d^{K} \mathbf{w} y(\mathbf{x}^{(N+1)}|\mathbf{w}) \frac{1}{Z_{M}} \exp\left[-M(\mathbf{w})\right]$$

Expectation of function y under the posterior distribution

$$\left\langle y(\mathbf{w}) \right
angle \simeq rac{1}{R} \sum_r y(\mathbf{w}_r)$$

Average the output at $\mathbf{x}^{(N+1)}$, under the posterior of \mathbf{w}

 $\{\mathbf{w}_r\}_{r=1}^R$, simulated

Prediction (cont.)

Learning and predictions

Learning

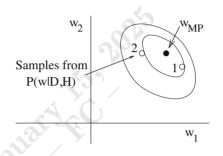
Prediction

Simulation

Energy-base

Shape-base

 \mathbf{Outro}



We average together predictions made by each possible value of weights ${\boldsymbol w}$

- Each value receives a(nother) weight proportional to its probability
- The probability is under the posterior ensemble

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Snape-bas

Outro

Simulation

The neuron

18million

Simulation

Formulation and training

Formulation

Training

Learning and predictions Learning Prediction

Simulation Energy-based Shape-based

Outro

Simulation

Need to simulate a density $P(\mathbf{x})$, known to within a multiplicative constant

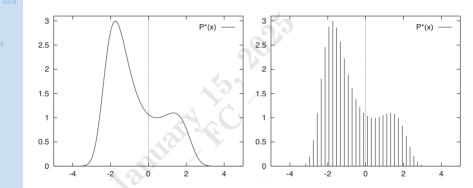
• We can evaluate a function $P^*(\mathbf{x})$ such that $P(\mathbf{x}) = P^*(\mathbf{x})/Z$

 $Z = \int d^N \mathbf{x} P^*(\mathbf{x})$ is unknown, and even if we knew it we would not know how to simulate P w/o listing ALL states (may take a few universe ages)

• Best evaluations come from places where P is big

Simulation (cont.)

We wish to draw samples from some $P(x) = P^*(x)/Z$, we can plot $P^*(x)$



Potentially, we could discretise the support of variable x, and ask for samples from the discrete probability distribution over the finite set of uniformly spaced points $\{x_i\}$, no?

• $p_i^* = P^*(x_i) \longrightarrow Z \simeq \sum_i p_i^* \longrightarrow p_i = p_i^*/Z$

 \rightsquigarrow Samples from the empirical distribution $\{p_i\}$

Formulation Fraining earning ar

Learning

Simulation Energy-based Shape-based

 \mathbf{Outro}

Formulation and training

- Formulation
- Training
- Learning and predictions
- Learning
- Prediction
- Simulation Energy-based Shape-based
- Outro

Simulation (cont.)

What's the cost of evaluating (just) Z?

- We have to visit every site x_i ?
- Yes! Well, 50 P^* evaluations
- In 1000 dimensions, 50^{1000}
- We do not need a 50-grid!
- A 2-grid is good enough
- 2^{1000} , a lot better
- Not really!
- Energy-based simulations
- **2** Shape-based simulations

Formulation and training

Formulation

Training

Learning an predictions

Learning

Prediction

Simulation

Energy-based

Shape-base

Outro

Energy-based simulation

The neuron

antic

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Outro

Energy-based simulations

We do not simulate $P(\mathbf{w}|D, \alpha)$, but another (simpler) density $Q(\mathbf{w}|\Theta)$

- $Q(\mathbf{w}|\Theta)$ must be easy to simulate and similar to $P(\mathbf{w}|D,\alpha)$
- We pick a new $Q(\mathbf{w}|\Theta)$ at each simulated state \mathbf{w}_r

The $Q(\mathbf{w}|\Theta, \mathbf{w}_r)$ depends on the system's energy

$$H(\mathbf{w}, \mathbf{p}) = \underbrace{E(\mathbf{w})}_{\mathbf{w}^T \mathbf{x}} + \underbrace{K(\mathbf{p})}_{\mathbf{p}^T \mathbf{p}/2}$$

p are momentum variables

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Outro

Energy-based simulations

Langevin thermostats

We create, asymptotically, samples from the joint distribution

$$P_{H}(\mathbf{w}, \mathbf{p}) = \frac{1}{Z_{H}} \exp\left[-H(\mathbf{w}, \mathbf{p})\right]$$
$$= \frac{1}{Z_{H}} \exp\left[-E(\mathbf{w})\right] \exp\left[-K(\mathbf{p})\right]$$
desired density

- $\bigcirc \text{ Draw } \mathbf{p} \sim \mathcal{N}(\mathbf{p} | \boldsymbol{\mu}, \mathbf{I})$
- **2** Calculate gradient $\mathbf{g} = \partial E(\mathbf{w}) / \partial \mathbf{w}$
- **3** Make a step in w-space $\Delta \mathbf{w} = -\gamma^2 \mathbf{w} + 2\gamma \mathbf{p}$
- 0 Accept/reject proposal w based on changes in M(w) and g

Formulation and raining

Formulation

Training

Learning and predictions

Learning

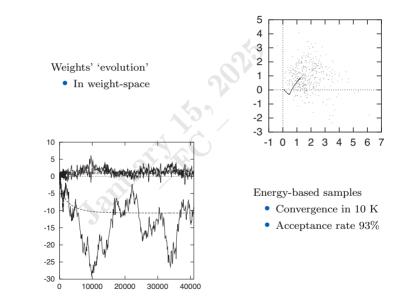
Prediction

Simulation

Energy-based

Outro

Energy-based simulations (cont.)



Formulation and training

Formulation

Training

Learning and predictions

Learning

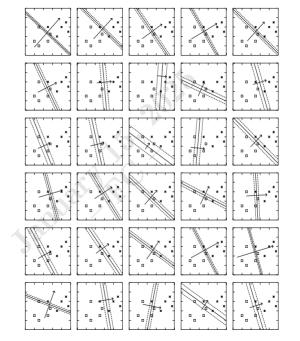
Prediction

Simulation

Energy-based

Shape-base

Outro



Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

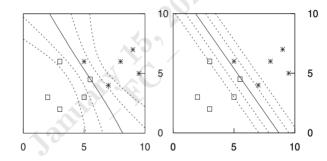
Energy-based

Outro

Energy-based simulation (cont.)

Samples from iteration 10 000 to 40 000, every 1000 iterations

(a) The predictive function by averaging predictions from 30 samples



Contours at a = {0, ±1, ±2}, y = {0.5, 0.27, 0.73, 0.12, 0.88}
(b) Predictions by the 'most probable' setting of neuron parameters

Formulation and raining

Formulation

Training

Learning and predictions Learning

Prediction

Simulation

Energy-based

Outro

The behaviour of functions $G(\mathbf{w})$ and $M(\mathbf{w})$ during sampling • Compared with values of G and M at $\hat{\mathbf{w}}$

Function $G(\mathbf{w})$ fluctuates around $G(\hat{\mathbf{w}})$, unsymmetrically

Function $M(\mathbf{w})$ also fluctuates, but not around $M(\hat{\mathbf{w}})$

- It cannot go lower than the optimum
- Actually, it rarely even gets closer

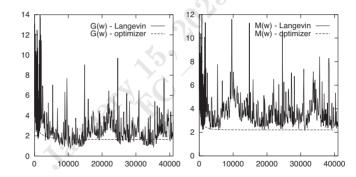
Energy-based simulation (cont.)

Formulation and training

- Formulation
- Training
- Learning and predictions
- Learning
- Prediction
- Simulation
- Energy-based
- Outro

(a) The error function as a function of the (log) number of iterations

• The error function during optimisation



- (b) The objective function as a function of the (log) number of iterations
 - The objective function during optimisation

Energy-based simulations (cont.)

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-based

Outro

Shape-based simulation

The neuron

antic

Formulation and training

Formulation

Training

Learning and predictions

Prediction

Simulation Energy-based

Shape-based

Outro

Near-Gaussian simulations

An old trick with nonlinearities is to take them and locally linearise themAn old trick with distributions is to approximate them with GaussiansSuch approximations may be a good alternative to evaluate

$$p(\mathbf{t}^{(N+1)}|\mathbf{x}^{(N+1)}, D, \alpha) = \int \mathrm{d}^{K} \mathbf{w} y(\mathbf{x}^{(N+1)}|\mathbf{w}) \frac{1}{Z_{M}} \exp\left[-M(\mathbf{x})\right]$$

 \sim The actual name of the method is saddle-point approximation \sim The actual name of the method is Laplace's approximation \sim The actual name of the method is Gaussian approximation

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Shape-based

Outro

Near-Gaussian simulations

Interest in an unnormalised probability density $P^*(x)$, peak at some x_0

• $Z_P \equiv \int P^*(x) dx$ is the normalising constant

We Taylor-expand the logarithm of $P^*(x)$ around its peak

$$\ln [P^*(x)] \simeq \ln [P^*(x_0)] - \frac{1}{2} \left\{ \underbrace{-\frac{\partial^2}{\partial x^2} \ln [P^*(x)]}_{c} \right\} (x - x_0)^2 + \cdots$$
$$\simeq \ln [P^*(x_0)] - \frac{c}{2} (x - x_0)^2 + \cdots$$

We approximate $P^*(x)$ by an unnormalised Gaussian

$$Q^*(x) \equiv P^*(x_0) \exp\left[-\frac{c}{2}(x-x_0)^2\right]$$

 Z_P is approximated by its normalising constant

$$Z_Q \equiv P^*(x_0) \sqrt{\frac{2\pi}{c}}$$

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-based

Shape-based

Outro

Shape-based simulations (cont.)

We start by making a Gaussian approximation to the posterior probability

• We go to the bottom of $M(\mathbf{w})$ and there we Taylor-expand it

$$M(\mathbf{w}) \simeq M(\hat{\mathbf{w}}) + \frac{1}{2} (\mathbf{w} - \hat{\mathbf{w}})^{\mathsf{T}} \mathbf{A} (\mathbf{w} - \hat{\mathbf{w}}) + \text{ h.o.t.}$$

A is the matrix of second derivatives (the Hessian) of $M(\mathbf{w})$

$$A_{ij} = \frac{\partial^2}{\partial w_i \partial w_j} M(\mathbf{w}) \Big|_{\hat{\mathbf{w}}}$$

• Then, we define the Gaussian approximation

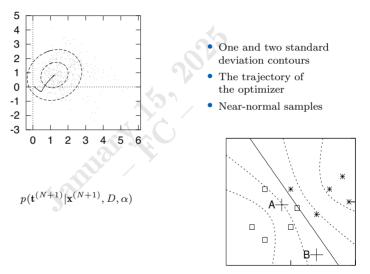
$$Q(\mathbf{w}|\hat{\mathbf{w}}, \mathbf{A}) = \left[\det\left(\frac{\mathbf{A}}{2\pi}\right)\right]^{1/2} \exp\left[-\frac{1}{2}(\mathbf{w} - \hat{\mathbf{w}})^{\mathsf{T}}\mathbf{A}(\mathbf{w} - \hat{\mathbf{w}})\right]$$

Q is a normal with covariance matrix \mathbf{A}^{-1}

Shape-based simulations (cont.)

(a) A projection of the Gaussian approximation onto the (w_1, w_2) -plane

Outro



(b) The predictive function obtained from the Gaussian approximation

Wrap-up

Formulation an training

Formulation

Training

Learning and predictions

Learning

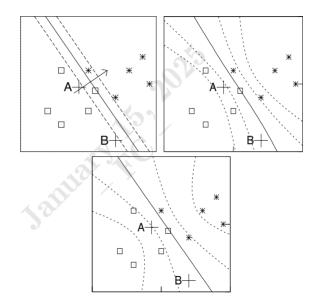
Prediction

Simulation

Energy-based

Shape-based

Outro



Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-based

Outro

Outro The neuron

13hlia

Formulation and training

Formulation

Training

Learning and predictions

Learning

Prediction

Simulation

Energy-base

Shape-based

Outro

