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Introduction

Disease map is a collection of disease objects (residential

locations of individuals or a summary measure or statis-

tic for specified groups of individuals) in their geographical

association.3 With disease mapping we can:1

Identify disease patterns in its spatial heterogeneity.

Obtain clues as to the disease aetiology and highlight

areas of elevated risk.

We define risk as how “likely” a disease can occur. Then,

our objetive is to infer how spatially the risk is spatially dis-

tributed, given the incidence of the disease. Mapping the

risk allows us to develop prevention policies and correlate

with possible risk factors.

The work aims at studying a Bayesian approach to spatio-

temporal data, more specifically the distribution of disease

cases and its risk a country. The practical application is

the inference of Leprosy’s risk between the years of 2001

and 2019 in Brazil. The Leprosy, or Hansen’s disease is a

neglected tropical disease still present in Brazil.

Map Rasterization

We define a framework to allows us to control the resolu-

tion of the risk estimation. We associate to each munic-

ipality’s its number of notified cases. We divide the map

of the country in a grid (Figure 1). It is given the position

xn = [latituden, longituden] of the n-th cell, and there are
N user defined cells.

y = 162

y = 162

(a)

Reduced Abs Number of Cases

0

10

20

30

40

50

60

70

80

90

100

y = 158

Reduced Abs Number of Cases

0

10

20

30

40

50

60

70

80

90

100

y = 158

(b)

Figure 1. In (a) the municipalities with their respective case counts. In

(b) the rasterization where each cell shows the correspondent average

number of cases. Here was used the data for the year of 2017.

The n-th cell is characterized each the observed number

of cases yn and the expected number of cases en. The

expected number of cases depends on its population pn,

the country’s numbers of cases ytot and population ptot as in
en = pn·ytot/ptot.

7 The risk is an unknown, or latent variable

used for estimating the expected number of cases.

Bayesian Inference

The use of Bayesian inference allows us to obtain the ex-

pected (mean) and variance of the risk µ.

We consider the process of the disease, specifically the

disease occurrence y, to be parametrised by the risk µ
(Figure 2).
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Figure 2. In (a) the graphical representation of the case counts yn as

a random variable in the n-th cell and its dependence on each cell’s
risks [µn]Nn=1 in (b).

From the Bayesian point of view, we can also represent the

uncertainty about µ with probabilities. Then we combine
the uncertainty about the data y with some prior about µ
to update its uncertainty in the light of the observations.

In order to spatially relate the risks between cells we use

Gaussian Process (GP) as prior for µ (Figure 3).

aScientific Initiation at UFC. Email: filipepfarias@fisica.ufc.br.
bEmail: francesco.corona@aalto.fi.
cEmail: michela.mulas@ufc.br.

yn

en

y3

e3

y2

e2

y1

e1

fnf3f2f1 f∗

xnx3x2x1 x∗

θ

A

ν

Figure 3. The graphical model for the spatial risk as a Gaussian Process.

The thicker line represents the Gaussian Field,5 in which each f =
[fn]Nn=1 is a marginalisation of the latent process f at the n-th cell.

The probabilistic model for this problem is



y1, y2, . . . , yn|µ ∼
N∏

n=1
Poisson(enµn)

fn = log(µn)
f (x)|θ ∼ GP (m(x), k(x, x′|θ))

[θ]p ∼ half-t(ν, s2).

(1a)

(1b)

(1c)

(1d)

The observation model (1a) comprises the independent

observations y = [yn]Nn=1 of the process, which will be

assumed Poisson distributed, as we’re modelling a count

process. The GP prior model in (1c) represents some pre-

vious knowledge about the risk µ, it is parametrised by
a mean function m(x) = 0 and a covariance function5
k(x, x′|θ) = ksexp(x, x′|θ) + kmatern(x, x′|θ). Assuming this
mean function is equivalent to initially assume the same

risk for all the cells. Assuming this covariance function ac-

counts for long and short range similarities between cells.

As the risk is positive definite, we transform it as in (1b).

The variable θ denotes the unknown hyperprior in (1d). It’s
responsible for parametrizing the GP covariance function.

Wemodel θ as half-Student’s t distribution, aweakly infor-
mative hyperprior with known hyperparameters (ν, s2).

The log risk posterior f is evaluated as

p(f | y) =
∫

p(f , θ | y)dθ

= 1
Zp

∫Poisson Obs. Model︷ ︸︸ ︷
p(y | f) p(f | X, θ)︸ ︷︷ ︸

GP Prior Model

half-t Hyperprior︷ ︸︸ ︷
p(θ) dθ,

where X = [x]Nn=1 is the collection of cell’s positions, and

Zp the normalisation constant

Zp =
∫∫

p(y | f) p(f | X, θ) p(θ)dθdf .

Bayesian Filtering

The objective is to update the posterior p(f |y) at each step
t. For the task we use data using Bayesian filtering.2
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Figure 4. Graphical model of the Markov Chain for the iterative update

of the latent variable f .

We denote by f 1:t = [f t]Tt=1 the time-series latent risk. We

assume this process being markovian, i.e. the probability

of the the risk f t depends only on f t−1, p(f t | f t−1). Simi-
larly the observation yt only depends on f t, p(yt | f t). Using
Bayes’ Rule to derive the prediction and update steps of

the Bayesian filtering equations.6 The predictive distribu-

tion of f t, given a dynamic model p(f t|f t−1), is computed
by the Chapman-Kolmogorov equation:

p(f t | y1:t−1) =
∫

p(f t | f t−1) p(f t−1 | y1:t−1) df t−1

= p(yt | f t) p(f t | y1:t−1)∫
p(yt | f t) p(f t | y1:t−1)df t

.

Joining the prediction and update steps we get

p(f t | y1:t) = p(yt | f t)
∫

p(f t | f t−1) p(f t−1 | y1:t−1) df t−1∫
p(yt | f t)

∫
p(f t | f t−1) p(f t−1 | y1:t−1) df t−1 df t

.

As this does not express a conjugated distribution, then

we can not obtain its summaries like mean and variance

explicitly. To overcame this limitations we apply Laplace

approximation to obtain p(f t|y1:t) summaries.

Conducting the Inference

To conduct the inference we use Laplace approximation.5

p(f t | y1:t) ≈ q(f t | y1:t) = N (ft | f̂t, Ct),

where the posterior mode is f̂t = arg maxf t
p(f t|y1:t), and

the posterior curvature is C−1
t = −∇∇ ln p(f t|y1:t)|f t=f̂t

.

We have that the logarithm of the posterior is

Ψ(f t) = log p(yt|f t) − 1
2(f t − µ−

t )>(C−
t )−1(f t − µ−

t )
− 1

2 log |C−
t | − n

2 log 2π,

here C−
t = ACt−1A> + Q and µ−

t = Aµt−1. A is the

dynamic matrix. Differentiating Ψ w.r.t. f t we get

∇Ψ(f t) = ∇ log p(yt | f t) − (C−
t )−1(f t − µ−

t ),
∇∇Ψ(f t) = −∇∇ log p(yt | f t) − (C−

t )−1 = −W − (C−
t )−1.

To obtain f̂t, we maximize Ψ,5 which implies

∇Ψ(f̂t) = 0 =⇒ f̂t = C−
t (∇ log p(yt | f̂t)) + µ−

t .

To solve for f̂t, we use Newton’s method

fnewt = ft − (∇∇Ψ)−1∇Ψ
= ft + [W + (C−

t )−1]−1[−∇ log p(yt | ft)
− (C−

t )−1(ft − µ−
t )]

= [W + (C−
t )−1]−1[Wft + ∇ log p(yt | ft) + (C−

t )−1µ−
t ].

Discussion

The annual posterior of the risk of incidence of Leprosy

is attached. We can see that the North, Northeast and

Midwest regions of Brazil are characterized by higher ex-

pected values of the risk E[µ], compared to the South and
the Southeast. This is true over the entire observation pe-

riod, a result that is expected.4

We can also note that applying Bayesian filtering reduces

the uncertainty Var[µ] of the posterior.
The computational cost of this solution is constrained by

the well known GP drawback of matrix inversion. In our

case this corresponds to the inversion of a N × N matrix,

whose cost increases with the resolution of the grid.

The Bayesian inferencewith GP leads to valuable and inter-

pretable results. It’s important to also note that the evo-

lution of the risk in time is not accounted for, i.e. in the

calculations that the dynamic matrix A is assumed to be

time-invariant and equal to the identity. A more accurate

characterization of the dynamics is the objective of the fu-

ture works.
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