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Non-linear Filtering
� Assume X to be a Markov chain with underlying probability space (Ω,F ,P), where

X : N×Ω 3 (k,ω) 7→ Xk(ω) ∈ RNx.

� Consider a sequence of observations (yk)k∈N.

PROBLEM: Estimate the stochastic process π = (πk)k∈N, where πk(A) = P(Xk ∈A|Y1:k =
y1:k) for all A ∈ B(RNx).

The filters πk can be computed recursively via

πk−1
prediction−−−−−−→ π̃k = Pkπk−1

correction−−−−−−→ πk = Ckπ̃k, (1)

with operators Pk and Ck satisfying

(Pkπk−1)(A)
Δ
=

∫
Pk(x,A)πk−1(dx), (Ckπ̃k)(A)

Δ
=

∫
ACk(x)π̃k(dx)

π̃k(Ck)
.

Classical particle filters:
Let particles {X(n)

k }Np
n=1 be Np mutually independent stochastic processes, with common

distribution πk with density pk. Let πNp be the sequence of empirical distributions

πNp
k

Δ
=

1
Np

Np∑
n=1

δX(n)
k
, X(n)

k ∼ pk.

Since pk is unavailable, we sample {X(n)
k }Np

n=1 from importance distributions with density
qk instead (normalised Importance Sampling), resulting in

1
Np

Np∑
n=1

wk(X(n)
k )δX(n)

k
, wk(x) =

pk(x)
qk(x)

, X(n)
k ∼ qk,

with the support of qk containing the support of pk.

Once qk is chosen, procedure (1) is approximated via

πNp
k−1

prediction/sampling
−−−−−−−−−−−−→ π̃Np

k = Pkπ
Np
k−1

correction−−−−−−→ πNp
k = Ckπ̃

Np
k .

Block particle filtering [1]:
To address the curse of dimensionality, we assume that the dynamics and observations at
a spatial location depend only on state-variables associated with its neighbourhood.

Once qk is chosen, procedure (1) is instead approximated via

πNp
k−1

prediction/sampling
−−−−−−−−−−−−→ π̃k = Pkπ

Np
k−1

blocking/correction
−−−−−−−−−−−−→ πNp

k = CkBπ̃
Np
k ,

where the operator B is built in the following way:
� (Xk,Yk) is a random field (Xk,Yk)v∈V indexed by a (finite) undirected graph G = (V,W);
� Graph G has vertex set V = {v ∈ N2 : 1 ≤ vi ≤ V, i ∈ {1, 2},V ∈ N};
� Vertices of G can be partitioned in V =

⋃
Vb∈KVb,Vb ∩Vb′ = ∅ for Vb 6= Vb′,Vb,Vb′ ∈ K;

�K is a collection of non-overlapping blocks {(v0 + {1, . . . ,Vb}2) ∩V : v0 ∈ VbN2}.

Bπk :=
⊗
Vb∈K

BVbπk, where BVbπk is the marginal distribution of πk on
∏
v∈Vb

RNx(v).

Figure 1: An oscillatory chemical
reaction propagating across a petri dish.

This work
�We examine two choices for the importance density
qk in the context of the Block particle filter
(together with a resampling procedure):

standard choice (stand. SIR)
qk(x) = p(x|x(n)k−1)

optimal choice (optimal. SIR, minimal MSE)

qk(x) =
p(yk|y1:k−1,x0:k−1,x)p(x|xk−1)

p(yk|y1:k−1,x0:k−1)
;

�We reconstruct the concentrations of chemical
substances in a reactive-diffusion system using
noisy spectral observations.

Case-study: The Oregonator System [2]
A reaction-diffusion system with
� a quasi-two-dimensional space U = {u ∈ R2 : 0 ≤ ui <U, i ∈ {1, 2}} (e.g. a petri dish);
� sets of chemical species S = {S1, . . . ,S6} distributed over U

2S1 κ1−→ S4 + S5
S1 + S4

κ3−→ 2S1 + 2S2
S1 + S3

κ2−→ 2S5
S3 + S4

κ4−→ S1 + S5
S2 + S6

κ5−→ 0.5σS3;

� a discretisation V = {v ∈ N2 : 1 ≤ vi ≤ V, i ∈ {1, 2},V = (U/Δu)} of evenly-spaced grid
points;

� dynamics of z(v)(t) = z
(
(v1, v2)Δu, t

)
approximated as

dz(v) =
[
(S− S)Tν

(
z(v)

)
+Dz∇2z(v)

]
dt, ∀v ∈ V,

with stoichiometric matrix S ∈ N5×5 for the reactants and S ∈ N5×5 for the products;
� environmental perturbations added in the form of Brownian Motion Bz

dz(u, t) = fz(z(u, t),∇2z(u, t))dt + gz(z(u, t))dBzt ;
� an output equation of the form y(v)(t) =Hzz(v)(t) + ez(t), with y(v)(t) = y((v1, v2)Δu, t).
For this reaction network,(

[S4], [S5], [S6] = constant
)
∧
(
[S3] slowly varying

) [3]
−−−−−→ z(v)(t) ∈ R2,Hz ∈ R10×2.

We let Xk = (z(v1,v2)(tk))Vv1,v2=1 and Yk = (y(v1,v2)(tk))Vv1,v2=1.(
(V/Vb)

2 = 400
)
∧
(

block size Vb = 5
)

−→ Xk ∈ R2·(100)2,Yk ∈ R10·(100)2.
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Figure 2: Snapshots of (Xk)1 (4 first columns) and (Xk)2 (4 last columns) for the Oregonator model at different times tk. First row shows a draw for Xk used to generate observation yk. We estimated X̂k with the Block Particle Filter (for each block Np = 128 particles)
with a standard (2nd row) and with an optimal (3rd row) choice of importance densities qk. [fz]1 = a−1(z1(1 − z1) − bz2(z1−c)

z1+c ) +Dz1∇2z1, [fz]2 = (z1 − z2) +Dz2∇2z2, with constants (a, b, c) = (0.08, 0.95, 0.0075), (Dz1,Dz2) = (5 × 10−4, 5 × 10−6). The process noise has

coefficient g(Xk−1) = 10−2diag(Xk−1). The measurement process is defined by H = [IV2 ⊗MS1 IV2 ⊗MS2] with spectra (MS1,MS2) collected at 10 equally-spaced wavelengths r ∈ [0, 50) through response functions mS1(r) = exp
(
−(r−10)2

30
)

and mS2(r) = exp
(
−(r−40)2

30
)
.


