Estimation of pattern formation in stochastic reaction-diffusion systems with the Block Particle Filter

Augusto F. Magalhães ${ }^{1}$ *, Otacílio B. L. Neto ${ }^{1}$, and Francesco Corona ${ }^{1}$ 'School of Chemical Engineering, Aallo University, Finland. 'augusto.magalhaes@aalto.fi

Non-linear Filtering

\diamond Assume X to be a Markov chain with underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where $X: \mathbb{N} \times \Omega \ni(k, \omega) \mapsto X_{k}(\omega) \in \mathbb{R}^{N_{x}}$.
\diamond Consider a sequence of observations $\left(y_{k}\right)_{k \in \mathbb{N}}$.
PROBLEM: Estimate the stochastic process $\pi=\left(\pi_{k}\right)_{k \in \mathbb{N}}$, where $\pi_{k}(A)=\mathbb{P}\left(X_{k} \in A \mid Y_{\mathrm{r}: k}=\right.$ $y_{\mathrm{r}: k}$) for all $A \in \mathcal{B}\left(\mathbb{R}^{N_{x}}\right)$.
The filters π_{k} can be computed recursively via

$$
\begin{equation*}
\pi_{k-1} \xrightarrow{\text { prediction }} \widetilde{\pi}_{k}=\mathrm{P}_{k} \pi_{k-1} \xrightarrow{\text { correction }} \pi_{k}=\mathrm{C}_{k} \widetilde{\pi}_{k} \tag{1}
\end{equation*}
$$

with operators P_{k} and C_{k} satisfying

$$
\left(\mathrm{P}_{k} \pi_{k-\mathrm{I}}\right)(A) \triangleq \int \mathrm{P}_{k}(x, A) \pi_{k-\mathrm{I}}(d x), \quad\left(\mathrm{C}_{k} \widetilde{\pi}_{k}\right)(A) \triangleq \frac{\int_{A} \mathrm{C}_{k}(x) \widetilde{\pi}_{k}(d x)}{\widetilde{\pi}_{k}\left(\mathrm{C}_{k}\right)}
$$

Classical particle filters:
Let particles $\left\{X_{k}^{(n)}\right\}_{n=\mathrm{I}}^{N_{p}}$ be N_{p} mutually independent stochastic processes, with common distribution π_{k} with density p_{k}. Let $\pi^{N_{p}}$ be the sequence of empirical distributions

$$
\pi_{k}^{N_{p}} \triangleq \frac{\mathrm{I}}{N_{p}} \sum_{n=1}^{N_{p}} \delta_{X_{k}^{(n)}}, \quad X_{k}^{(n)} \sim p_{k} .
$$

Since p_{k} is unavailable, we sample $\left\{X_{k}^{(n)}\right\}_{n=1}^{N_{p}}$ from importance distributions with density q_{k} instead (normalised Importance Sampling), resulting in

$$
\frac{\mathrm{I}}{N_{p}} \sum_{n=1}^{N_{p}} w_{k}\left(X_{k}^{(n)}\right) \delta_{X_{k}^{(n)}}, \quad w_{k}(x)=\frac{p_{k}(x)}{q_{k}(x)}, \quad X_{k}^{(n)} \sim q_{k}
$$

with the support of q_{k} containing the support of p_{k}.
Once q_{k} is chosen, procedure (1) is approximated via

$$
\pi_{k-1}^{N_{p}} \xrightarrow{\text { prediction/sampling }} \widetilde{\pi}_{k}^{N_{p}}=\mathrm{P}_{k} \pi_{k-\mathrm{I}}^{N_{p}} \xrightarrow{\text { correction }} \pi_{k}^{N_{p}}=\mathrm{C}_{k} \widetilde{\pi}_{k}^{N_{p}}
$$

Block particle filtering [1]:
To address the curse of dimensionality, we assume that the dynamics and observations at a spatial location depend only on state-variables associated with its neighbourhood.

Once q_{k} is chosen, procedure (1) is instead approximated via

$$
\pi_{k-1}^{N_{p}} \xrightarrow{\text { prediction/sampling }} \widetilde{\pi}_{k}=\mathrm{P}_{k} \pi_{k-1}^{N_{p}} \xrightarrow{\text { blocking/correction }} \pi_{k}^{N_{p}}=\mathrm{C}_{k} \mathrm{~B} \widetilde{\pi}_{k}^{N_{p}},
$$

where the operator B is built in the following way:
$\diamond\left(X_{k}, Y_{k}\right)$ is a random field $\left(X_{k}, Y_{k}\right)_{v \in V}$ indexed by a (finite) undirected graph $\mathcal{G}=(V, W)$; \diamond Graph \mathcal{G} has vertex set $V=\left\{v \in \mathbb{N}^{2}: \mathrm{I} \leq v_{i} \leq \bar{V}, i \in\{\mathrm{I}, 2\}, \bar{V} \in \mathbb{N}\right\} ;$ \diamond Vertices of \mathcal{G} can be partitioned in $V=\bigcup_{V_{b} \in \mathcal{K}} V_{b}, V_{b} \cap V_{b^{\prime}}=\emptyset$ for $V_{b} \neq V_{b^{\prime}}, V_{b}, V_{b^{\prime}} \in \mathcal{K}$; $\diamond \mathcal{K}$ is a collection of non-overlapping blocks $\left\{\left(v_{0}+\left\{\mathrm{I}, \ldots, \bar{V}_{b}\right\}^{2}\right) \cap V: v_{\mathrm{o}} \in \bar{V}_{b} \mathbb{N}^{2}\right\}$.

$\mathrm{B} \boldsymbol{\pi}_{k}:=\bigotimes_{V_{b} \in \mathcal{K}} \mathrm{~B}^{V_{b}} \pi_{k}$, where $\mathrm{B}^{V_{b}} \boldsymbol{\pi}_{k}$ is the marginal distribution of π_{k} on $\prod_{v \in V_{b}} \mathbb{R}^{N_{x}(v)}$.				
	$t_{k}=0$	$t_{k}=10$	$t_{k}=20$	$t_{k}=30$
	0.0	0.4		
		Concen	ation z_{1}	

This work

\diamond We examine two choices for the importance density q_{k} in the context of the Block particle filter (together with a resampling procedure):
standard choice (stand. SIR)
$q_{k}(x)=p\left(x \mid x_{k-\mathrm{I}}^{(n)}\right)$
optimal choice (optimal. SIR, minimal MSE)
$q_{k}(x)=\frac{p\left(y_{k} \mid y_{\mathrm{I}}^{\mathrm{I}} \mathrm{F}_{-1}, x_{\mathrm{o}: k-\mathrm{I}}, x\right) p\left(x \mid x_{k-\mathrm{I}}\right)}{p\left(y_{k} \mid y_{\mathrm{I}: k-\mathrm{I}}, x_{\mathrm{o}: k-\mathrm{I}}\right)} ;$
We reconstruct the concentrations of chemical substances in a reactive-diffusion system using Aalto University

AP

noisy spectral observations

Figure 1: An oscillatory chemical reaction propagating across a petri dish

Case-study: The Oregonator System [2]

A reaction-diffusion system with
\diamond a quasi-two-dimensional space $U=\left\{u \in \mathbb{R}^{2}: 0 \leq u_{i}<\bar{U}, i \in\{\mathrm{I}, 2\}\right\}$ (e.g. a petri dish); \diamond sets of chemical species $\mathcal{S}=\left\{\mathcal{S}_{1}, \ldots, \mathcal{S}_{6}\right\}$ distributed over U
$\begin{array}{cccc}2 \mathcal{S}_{1} \xrightarrow{x_{1}} \mathcal{S}_{4}+\mathcal{S}_{5} & \mathcal{S}_{1}+\mathcal{S}_{3} \xrightarrow{x_{2}} & 2 \mathcal{S}_{5} & \mathcal{S}_{2}+\mathcal{S}_{6} \xrightarrow{x_{5}} 0.5 \sigma \mathcal{S}_{3} ; \\ \mathcal{S}_{1}+\mathcal{S}_{4} \xrightarrow{x_{3}} 2 \mathcal{S}_{1}+2 \mathcal{S}_{2} & \mathcal{S}_{3}+\mathcal{S}_{4} \xrightarrow{x_{4}} \mathcal{S}_{1}+\mathcal{S}_{5}\end{array}$
\diamond a discreter
points;
Δ dynamics of $z^{(v)}(t)=z\left(\left(v_{1}, v_{2}\right) \Delta u, t\right)$ approximated as
$d z^{(v)}=\left[(\bar{S}-\underline{S})^{\top} v\left(z^{(v)}\right)+D_{z} \nabla^{2} z^{(v)}\right] d t, \quad \forall v \in V$,
with stoichiometric matrix $\underline{S} \in \mathbb{N} 5 \times 5$ for the reactants and $\bar{S} \in \mathbb{N} s \times s$ for the products; \diamond environmental perturbations added in the form of Brownian Motion B^{z}

$$
d z(u, t)=f_{z}\left(z(u, t), \nabla^{2} z(u, t)\right) d t+g_{z}(z(u, t)) d B_{t}^{z} ;
$$

\diamond an output equation of the form $y^{(v)}(t)=H_{z} z^{(v)}(t)+e_{z}(t)$, with $y^{(v)}(t)=y\left(\left(v_{1}, v_{2}\right) \Delta u, t\right)$.
For this reaction network
$\left(\left[\mathcal{S}_{4}\right],\left[\mathcal{S}_{5}\right],\left[\mathcal{S}_{6}\right]=\right.$ constant $) \wedge\left(\left[S_{3}\right]\right.$ slowly varying $) \xrightarrow{[3]} z^{(v)}(t) \in \mathbb{R}^{2}, H_{z} \in \mathbb{R}^{\text {rox }}$
We let $X_{k}=\left(z^{\left(v_{1}, v_{2}\right)}\left(t_{k}\right)\right) \bar{v}_{v_{1}, v_{2}=1}^{\bar{u}}$ and $Y_{k}=\left(y^{\left(v_{1}, v_{2}\right)}\left(t_{k}\right)\right) \bar{v}_{1}, v_{2}=$
$\left.\left(\bar{V} / \overline{V_{b}}\right)^{2}=400\right) \wedge\left(\right.$ block size $\left.\overline{V_{b}}=5\right) \longrightarrow X_{k} \in \mathbb{R}^{2 \cdot(\text { (100 })^{2}}, Y_{k} \in \mathbb{R}^{\text {ro.(roo })^{2}}$.

References

[1] Patrick Rebeschini and Ramon van Handel. Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, 25(5):2809-2866, 2015.
[2] Richard J. Field and Richard M. Noyes. Oscillations in chemical systems. iv. limit cycle behavior in a model of a real chemical reaction. Journal of Chemical Physics, 60:1877-1884, 1974
[3] James P. Keener and John J. Tyson. Spiral waves in the belousov-zhabotinskii reaction. Physica D Nonlinear Phenomena, 21(2):307-324, 1986.

