Receding-horizon control of full-scale wastewater treatment plants as water resource recovery facilities with energetic constraints

Otacilio B.L. Neto¹, Michela Mulas², Francesco Corona¹

Department of Chemical and Metallurgical Engineering, Aalto University, Finland ² Department of Teleinformatics, Federal University of Ceará, Brazil

Introduction

 $\sim \rightarrow$

F **Context:**

The arising paradigm of perceiving wastewater as a sustainable source of water, raw materials, and energy, pressures for solutions to operating wastewater treatment plants as water resource recovery facilities [1, 2].

Output model predictive controller

Water resource recovery facility (Benchmark Simulation Model no. 2)

Resource demands

Process model (BSM2, [3])

We consider the "expanded" state-space representations

Continuous-time state-space Discrete-time state-space (ZOH) $\dot{x}(t) = f(x(t), u(t), w(t) | \theta_x) \quad \Rightarrow \quad x_{k+1} = x_k + \int_{t_k}^{t_{k+1}} f(x(t), u_k, w_k) dt$ $y_k = g(x_k)$ $y(t) = g(x(t)|\theta_y)$

by concatenating the state-, input-, and output-vector of each plant unit

Case-study: Tracking of effluent nitrogen

- **Task:** Tracking references on effluent total nitrogen $(N_{TOT}^{S(10)})$ restricted to non-positive operational cost index ($OCI_{kWh} \leq 0$)
- **Results:** Desired profiles are achieved within ± 1.87 g m⁻³ on average with 1211.2 kWh d^{-1} of energy surplus on average $5.6\ ^{ imes 10^4}_{
 m c}$

Output model predictive control [4, 5]

MPC: The control actions deployed to the plant are obtained as numerical solutions to finite-horizon optimal control problems of the form

$$\text{min.} \quad \sum_{n=k}^{k+N_c-1} \left(\|x_n - x_n^{\text{ref}}\|_{Q_n^c}^2 + \|u_n - u_n^{\text{ref}}\|_{R_n^c}^2 \right) + \|x_{k+N} - x_{k+N}^{\text{ref}}\|_{Q_{k+N_c}^c}^2$$

$$\text{s.t.} \quad \frac{x_{n+1} = z_{\Delta t_c}^{(n)} + A_{\Delta t_c}^{(n)} x_n + B_{\Delta t_c}^{(n)} u_n + G_{\Delta t_c}^{(n)} \hat{w}_k, \quad x_k = \hat{x}_k$$

$$x_n \in \mathcal{X}_n, \quad u_n \in \mathcal{U}_n, \quad (x_n, u_n) \in \mathcal{Z}_{xu,n}$$

MHE: Current state and disturbance estimates are obtained as numerical solutions to finite-horizon optimal estimation problems of the form

 $\|\hat{x}_{k-N_e+1} - \bar{x}_{k-N_e+1}\|^2_{Q^{-1}_{x_0}}$ min.

Figure 1: Output-MPC: Tracking of effluent total nitrogen, $N_{TOT}^{S(10)}$. The reference signal describes three objectives: Conventional treatment of nitrogen $(t \in [0, 2.8) \cup [5.6, 8.4) \cup [11.2, 14) d)$, producing nitrogen-rich reuse water for agriculture $(t \in [2.8, 5.6) d)$, and satisfying stricter regulations $(t \in [8.4, 11.2) d)$.

$$+\sum_{n=k-N_e+1} \left(\|\hat{y}_n - y_n^{\text{data}}\|_{Q_v^{-1}}^2 + \|\hat{w}_n - \bar{w}_n\|_{R_w^{-1}}^2 \right)$$

s.t. $\hat{x}_{n+1} = z_{\Delta t_e}^{(n)} + A_{\Delta t_e}^{(n)} \hat{x}_n + B_{\Delta t_e}^{(n)} u_n + G_{\Delta t_e}^{(n)} \hat{w}_n,$
 $\hat{x}_n \in \hat{\mathcal{X}}_n, \quad \hat{w}_n \in \widehat{\mathcal{W}}_n$

SS-OPT: We design a hierarchical layout in which the plant is stabilized around operating points obtained as solutions to optimisations of the form

min.
$$\begin{aligned} \|Hg(x_n^{\text{ref}}) - \tilde{y}_n^{\text{ref}}\|_{W_y}^2 + \|u_n^{\text{ref}} - \tilde{u}_n^{\text{ref}}\|_{W_u}^2 \\ \text{s.t.} & \begin{array}{l} 0 = f(x_n^{\text{ref}}, u_n^{\text{ref}}, \hat{w}_k^{\text{ref}} | \theta_x) \\ x_n^{\text{ref}} \in \mathcal{X}_n^{\text{ref}}, & u_n^{\text{ref}} \in \mathcal{U}_n^{\text{ref}} \end{aligned}$$

https://kepo.aalto.fi/

Figure 2: Output-MPC: Operational cost index, $OCI_{kWh} = AE + PE + ME - 6MP + max(0, HE - 7MP)$, given aeration (AE), pumping (PE), mixing (ME) and heating (HE) energies, and methane production (MP).

References

[1] S. Kundu *et al.*, "Source and central level recovery of nutrients from urine and wastewater: A state-of-art on nutrients mapping and potential technological solutions," J. of Env. Chem. Eng., vol. 10(2), 2022. [2] P. Ingildsen and G. Olsson, Smart Water Utilities: Complexity Made Simple. IWA Publishing, 2016. [3] K. Gernaey et al., Benchmarking of Control Strategies for Wastewater Treatment Plants. IWA Publ., 2014. [4] J. Rawlings et al., Model Predictive Control: Theory, Computation and Design. Nob Hill Publ., 2020. [5] O. B. L. Neto et al., "A model-based framework for controlling activated sludge plants," 2023. Working paper.

{otacilio.neto, michela.mulas, francesco.corona}@aalto.fi