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Abstract: We report the preliminary results of a feasibility study in which we investigate
the possibility to operate a common class of activated sludge plants to produce an effluent
wastewater of varying quality for crop irrigation. We study how to control the treatment plant
with a zero-offset predictive control strategy designed to operate the treatment process to supply
nitrogen according to an optimal planning for crop growth. The reference nitrogen trajectory
for the treatment plant is computed as solution to a master optimal control problem that aims
at maximizing plant biomass. We show how an ad hoc tuning of the predictive controller allows
to define alternative policies that favour the manipulation of different forms of nitrogen in the
treatment plant. We show that the designed controllers are only partially capable to operate the
treatment plant to meet the nitrogen demand, when subjected to typical municipal wastewater
influent conditions. However, zero-offset can be achieved under constant influent conditions. We
analyse the performance of the controller in terms of tracking accuracy and operational energy.

Keywords: Model predictive control, optimal control, activated sludge process, crop growth.

1. INTRODUCTION

The sustainable management of water resources is attain-
ing unprecedented importance when trying to address the
implications of climate change, raising population, and
the public expectations for high service standards. As it
alleviates the need for fresh water, wastewater reuse is one
of the practices which has proven itself inherently circular
and useful in satisfying the supply of water of varying
quality for industrial, urban and agricultural activities.

The reclamation of municipal wastewater is especially
valuable for crop fertigation, as the same nutrients found
in wastewater are also main contributors to plant growth.
Specifically, the nitrogen compounds in the soil are known
to be key factors for crop development (Pelak et al., 2017).
These compounds are also central to activated sludge pro-
cesses in conventional wastewater treatment plants. While
many control strategies for optimising the operation of
wastewater treatment plants have been proposed (Olsson
et al., 2013), their use for water reclamation is an active
research area with important challenges for the health of
the public and the environment (Ait Mouheb et al., 2018).

This work investigates the feasibility of operating a
wastewater treatment plant to produce a reusable water of

? This work has been done within the international project Con-
trol4Reuse, part of the IC4WATER programme, in the frame of the
collaborative international consortium of the Water Challenges call
2017, Changing World Joint Programme Initiative (Water JPI).

Wastewater treatment plant

Controller

Agricultural crops

Controller Objective

Output ControlControl

Model

Output

ControlReference

Fig. 1. Control hierarchy of the crop-treatment system.

tailored quality for crop irrigation. We focus on the predic-
tive control of activated sludge plants, as described by the
Benchmark Simulation Model no. 1 (BSM1, Gernaey et al.
(2014)), and the problem of tracking an effluent of varying
nitrogen content. The control problem is approached using
a zero-offset controller on a reference trajectory obtained
by solving a higher-level optimal controller that maximizes
plant biomass in a simplified crop growth system. The
coupling between the two systems is depicted in Fig. 1.

According to our results, the controllers are only partially
capable to operate the BSM1 to meet the nitrogen demand
when subjected to typical influent conditions. However,
zero-offset can be achieved under constant influent condi-
tions. We show how the controller favours the manipula-
tion of NO−2 +NO−3 or NH+

4 +NH3 nitrogen, depending on
whether the steady-inputs used for linearisations are min-
imized or let free, respectively. We analyse each controller
in terms of tracking accuracy and operational energy.
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2. THE AGRICULTURAL CROP SYSTEM

This section presents the optimal control for maximazing
plant biomass using a simplified crop growth model. We
overwiew the state-space model used by the controller,
formulate its optimisation task and discuss the results.

2.1 State-space model

We consider the model of a crop grown in monoculture that
is irrigated continuously with treated wastewater over the
course of a growing season on a uniform area of land at
field-scale. As a first approach, we assume the idealized
model of Pelak et al. (2017) describing a simplified crop
development process focused on the water and nitrogen
dynamics of the crop and soil. From a system perspective,
the dynamics are described using the variables at Table 1.

Table 1. Crop model: State and input variables.

Description [Units]

C Canopy cover [m2 m−2]
B Crop biomass per unit area [kg m−2]
S Relative Soil moisture [m3 m−3]
N Nitrogen content per unit area of soil [g m−2]

I Irrigation flow-rate per unit area [mm d−1]
FN Nitrogen concentration of irrigation water [g m−3]

The state-space model for the crop system is given by

ẋC(t) = fC (xC(t), uC(t)|θC) , (1)

with state xC =
[
C B S N

]T ∈ R4
≥0 and input uC =[

I FN

]
∈ R2

≥0. The time-invariant dynamics fC(·|θC) de-
pend on a set of parameters (Pelak et al., 2017) denoted by
θC . We consider the parameters referring to the dynamics
of a modern corn cultivar grown on a silty loam type soil.

We adapt the model by defining the fertilization term
F (t) = I(t)FN (t). As a simplification, we consider the
absence of any rainfall and assume constant reference
evapotranspiration, the water loss due to the impact of
climate on evaporation and plant transpiration.

2.2 Optimal control formulation

We consider the problem of maximizing crop biomass at
the end of a growing season. This task is formalised by the
finite-horizon optimal control problem in the form

max
uC(·)

B(T ) (2a)

s.t.
∀t∈[0,T ]

ẋC(t) = fC(xC(t), uC(t)|θC), (2b)

uC(t) ∈ [0, Imax]× [0, Fmax
N ], (2c)

xC(0) = x0, (2d)

for fixed final time T , initial state x0, and input upper
bounds Imax and Fmax

N . We restrict ourselves to growing
seasons lasting T = 140d. In the following, we present the
optimal control solutions over several simulated scenarios.
Each non-linear optimisation Eq. (2) is solved using a
dynamic programming approach (Bonnans et al., 2017).

2.3 Nitrogen demand for optimal crop growth

We analyse the optimal control results over three different
scenarios corresponding to different initial soil nitrogen

content, Fig. 2. We consider the same initial conditions for
the remaining state-variables in all scenarios. The initial
nitrogen and control results are summarised in Table 2.

Table 2. Scenarios: Initial nitrogen soil condi-
tions and control results.

N(0) FTOT NTOT B(T )

Scenario I 1.00 38.50 39.50 2.44
Scenario II 8.20 23.00 31.20 2.88
Scenario III 15.00 16.20 31.20 2.88

State trajectories show similar behaviour in all cases. The
resulting controls focus on maintaining soil water and
nitrogen content at the critical levels above which the
plant is not under stress. As the model includes water and
nitrogen stresses as a reduction of crop growth, it is clearly
optimal to maintain the system above such levels.
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Fig. 2. Crop: Maximimisation of B(T ) for all scenarios.

We summarise and compare each result using the total

fertigation FTOT =
∫ T

0
I(t)FN (t)dt and the resulting total

nitrogen NTOT = N(0) + FTOT , Table 2. For Scenario I,
the controller must supply more nitrogen to the crop than
in Scenarios II and III. However, this does not translate
into more biomass as the crop is initially under stress
and the controls are unable to drive the soil nitrogen to
the critical level fast enough. Conversely, we note that
Scenarios II and III achieve the same final biomass B(T )
and also the same total nitrogen NTOT . This indicates that
there is no benefit from supplying nitrogen in excess.

3. THE ACTIVATED SLUDGE PLANT

This section presents the predictive controller for supply-
ing nitrogen to a crop growth system (Section 2) using the
biological process in a conventional wastewater treatment
plant. We overview the state-space model of the activated
sludge plant used by the controller and formulate its design
as solution to a general trajectory optimisation task.

3.1 State-space model

The prototypical activated sludge process in a conventional
wastewater treatment plant consists of five biological re-
actors and a settler, Fig. 3. The treatment starts in a first
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reactor where wastewater from primary sedimentation,
return sludge from secondary sedimentation and internal
recycle sludge are fed. Mixed liquor from the fifth reactor
is recirculated into the first reactor together with the re-
cycle sludge from secondary sedimentation, as mentioned.
Oxygen can be added by insufflating air into each reactor.
In the aerated reactors, ammonium nitrogen contained in
the wastewater is oxidised into nitrate nitrogen, which is
in turn reduced into nitrogen gas in the anoxic reactors.
Extra carbon can be added to each tank independently.

Each reactor is described by the Activated Sludge Model
no. 1, while the settler is described by a 10-layer non-
reactive model. This process corresponds to the Bench-
mark Simulation Model no. 1 (Gernaey et al., 2014) and
it will be referred to as the activated sludge plant (ASP).

Fig. 3. The activated sludge plant: Process layout.

From the system perspective, the dynamics of each reactor
A(r) (r = 1, . . . , 5), if studied individually, are described
by using 13 state variables, the vector of concentrations

xA(r) =
[
S
A(r)
I S

A(r)
S X

A(r)
I X

A(r)
S X

A(r)
BH X

A(r)
BA

X
A(r)
P S

A(r)
O S

A(r)
NO S

A(r)
NH S

A(r)
ND X

A(r)
ND S

A(r)
ALK

]T
,

and two controllable inputs, uA(r) =
[
KLa

(r) Q
(r)
EC

]
, the

oxygen transfer coefficient KLa
(r) and the external carbon

source flow-rate Q
(r)
EC . The dynamics of each settler’s layer

S(l) (l = 1, . . . , 10) are individually described by using 8
state variables, the vector of concentrations

xS(l) =
[
X

S(l)
SS S

S(l)
I S

S(l)
S S

S(l)
O S

S(l)
NO S

S(l)
NH S

S(l)
ND S

S(l)
ALK

]T
.

The activated sludge plant is subjected to three additional
controllable inputs, the internal and external sludge recy-
cle flow-rates (QA and QR, respectively) and the wastage
flow-rate QW , and to 14 disturbances, the influent flow-
rate QIN and its concentrations xA(IN), all directly en-
tering the first reactor. Wastewater concentrations for the
internal recycle are given by xA(5), whereas xS(1) are the
concentrations in the external recycle and wastage flow.

As for the measurements, we consider a typical sensor-
arrangement in which we assume the existence of a set of
analysers determining the vector of concentrations

y =
[
S
A(1)
O · · · SA(5)

O S
A(1)
NO · · · SA(5)

NO X
S(10)
SS

S
S(10)
NH BOD

S(10)
5 CODS(10) N

S(10)
TOT

]T
.

The composite variables, biochemical oxygen demand
(BOD5), chemical oxygen demand (COD), total nitrogen
(NTOT ) and total suspended solids (XSS), are computed
as in Gernaey et al. (2014). Specifically, NTOT is given by

NTOT = SNO + SNH + SND +XND

+ iXB(XBH +XBA) + iXP (XP +XI),

with stoichiometric parameters (iXB , and iXP ).

The state-space model for this class of bioprocesses is thus,

ẋ(t) = f (x(t), u(t), w(t)|θx) ; (3a)

y(t) = g (x(t)|θy) , (3b)

with state x(t) =
[
xA(1) · · · xA(5) xS(1) · · · xS(10)

]T ∈
RNx

≥0 , measurements y(t) ∈ RNy

≥0 , controllable input u(t) =[
QA QR QW uA(1) · · · uA(5)

]T ∈ RNu

≥0 , and uncontrol-

lable input w(t) =
[
QIN xA(IN)

]T ∈ RNw

≥0 . The time-

invariant dynamics f(·|θx) and g(·|θy) depend on a set
of stoichiometric and kinetic parameters (Gernaey et al.,
2014) collectively denoted by the vectors θx and θy. The
model in Eq. (3) thus consists of Nx = 13×5+8×10 = 145
state variables, Nu = 3 + 5 × 2 = 13 controllable inputs,
Nw = 1 + 13 = 14 disturbances and Ny = 15 outputs.
The described state-space configuration includes all the
control handles in Gernaey et al. (2014) that do not require
changes to the plant layout. We also refer to Gernaey et al.
(2014) for a detailed description of the process variables.

The influent conditions used in the experiments corre-
spond to the long-term scenario provided by the bench-
mark. The data consists of flow-rate and composition of
wastewater from primary sedimentation sampled every
15 minutes over a period of 609 days. The sample for
t = 0.625d is used as initial condition for all simulations.

3.2 Predictive controller

We formulate the trajectory optimisation task as an on-
line optimal control problem and we consider a discretise-
then-optimise approach to the design of the predictive
controller. We approximate the desired output trajectory
with a sequence of piecewise-constant set-points and, at
each discretisation point in time, we linearise the model
about an optimally selected fixed-point that satisfy the
trajectory. The sequence of zero-offset controls are then
computed by solving the resulting regulation constrained
by the linearised dynamics and state and input bounds.

Model discretisation and linearisation For each time
interval t ∈ [tk, tk+1), we consider piecewise constant
inputs u(t) = u(tk) and w(t) = w(tk) with tk = k∆t the
k-th time instant given period ∆t > 0. The discrete-time
dynamics are given by the transition function

xk+1 = f∆t(xk, uk, wk|θx) = xk +

∫ ∆t

0

f(x(τ), uk, wk|θx)dτ,

with xk = x(k∆t), uk = u(k∆t), and wk = w(k∆t). The
discrete-time output equation is yk = y(k∆t) = g(xk|θy).
In general, the transition function is solved numerically,
but it can be solved analytically when f(·|θx) is linear.

The nonlinear dynamics (and measurement process) in the
vicinity of any point P ≡ (x̌, ǔ, w̌, y̌) can be linearised as

ẋ(t) = zf +Aδx(t) +Bδu(t) +Gδw(t); (4a)

y(t) = zg + Cδx(t), (4b)

with Jacobian matrices A = (∂f/∂x)|P ∈ RNx×Nx , B =
(∂f/∂u)|P ∈ RNx×Nu , G = (∂f/∂w)|P ∈ RNx×Nw and
C = (∂g/∂x)|P ∈ RNy×Nx , and constant vectors zf =
f(x̌, ǔ, w̌|θx) and zg = g(x̌|θy), evaluated at such point.
The variable δx(t) = x(t)−x̌ (respectively, δu(t) = u(t)−ǔ
and δw(t) = w(t) − w̌), refers to the state (inputs and
disturbances) deviation from the linearisation point.
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The analytical solution of the transition function f∆t(·|θx)
given Eq. (4) leads to the discrete-time state-space

xk+1 = zf∆t
+A∆tδxk +B∆tδuk +G∆tδwk; (5a)

yk = zg + Cδxk, (5b)

with A∆t = eA∆t, B∆t = S∆tB, G∆t = S∆tG, and vector
zf∆t

= S∆tzf , given S∆t = A−1(eA∆t − I). The discrete-
time counterpart of the deviation variables are given by
δxk = xk − x̌, δuk = uk − ǔ and δwk = wk − w̌.

Trajectory linearisation For a reference output ỹsp(t) ∈
RNỹ and input usp(t) ∈ RNu , the optimal linearisation
point P (k) = (x̌k, ǔk, w̌k, y̌k) is the pair (x̌k, ǔk) that solves

min
x̌k,ǔk

∥∥Hg(x̌k)− ỹspk ∥∥2

Wy
+
∥∥ǔk − uspk ∥∥2

Wu
(6a)

s.t. f
(
x̌k, ǔk, w̌k|θx

)
= 0, (6b)

x̌k ∈ X sp, ǔk ∈ Usp. (6c)

with ỹspk = ỹsp(bk∆t/∆tspc) and uspk = usp(bk∆t/∆tspc)
the set-points over the sampling period ∆tsp > 0, and
known disturbance w̌k. Matrix H ∈ {0, 1}Nỹ×Ny selects
the Nỹ ≤ Ny outputs of interest. (A(k), B(k), G(k), C(k)) is

used to denote the model linearised around P (k), Eq. (4).

In Eq. (6), we assume symmetric weighting matrices
Wy,Wu � 0. Input references are set constant usp(t) = 0.
The steady-state x̌k is constrained to be non-negative
(X sp = RNx

≥0) and the set Usp ⊆ RNu is defined by actua-
tors bounds. The disturbances w̌k = w̌ for linearisation are
the average influent conditions in Gernaey et al. (2014).

Optimal control At each instant k ∈ N, we first solve the
finite-horizon optimal control problem in the general form

min
uk,...,uk+N−1

k+N−1∑
n=k

L(xn, un) + Lf (xk+N ) (7a)

s.t.
∀n∈[k,k+N ]

xn+1 = f∆t(xn, un, wn|θx), (7b)

xn ∈ X , un ∈ U , (7c)

Φ(xk, xk+N ) = 0, (7d)

and then we apply the first control action to the process.

We consider state regulation problems with quadratic

cost functions L(x, u) =
∥∥x − x̌k

∥∥2

Q
+
∥∥u − ǔk

∥∥2

R
, for

symmetric matrices Q � 0 and R � 0, and steady-state
x̌k ∈ RNx and steady-input ǔk ∈ RNu. The terminal cost
is defined as Lf (x) = L(x, 0). The dynamics f∆t(·|θx) with
outputs g(·|θy) are represented by the discrete-time state-

space, Eq. (5), for linearisation
(
A(k), B(k), G(k), C(k)

)
.

State trajectories are assumed to be implicitly constrained
by the model dynamics, or unconstrained (X = RNx).
Constraint set U ⊆ RNu is defined by the set of linear
inequalities corresponding to the actuators bounds. We
assume only initial constraint Φ(xk, xk+N ) = xk−x̂k given
initial state x̂k directly measured from the plant. Finally,
disturbances are held constant over each horizon, wn = ŵk

(n = k, . . . , k + N), with ŵk known. To satisfy a realistic
setup, disturbances are assumed to be measured given a
sampling period ∆tw > 0 such that ŵk = w(bk∆t/∆twc).
We solve each optimisation (Eq. 7) by the direct method
of transcribing the problem into a standard nonlinear
program, then casted as a convex quadratic program with
linear constraints and solved numerically (Betts, 2010).

4. RESULTS AND DISCUSSION

In this section, we present the simulation results obtained
by the predictive control of the activated sludge plant
(Section 3) when the process is requested to produce nitro-
gen for optimal crop growth (Section 2). We illustrate the
results with two tuning configurations of the controller, one
favouring the manipulation of NO−2 +NO−3 nitrogen (SNO)
and another one favouring NH+

4 +NH3 nitrogen (SNH). We
first present the configuration settings that are common to
both controllers, then we discuss the specific parameters
and results separately. The performances are evaluated
under constant and dynamic disturbance regimes in terms
of tracking accuracy and operation energy consumption.

We consider reference trajectories for total nitrogen N
S(10)
TOT

in the effluent that corresponds to the nitrogen concentra-
tion of irrigation water, ỹsp(t) = F ∗N (t). This corresponds
to H = [0 · · · 1] in Eq. (6). The sampling period of the
reference is ∆tsp = 7d. For the activated sludge plant in

Eq. (3), the linear models
(
A(k), B(k), G(k), C(k)

)
around

P (k) ≡ (x̌k, ǔk, w̌k, y̌k) are computed by solving the opti-
misation in Eq. (6) once a week, when set-points ỹspk =
ỹsp(bk∆t/∆tspc) are available. The dynamics f∆t(·|θx) in

Eq. (5a) are evaluated from
(
A(k), B(k), G(k), C(k)

)
with

a sampling period ∆t = (1/3)d. The control horizon, Eq.
(7), is set to be 7 days, or N = 21. We assume weighting

matrices Q = C(k)TC(k) and R = diag[10−2I8 104I5].
The influent conditions are assumed to be measured once
every ∆tw = 1d. Initial state x(0) = x̌ is the steady-state
by Gernaey et al. (2014). We treat set-points ysp(t) = 0
as corresponding to interrupted irrigation and control the
plant for conventional treatment with yspk = Hg(x̌) when-
ever yspk = 0. This configuration is common to all cases,
under both dynamic and constant disturbances. For the
latter, the disturbances are w(t) = w̌. For brevity, we
restrict the discussion of our results only to Scenario I.

4.1 Case I: NTOT control favouring NO−2 +NO−3 nitrogen

To design a controller that favours the production of
NO−2 +NO−3 nitrogen when asked to track ỹsp(t) = F ∗N (t),
we set the steady-state optimisation parameters Wy = 100
and Wu = 0. The results (Fig. 4) show that the controller
is capable to drive the plant towards the reference values
under constant influent conditions. However, performances
deteriorate when the plant is subject to dynamic influent
conditions. This happens when the plant is asked yspk ≥ 40
g N m−3, a target which appears to be an unreachable.

Fig. 4. Case I: Tracking of N
S(10)
TOT . Solid/dashed lines refer

to solutions under dynamic/constant disturbances.
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Figure 5 and 6 depict the control actions and a selection of
responses when the controller serves the set-point changes
at t = {56, 91}d in Scenario I: The concentration changes
are from 50 g m−3 to 14.05 g m−3 and back to 50 g m−3.

• In the first set-point change t = 56d, the con-

troller decreases N
S(10)
TOT mainly by producing S

S(10)
NO

nitrogen by explicitly acting on the denitrification-
nitrification process: This solution is achieved by first
reducing aeration in the first reactors A(1,2) through

KLa
(1,2), then, as the concentrations S

A(1,2)
NO decrease

noticeably, these concentrations are increased in the

Fig. 5. Case I, t ∈ [49, 112]: Flowrates (QA, QR, QW ), oxy-

gen coefficients KLa
(1;5), and extra carbon Q

(1;5)
EC .

Fig. 6. Case I, t ∈ [49, 112]: Nitrogen (S
A(1;5)
NH , S

S(10)
NH ) and

(S
A(1;5)
NO , S

S(10)
NO ), and suspended solids X

S(1;10)
SS .

last reactors A(3,4,5) by increasing aeration, through
KLa

(3;5). Moreover, wastage flow-rate QW is in-
creased to reduce the accumulation of suspended

solids X
S(1;10)
SS throughout the settler.

• In the second set-point change (t = 91d), dissolved
oxygen is added to all reactors A(1;5) by increasing
KLa

(1;5). As a result, nitrification is implemented
throughout the entire process. Again, this effect is

reflected at concentrations S
S(1;10)
NO . As oxygen satu-

rates, however, not enough nitrogen can be converted
to reach the set-point. The controller thus attempts
to complement the effluent total nitrogen using the
nitrogen entrapped in particulate matter. Wastage
flow-rate QW is decreased in such way that sus-

pended solids X
S(1;10)
SS accumulates in all the settler

layers S(1;10). Thus, N
S(10)
TOT increases due to nitro-

gen taken from effluent concentrations of biomass

(X
S(10)
BH , X

S(10)
BA ) and organic matter (X

S(10)
I , X

S(10)
P ).

4.2 Case II: NTOT control favouring NH+
4 +NH3 nitrogen

To favour NH+
4 +NH3 nitrogen when asked to track

ỹsp(t) = F ∗N (t), we consider a controller that is based on

linearisations (A(k), B(k), G(k), C(k)) around points P (k) ≡
(x̌k, ǔk, w̌k, y̌k) that solve problem Eq. (6) with weighting
matrices configured to be Wy = 100 and Wu = 0.01INu

.

The results, Fig. 7, show that also this controller can drive
the plant towards the set-points, when operated against
constant influent conditions. More importantly, the per-
formance with dynamic influent conditions is improved.
For brevity, we report only a selection of responses (Fig.
8) specific to the set-point changes at t = {56, 91}d.

Fig. 7. Case II: Tracking of N
S(10)
TOT . Solid/dashed lines refer

to solutions under dynamic/constant disturbances.

• In the first change (t = 56d), the controller attempts
to decrease the effluent NTOT mostly by converting
nitrogen from SNH back to SNO through nitrifica-

tion. As the concentrations of S
A(1;5)
NO are virtu-

ally reduced to zero during the initial interval, not
enough nitrogen can be converted in time to reach
the set-point. Moreover, wastage flow-rate, QW , is
still increased over same interval to reduce the total
suspended solids, X

S(l)
SS , accumulated in the settler.

• In the second change (t = 91d), dissolved oxygen
is reduced in all reactors by reducing aeration with
KLa

(r). Again, this is reflected in the ammonia con-
centrations. As the influent NH+

4 +NH3 nitrogen is
insufficient to reach the set-point, the controller at-
tempts to complement the remaining total nitrogen
using nitrogen entrapped in particulate matter.
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Fig. 8. Case II, t ∈ [49, 112]: Nitrogen (S
A(1;5)
NH , S

S(10)
NH )

and solids X
S(1;10)
SS . S

A(1;5)
NO = S

S(10)
NO = 0, omitted.

4.3 Case I and Case II: Comparison

We first discuss the effects disturbances on the control with
respect to Scenario I. We condense the disturbances as in-
fluent total nitrogen, N IN

TOT , in Fig. 9 and summarise their
effects in terms of nitrogen removal efficiency, ηNTOT

(t).

Fig. 9. Comparison, t ∈ [49, 112]: Influent and effluent N .

• Case I: The average ηNTOT
(t) = 0.57 indicates that

57% of influent nitrogen is removed in t ∈ [56, 91].
Conversely, ηNTOT

(t) = 0.01 for t ∈ [49, 56] shows
that roughly 99% of the influent total nitrogen is
still preserved in the effluent during this interval.
ηNTOT

(t) = 0.42 for t ∈ (91, 112] indicates that 58% of
influent total nitrogen is still preserved in the effluent.

• Case II: The average ηNTOT
= 0.10 for t ∈ [56, 91]

indicates that only 10% of the influent nitrogen is re-
moved during this time interval. Conversely, average
ηNTOT

= 0.01 for t ∈ [49, 56) ∪ (91, 112] indicates
that roughly 99% of influent total nitrogen is still
preserved in the effluent during this interval.

We evaluate the controllers overall performance by the
root mean squared error (RMSE) metric JRMSE(y, ysp) =

( 1
140

∫ 140

0
(y(t) − ysp(t))2dt)1/2. Table 3 shows a general

good performance for the control simulations under con-
stant influent conditions. We note that Scenario I with
control favouring SNH (Case II) as an exception, being it

unable to reach the set-point for t ∈ [56, 91]. Moreover,
results show that performance worsens with dynamic dis-
turbances, being Case II controllers generally less affected.

Table 3. JRMSE: Tracking accuracy.

w(t) constant w(t) dynamic

C
a
se

I Scenario I 8.458 19.720
Scenario II 3.405 17.989
Scenario III 5.973 16.372

C
a
se

II Scenario I 15.072 15.743
Scenario II 1.410 12.899
Scenario III 3.177 11.068

Finally, we evaluate the overall cost index, OCI, in (Ger-
naey et al., 2014) considering only the terms for pumping
and aeration energy, PE and AE, and external carbon,
EC, with a weighting factor fEC . As expected, Table 4
shows that a solution favouring nitrogen in the form of
SNH costs significantly less than favouring SNO. Despite
the pumping costs being generally low, aeration and car-
bon addition costs are significantly smaller in Case II.

Table 4. Overall costs comparison [×104].

PE AE fEC · EC OCI

C
a
se

I Scenario I 4.040 14.754 29.911 48.706
Scenario II 4.239 15.535 25.757 45.531
Scenario III 3.985 13.472 21.104 38.561

C
a
se

II Scenario I 0.943 2.350 19.123 22.417
Scenario II 0.442 1.465 11.837 13.745
Scenario III 1.491 3.360 24.656 29.507
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