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Introduction



 What it is and what we can do with it?

Definition

A disease map is a collection of objects (e.g. the
count of occurrences in a group of individuals) in
their geographical position (Lawson et al., 2001).

With disease mapping we can (Best et al., 2005):

Identify disease patterns in space.

Obtain clues as to the disease aetiology
and highlight areas of elevated risk.

Define the likelihood of a disease.

Our objetive is to infer the spatial distribution of the risk of a disease

Given its incidence.

Figure by Vanhatalo, Mäkelä, et al. (2010).
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Mapping the risk of a disease allows us to
identify potential risk factors and to develop
public policies to mitigate their effects.
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 Our problem: Leprosy in Brazil

In this work, the risk of Leprosy, a neglected tropical disease, is studied.

For each municipality, the number of notified cases is available.

The data are collected by the National Health System (SUS).

We use data relative to the period 2001-2019.

Introduction
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 Our problem: Leprosy in Brazil

On a grid over Brazil, we associate to the n-th cell the corresponding cases yn.

We use Bayesian inference to determine the risk µn in each cell.

y = 162

y = 162

In the figure, municipality of Querência, state of Mato Grosso.
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Bayesian Inference



 What is inference?

Model
Parameters Data

µ y

?

We’re interested in the process that has generated the observed data y.

We assume a model that depends on some unobserved parameters.

We assume that the disease occurrence y depends on the hidden risk µ.

We want to estimate µ, given y and given the model.

Bayesian Inference
Defining inference
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 What is Bayesian inference?

To model the variables in our problem (y, µ), we use probability distributions.

We combine the knowledge about the data (likelihood) with knowledge about the
parameters (prior), to get an updated knowledge about parameters (posterior).
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 How to model the disease cases?

Let α be the probability of an individual (in a cell) to be positive to the disease.

If we test m individuals (gray),
then the probability of y of
them being sick (orange) is(

m
y

)
αy(1− α)m−y . (1)

A Binomial distribution.

Bayesian Inference
Observation Model
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 How to model the disease cases?

We can rewrite equation (1) as

m!

(m− y)!y!
αy(1− α)m−y

For m→∞ and α→ 0, we obtain
the Poisson distribution.

λye−λ

y!
,

where mα→ λ.

The Poisson distribution is
parametrised by λ. 0 5 10 15 20 25
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We assume that in each cell n the number of occurrences yn follows a Poisson
distribution with parameter λn, which is thus the expected number of cases.

Bayesian Inference
Observation Model

10/24 Filipe P. de Farias Bayesian Inference of Disease Mappings with GP



 How to count the disease cases?

The expected number of cases in cell n is also given as weighted number of cases
λn = enµn, where the standardised cases en are weighted by the risk µn.

The standardised cases are

en =
total cases

population
× pn

pn is the cell population.
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 How to estimate the risk?

Our goal is to infer the risk µn given the observed cases yn, for the whole country.

We model each yn as an independent
Poisson variable with mean enµn.

The risks are positive variables,
to jointly model them as Gaussian
Process we transform them

fn = log µn

The resulting Gaussian Process is

f1, . . . , fn|θ ∼ GP
(
m(x), k(x,x′|θ)

)
Because of this model, each risk µn is
connected with all the other risks,
and thus they relate to each other.
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The strength of the relation between cells n and n′ will depend on their distance

|x− x′|
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A covariance matrix encodes how (log)
risks fn and fn′ relate to each other.

When cells n and n′ are near to each
other, the covariance relating fn and fn′

will be large and small otherwise.
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 Creating covariance matrices with covariance functions...

Covariance matrices are obtained from covariance functions (CF)

CFs model the relation between fn and fn′ .

kSE(x,x′) = ρ2 exp

(
−|x− x′|2

2`2

)
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 Creating covariance matrices with covariance functions...

kSE(x,x′) = ρ2 exp

(
−|x− x′|2

2`2

)
The covariance functions are also parametrised by a set of random variables θ.

θ = [`, ρ] are parameters, the length-scale and magnitude.

0 1 2 3 4

0.5

1.0

|x− x′|

k θ = [` = 2, ρ = 0.8]>

0

0.2

0.4

0.6

0.8

1
f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19

Bayesian Inference
Prior Model

14/24 Filipe P. de Farias Bayesian Inference of Disease Mappings with GP



 The parameters of the CF’s are also random variables

Each element of θ is modeled with a half-
Student’s t distribution, which is a
weakly informative hyperprior

Distributions with large variance
are called weakly informative.
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 A graphical representation

The probabilistic model of the disease mapping problem is

y1, . . . , yn|µ1, . . . , µn ∼
N∏
n=1

Poisson(enµn)

µn = exp(fn), ∀n
f1, . . . , fn|θ ∼ GP

(
m(x), k(x,x′|θ)

)
θ ∼ half-Student’s t(A, ν)

(Observation model)

(log-Gaussian transform)

(GP prior)

(Hyperprior)
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Conducting the inference



p(f, θ,y) = p(y|f, θ)p(f, θ)
= p(y|f, θ)p(f|θ)p(θ)

yn

en

y3

e3

y2

e2

y1

e1

fnf3f2f1 f∗

xnx3x2x1 x∗

θ

A

ν

We are interested in the distribution of the risk given data, the posterior p(f | y)

p(f | y) =

∫
p(f, θ | y)dθ =

1

Zp

∫Poisson Obs. Model︷ ︸︸ ︷
p(y | f) p(f | X, θ)︸ ︷︷ ︸

GP Prior Model

half-t Hyperprior︷︸︸︷
p(θ) dθ,

where X are the cells’ position X = [xn]Nn=1, f = [fn]Nn=1, y = [yn]Nn=1 and Zp

Zp =

∫∫
p(y | f) p(f | X, θ) p(θ)dθdf.

This problem is not solvable analytically and we need to simplify it.

Conducting the inference
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 Pretend it is fully Bayesian...

When the marginal posterior p(θ | y) is smooth near its mode θ̂, we can use
its evidence approximation, also known as the empirical Bayes approximation∗

p(f | y) ≈ p(f | y, θ̂), where θ̂ = arg max
θ

p(θ | y).

In a fully Bayesian approach, we consider all the possible values of θ, whereas
in empirical Bayes we rank them and choose θ̂, as the “best one” among them.

The marginal posterior is obtained using the Bayes’ rule

p(θ | y) ∝ p(θ) p(y | θ) = p(θ)

∫
p(y | f)p(f | X, θ) df

The posterior of the risk becomes

p(f | y, θ̂) =
p(y | f) p(f | X, θ̂)∫
p(y | f) p(f | X, θ̂)df

∗See D. J. MacKay (1992) for a more detailed discussion.

Conducting the inference
Empirical Bayes
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To compute θ̂, we maximise
∫
p(y | f)p(f | X, θ) df after approximating it with an

unnormalised Gaussian distribution using second order Taylor expansions∗.

We approximate the integral in the computation of the posterior in a similar way.

As a result, we obtain

Approximated Posterior

p(f | y, θ̂) ≈ N
(
f | f̂ ,H−1

)
where f̂ = arg max

f
p(f | y, θ̂), H−1 = −∇2

f log p(θ̂ | y, θ̂) and θ̂ = arg max
θ

p(θ | y).

∗Details in Vanhatalo, Pietiläinen, et al. (2010).

Conducting the inference
Laplace Approximation
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Results



Each cell is 43× 43 km

Results
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