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Abstract. We analyze the asymptotic distribution of a general class of near-

est neighbor based residual variance estimators providing a central limit theo-

rem with asymptotic variance characterized as a linear combination of residual

moments. Based on the theoretical results, a numerical algorithm for estimat-

ing confidence intervals is provided in conjunction with a proof of asymptotic

consistency.

1. Introduction

The problem of residual variance estimation has been widely investigated as

an elegant approach for addressing the limitations of linear dependency measures

such as Pearson’s correlation coefficient [7, 13, 19]. Given the i.i.d. observations

{Xi, Yi}Ni=1, it concerns the estimation of

(1) E[(Y1 − E[Y1|X1])
2
]

corresponding to the optimal mean squared error obtainable via non-linear regres-

sion. While not obvious at first sight, estimating the residual variance is often a

significantly easier task than performing an actual non-linear regression. As a mat-

ter of fact, there exists a diversity of non-parametric techniques providing estimates

without explicitly reconstructing a full mapping from X to Y .

Among a plurality of approaches, we will examine methods based on using near-

est neighbors to build upon the assumption of local regularity. Such techniques

often admit excellent consistency properties under realistic assumptions while re-

maining simple and understandable [4, 7, 13]. However, in order to position them

alongside classical statistical measures, it is necessary to establish sufficiently strong
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asymptotic normality results together with practical methods for estimating con-

fidence intervals. In this regard, existing literature covers specific estimators (see

e.g. [4]), but does not provide a generic theoretical framework in the context of

multidimensional randomized design. Relatedly, confidence intervals have not been

widely discussed in a broader setting, while some attempts towards this direction

exist [10].

Motivated by the aforementioned considerations, a principal aim of this paper

is to establish an asymptotic variance and normality result for a class residual

variance estimators with the proposed framework of sufficient generality to capture

a number of well-established nearest neighbor based methods including [19, 8, 9].

Moreover, as a technique for constructing confidence intervals, we provide a simple

algorithm for evaluating estimation variance with consistency guaranteed in the

infinite sample limit under realistic assumptions.

Our approach necessitates the use of auxiliary residual statistics opening a new

direction for future research due to their convergence properties having been rel-

atively scarcely investigated even if some existing literature relates to our work

closely in this aspect [8]. Relatedly, the finite sample accuracy of the approxima-

tive confidence intervals in different settings leaves room for further contributions.

2. Estimators

2.1. Basic Definitions and Assumptions. We denote by B(x, r) the ball with

center x and radius r in <n, where the fixed integer n > 0 presents the dimension-

ality of the input space in our analysis. For any subset A ⊂ <n, scalar a > 0 and

vector x ∈ <n, we adopt the standard set arithmetic convention

aA+ x = {ay + x : y ∈ A}.

The notation |A| is used to refer to the cardinality of A. For integers k > 0, we

denote by Ak the set A× . . .×A (Cartesian product of k sets).

We will adopt the notation X̃n to indicate the space of non-empty finite subsets

of <n. To impose some regularity for technical reasons, we remark that the elements

of such a space correspond to finite measures on <n with the total variation norm

immediately providing a standard topology.
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Given a random event A, we denote by I(A) the random variable with the value

1 if the event occurs and 0 otherwise. Generally, the event is expressed as a logical

expression involving random variables.

We will consider independent identically distributed (i.i.d.) random variables

{Xi, Yi}∞i=1, where each random input vector Xi takes values in <n and output

Yi in <; specifically, we derive asymptotics w.r.t. the subsamples {Xi, Yi}Ni=1 for

integers N > 0. For the reason of conciseness, we adopt the shorthand notation

ΞN = {Xi}Ni=1.

Given a sequence of random variables (Zi)
∞
i=1, the sequence is said to converge

in distribution to the normal distribution N(0, 1) of zero mean and unit variance

conditionally on ΞN , if for any t > 0,

(2) P (ZN ≤ t|ΞN )→ Φ(t)

in probability in the limit N → ∞, where Φ(t) is the cumulative distribution

function of N(0, 1). As another type of convergence, (Zi)
∞
i=1 is said to converge in

mean to a random variable Z if

E[|Zi − Z|]→ 0

in the limit i→∞.

We define the index of the nearest neighbor of Xi by

N [i, 1] = argmin1≤j≤N,j 6=i‖Xj −Xi‖

and that of the k-th nearest neighbor by

N [i, k] = argminj∈{1,...,N}\{i,N [i,1],...,N [i,k−1]}‖Xj −Xi‖.

In this definition, ties may be broken in an arbitrary way; however, as we will

only consider points {Xi}Ni=1 distributed according to a density function w.r.t. the

Lebesgue measure, the nearest neighbors will be almost surely unique. For nota-

tional convenience, we set

N [i, 0] = i.

The conditional expected output is defined by

m(x) = E[Y1|X1 = x]
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and the residual variables by ri = Yi −m(Xi); moreover, we define the conditional

residual standard deviation function by

σ(x) =
√

E[r21|X1 = x];

for integers l ≥ 2, we set

Vl(x) = E[rl1|X1 = x]

and for l ≥ 3,

(3) V ′l (x) = E[rl1|X1 = x]− E[r21|X1 = x]E[rl−21 |X1 = x].

Note that in this notation, σ(x)2 = V2(x). In order to state our principal assump-

tions, we need the following variation of Hölder continuity: for a function f(x) from

<n to <, our continuity condition imposes the requirement

(4) |f(x)− f(y)| ≤ c(1 + ‖x‖+ ‖y‖)α‖x− y‖ξ

for all x, y ∈ <n and some constants c > 0, ξ > 0 and α ≥ 0. Note that Equation

(4) with ξ = 1 is implied by the simpler condition

‖∇f(x)‖ ≤ c(1 + ‖x‖α)

for some constants α, c > 0 and all x ∈ <n. Our main assumptions are formulated

as follows:

(A1) The random variables {Xi, Yi}∞i=1 are i.i.d. with the points {Xi}∞i=1 dis-

tributed according to a density p(x) w.r.t. the Lebesgue measure on <n. Moreover,

for l = 2, . . . , 4, the conditional moment functions m(x) and Vl(x) are well-defined

and continuous in the sense of Equation (4).

(A2)

E[Y 8
1 ] <∞

and

E[‖X1‖α] <∞

for all α > 0.

Assumption (A1) adopts a slightly weaker continuity condition than Lipschitz

continuity covering most cases of practical interest including polynomial functions.

Note that it implies the growth condition

|m(x)|+ E[r41|X1 = x] ≤ c(1 + ‖x‖γ)
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for some constants c, γ > 0 independent of x ∈ <n.

In order to establish an additional theoretical tool by extending the concept of

nearest neighbors, for a fixed K > 0, we define

Ni,0 = {N [i, 0], . . . , N [i,K]}(5)

and for l ≥ 1, by recursion

(6) Ni,l =
⋃

{1≤j≤N : Ni,l−1∩Nj,l−1 6=∅}

Nj,l−1.

As a notational convention, we will generally employ K to denote a fixed positive

constant determined by the specific estimator in question.

2.2. The Estimation Framework. As a general context aimed to capture a large

part of the existing literature, we will analyze residual variance estimators of the

form

(7) SN =
1

N

N∑
i=1

K∑
j=0

K∑
j′=0

Wi,j,j′YN [i,j]YN [i,j′],

where each weight Wi,j,j′ can be represented as

(8) Wi,j,j′ = fj,j′(XN [i,0], . . . , XN [i,K])

for some bounded measurable function fj,j′ (independent of i) implying that the

value of SN is determined by the observations in the K nearest neighborhood of

each point Xi. Note that while the constant K is fully determined by the choice of

the specific estimator, our theoretical results are based on varying the number of

samples N setting N →∞ for an asymptotic analysis.

To establish the consistency of the estimator, we require that

K∑
j=0

Wi,j,j = 1 and(9)

K∑
j′=0

Wi,j′,j =

K∑
j′=0

Wi,j,j′ = 0(10)

almost surely for i = 1, . . . , N and j = 0, . . . ,K. Moreover, the weights are assumed

to be translation invariant with respect to the nearest neighbors in the sense of being

invariant w.r.t. the transformations

sXN [i,0] + t, . . . , sXN [i,K] + t
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for any s, t ∈ <, where the sum of a vector and a scalar is interpreted component-

wise.

2.3. Examples. In this section, we present some examples of estimators of the

form (7) with some practical guidelines on the choice of the estimator.

2.3.1. Locally Constant Estimators. The well-known K-NN estimator of residual

variance can be formulated as

(11) SN =
1

K(K + 1)N

N∑
i=1

 K∑
j=1

YN [i,j] − Yi

2

,

where K is an arbitrary fixed constant. In this case,

Wi,0,0 =
K

K + 1
,

while

Wi,j,j′ =
1

K(K + 1)
and

Wi,0,j = Wi,j,0 = − 1

K + 1

for 1 ≤ j, j′ ≤ K. As a matter of fact, the choice K = 1 is often made in practical

applications resulting in the simple estimator

(12) SN =
1

2N

N∑
i=1

(
YN [i,1] − Yi

)2
.

However, despite its intuitive form, the estimator (11) does not possess optimal

convergence properties as it does not achieve a uniform rate of convergence for non-

smooth variance functions σ(x)2. The asymmetric product estimator introduced in

[8] elegantly addresses this issue taking the simple form

(13) SN =
1

N

N∑
i=1

(YN [i,1] − Yi)(YN [i,2] − Yi).

This corresponds to the choice K = 2 with Wi,0,0 = 1, Wi,1,2 = 1, Wi,0,2 = −1,

Wi,1,0 = −1 for i = 1, . . . , N setting the remaining weights equal to 0. Some of the

theoretical properties of this estimator have been analyzed in [14, 12], where it is

shown that the somewhat surprising form of the estimator ensures consistency for

non-smooth standard deviation functions σ(x)2, while also providing a surprisingly

fast rate of convergence.
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Towards another direction, it is also of interest to consider linear combinations

of the form

(14) SN =
1

2N

K∑
j=1

wj

N∑
i=1

(
YN [i,j] − Yi

)2
for some fixed constants w1, . . . , wK , where the constraint

K∑
j=1

wj = 1

would ensure that conditions (9) and (10) hold. However, the optimal choice and

benefit of such weights remains a relatively unexplored topic closely related to the

Gamma test [7].

2.3.2. Local Linear Estimators. The local linear estimators introduced in [19] in-

voke the idea of applying linear regression for points in the proximity of each ob-

served regressor vector. While the added complexity might be expected to increase

variance and risk instability, such concerns are somewhat mitigated by the bound-

edness of the weights in the representation (7).

In order to demonstrate the variable bandwidth estimator according to [19], we

define the augmented vectors

X̃i,j =

 1

XN [i,j] −Xi


for 1 ≤ i ≤ N and j = 1, . . . , n+ 1. Moreover, we define the n+ 1× n+ 1 matrix

X̂i =
[
X̃i,1, . . . , X̃i,n+1

]
.

Let e be the n+ 1-dimensional vector with e(1) = 1 and e(j) = 0 for 1 < j ≤ n+ 1.

Set

zi =

 −1

X̂−1i e

 ,

where it can be shown that Assumption (A1) suffices to ensure the almost sure

invertibility of X̂i (in contrast, [19] adopts a more general formulation covering the

non-invertible case). Finally, for 0 ≤ j ≤ n + 1, we define ŵi,j as the component

j + 1 of the vector zi/‖zi‖. The estimator takes the form

(15) SN =
1

N

N∑
i=0

n+1∑
j=0

ŵi,jYN [i,j]

2

,
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where we have

n+1∑
j=0

ŵ2
i,j = 1 and(16)

n+1∑
j=0

ŵi,jX̃i,j = 0(17)

for any 1 ≤ i ≤ N . The local linear estimator can be viewed in the framework (7)

by setting Wi,j,j′ equal to

ŵi,jŵi,j′

and observing that by Equations (16) and (17), the weights are bounded and the

constraints (9) and (10) hold.

2.4. Note on the Choice of Estimator. At present, profound asymptotic analy-

sis of residual variance estimators in a general context remains a rather unexplored

topic. Consequently, it is hard to give reliable recommendations about the choice

of algorithm in practical applications. It seems likely that further theoretical work

on the bias/variance trade-off (with as exact characterization of the asymptotic

behavior as possible) would provide useful insight in this respect with major influ-

encing factors expected to include the dimensionality of the input space, boundary

effect and smoothness of the mappings m(x) and σ(x). In this regard, different

applications might pose varying requirements on the method used; as an example,

concerns about bias are somewhat mitigated if the goal is merely to compute a p-

value for the hypothesis m(x) = 0. Nevertheless, based on the present knowledge,

some general guidelines may be outlined:

• As shown in [12], the bias of the estimator (13) is expected to be of order

N−3/nlogαN for some α ≥ 0 (we believe α = 0 is provable) with variance

being of order N−1/2. This suggests that the method often performs well

for low to moderate dimensionalities (up to n = 5 or even n = 6).

• For high dimensional problems (n ≥ 7), we recommend considering the

local linear estimator discussed in Section 2.3.2 to compensate for the curse

of dimensionality by making use of a higher order approximator.

As a particular method meriting a remark, [4] presents an exceptionally concise

estimator with satisfactory theoretical properties, which, however, falls outside the

framework formulated in this paper. The simple form of the method seems beneficial
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in terms of variance while, at present, the bias is not yet formally fully understood.

As a conjecture, we believe that it is an attractive choice in particular when the

dimensionality of the input space is in the range n ≤ 3.

2.5. Asymptotic Distribution and Variance. The following theorem states the

asymptotic unbiasedness of residual variance estimators of the form (7) under our

assumptions. The result is expected by the corresponding results in earlier literature

(see e.g. [5]).

Theorem 1. Assume that Assumptions (A1)-(A2) hold. Then

E[SN ]→ E[σ(X1)2]

in the limit N →∞.

We compute the asymptotic variance of SN by employing the decomposition

Var[SN ] = E[Var[SN |ΞN ]] + Var[E [SN |ΞN ]].

In this context, the asymptotic distribution of
√
N(SN −E[SN ]) may be character-

ized as follows:

Theorem 2. Assume that Assumptions (A1)-(A2) hold. Then the variable

√
N(SN − E[SN ])

is asymptotically normal with

(18) NVar[E [SN |ΞN ]]→ Var[σ(X1)2]

and

(19) NVar[SN |ΞN ]→ A1E[σ(X1)4] +A2E[V ′4(X1)]

in mean in the limit N → ∞ for some constants A1 and A2 determined by n and

the estimator SN .

Remarkably, the constants A1 and A2 in Theorem 2 are universal in the sense

that they are independent of the probability distribution of the observations (Xi, Yi).

As a strategy for constructing approximative confidence intervals, the asymptotic

normality signifies that it remains to formulate a statistic guaranteed to approach
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the sum of the limits (18) and (19) when the number of samples increases to infinity.

To this end, for 1 ≤ i, j ≤ N and 0 ≤ l1, l2, l3, l4 ≤ K, we define

(20) δi,j,l1,l2,l3,l4 = Wi,l1,l2Wj,l3,l4I(N [i, l1] = N [j, l3])I(N [i, l2] = N [j, l4])

and the random variables

b
(1)
l1,l2

(Xi,ΞN ) =

N∑
j=1

K∑
l3,l4=0
l3 6=l4

δi,j,l1,l2,l3,l4 + δi,j,l1,l2,l4,l3 and(21)

b
(2)
l (Xi,ΞN ) =

N∑
j=1

K∑
l′=0

δi,j,l,l,l′,l′ .(22)

Employing these notations, we adopt a two-step approach by formulating the in-

termediate statistic

QN =
1

N

N∑
i=1

σ(Xi)
4

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN ) + V ′4(Xi)

K∑
l=0

b
(2)
l (Xi,ΞN )

(23)

capable of approximating the limit (19):

Theorem 3. Assume that Assumptions (A1)-(A2) hold. Then the random vari-

ables (23) relate to the constants A1 and A2 in Theorem 2 by the convergence

QN → A1E[σ(X1)4] +A2E[V ′4(X1)]

in mean in the limit N →∞.

As a matter of fact, the definition (23) is motivated by non-asymptotic consid-

erations in the proof of Theorem 2 aiming to ensure that the value is close to the

real value also in the non-asymptotic range. However, the functions σ(x) and V ′4(x)

are generally unknown posing an auxiliary approximation problem closely related

to estimating the right side of (18).

3. Confidence Intervals

In this section, we complete Theorems 2 and 3 by providing estimators for

(24) Var[σ(X1)2] = E[σ(X1)4]− E[σ(X1)2]2
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and QN in Equation (23) sufficient for evaluating approximative confidence inter-

vals. To this end, we propose an empirical method by adapting the statistical

techniques presented in [8] concerning higher order residual moments.

To outline the estimator for the first term in Equation (23),

(25)
1

N

N∑
i=1

σ(Xi)
4

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN ),

we define

Naux[j, i] = argmin1≤l≤N,l/∈{j,i,N [i,1]}‖Xl −Xj‖;

this definition is demonstrated by the following example involving a set of four

points:

X1

XN [1,2]

XNaux[N [1,2],1]

XN [1,1]

Defining

(26) V̂ 2
2,i =

1

4
(YN [i,1] − Yi)2(YNaux[N [i,2],i] − YN [i,2])

2,

the proposed estimator of (25) is then formulated as an average of the terms

V̂ 2
2,i

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN ).

To demonstrate the intuition behind the definition, we resort to setting m = 0 and

observe that for a sufficiently large sample size, the relevant quantity to examine is

the expectation

E

V̂ 2
2,i

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN )

 = E

E
[
V̂ 2
2,1

∣∣∣ΞN] K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN )

 .
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In this context, using the conditional independence of the residuals, we have

E
[
V̂ 2
2,1

∣∣∣ΞN] =
1

4
Var

[(
rN [1,1] − r1

)2 (
rNaux[N [1,2],1] − rN [1,2]

)2∣∣∣ΞN]
=

1

4

(
σ(X1)2 + σ(XN [1,1])

2
) (
σ(XN [1,2])

2 + σ(XNaux[N [1,2],1])
2
)

,

which is expected to be asymptotically close to the desired value σ(X1)4.

Recalling that the second term in (23) takes the form

E

[
V ′4(X1)

K∑
l=0

b
(2)
l (X1,ΞN )

]
= E

[
(V4(X1)− σ(X1)4)

K∑
l=0

b
(2)
l (X1,ΞN )

]
,

we suggest making use of Equation (26) and the product estimator for the fourth

moment of the residual variance presented in [8] to define

V̂ ′4,i =

4∏
j=1

(YN [i,j] − Yi)− V̂ 2
2,i.

The complete approximation of QN is then given by

Q̂N =
1

N

N∑
i=1

(
V̂ 2
2,i

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN ) + V̂ ′4,i

K∑
l=0

b
(2)
l (Xi,ΞN )

)
.(27)

At the same time, (24) can be estimated by

(28)
1

N

N∑
i=1

V̂ 2
2,i − S2

N

for any consistent residual variance estimator SN .

The following result demonstrates the asymptotic validity of the estimates (27)

and (28).

Theorem 4. Assume that Assumptions (A1)-(A2) hold. Then

QN − Q̂N → 0

and

(29)
1

N

N∑
i=1

V̂ 2
2,i − S2

N → E[σ(X1)4]− E[σ(X1)2]2

in mean in the limit N →∞.
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Computing (27) and (28) based on empirical data is straightfoward and at once

provides approximative confidence intervals. It should be noted that while the proof

of Theorem 4 demonstrates the asymptotic correctness of the approximations, it

does not address finite sample behaviour and rate of convergence. As a related topic

of future work, it is also pertinent to consider the direction of the finite sample bias,

that is, whether the true value is over- or underestimated.

4. Empirical Demonstration

In order to assess the practical validity of the algorithm introduced in Section 3,

we computed relative estimation errors for the method (13) by computing empirical

averages using simulated data. More specifically, the input vector X was taken as

uniform on [0, 1]n, whereas the output was generated according to

(30) Y =
√

12X(1)U +X(1),

where U denotes an independent uniform random variable on [−1/2, 1/2] and X(1)

the first component of the vector valued random variable X. In the empirical

simulations, the size N of the samples drawn from (30) is varied from 1000 to 11000;

for each value of N , an error measure for the discrepancy between the estimated

variance of SN and the actual variance is computed.

Fixing a value for N and considering the residual variance estimates Ŝj,N (j =

1, . . . , L) obtained by drawing L samples from the model (30), where L is a large in-

teger in the constraints of the computational resources available, the true empirical

variance of the estimator was estimated by

(31) Varexp,L [SN ] =
1

L

L∑
j=1

Ŝ2
j,N −

 1

L

L∑
j=1

Ŝj,N

2

.

Specifically, L was fixed as 10000.

The generated datasets were also used to compute the variance estimates Varj [SN ]

(j = 1, . . . , L) using the method described in Section 3. As an implementation de-

tail, we decided to substitute Ŝj,N for SN in Equation (28) even if in principle,

another estimator could have been used. Assuming that Varexp,L [SN ] is close to
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Figure 1. Expected relative errors of the standard deviation es-

timates as a function of the number of samples (N).

the true estimator variance, the discrepancy measure

(32)
1

L

L∑
j=1

∣∣∣√Varexp,L [SN ]−
√

Varj [SN ]
∣∣∣√

Varexp,L [SN ]

was evaluated to assess the validity of the predicted estimation variances. Note the

square roots in (32) employed in order to focus on assessing standard deviations

instead of variances.

The empirical results displayed in Figure 1 are well-aligned with the theoretical

results of the paper exhibiting a rate of convergence independent of the dimension-

ality.

5. Auxiliary Results

5.1. Nearest Neighbors. It is well-known that in general finite dimensional set-

tings, nearest neighbor distances approach zero when the number of points tends

to infinity [11]. In our context, we need to the following restatement of this fact:
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Lemma 1. Assume that Assumptions (A1)-(A2) hold. Then for any ε > 0 and

0 ≤ α < n,

Nα/n−εE[dα1,K ]→ 0

in the limit N →∞.

Proof. For γ > 0 and N > 0, define the random variable

M =

N∑
i=1

I(Xi ∈ [−Nγ , Nγ ]n).

The results in [11] imply that when 0 < α < n, we have

N∑
i=1

dαi,K ≤ cN1+γα−α/n

on the event M = N for a constant c > 0 independent N ,

By Assumption (A2), the probability of the event M 6= N approaches zero faster

than N−β for any β > 0 finalizing the proof by an application of Hölder’s inequality

and the inequality

di,K ≤ ‖Xi‖+

K+1∑
j=1

‖Xj‖.

�

The following result builds upon [5] by extending the corresponding result for

nearest neighbor graphs to cover the extended neighborhoods defined in Equations

(5)-(6).

Lemma 2. Assume that (A1) holds. Then for any fixed integer l ≥ 0, there exists

constants N0 > 0 and c > 0 such that all N > N0, the inequalities

|{1 ≤ i ≤ N : 1 ∈ Ni,l}| ≤ c and(33)

|N1,l| ≤ c(34)

hold almost surely.

Proof. Proceeding by induction, let us assume the induction hypothesis that the

claim holds for some constant c > 0 and integers l ≥ 0 and N0 > 0:

(35)

N∑
j=1

I(i ∈ Nj,l) ≤ c
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and

(36) |Ni,l| ≤ c

almost surely for all N > N0 and 1 ≤ i ≤ N . As a matter of fact, Lemma 3.2 in [7]

establishes the upper bound (35) for l = 0. Then, we have

|Ni,l+1| ≤
∑
j∈Ni,l

N∑
i′=1

I(j ∈ Ni′,l)|Ni′,l| ≤ c3(37)

and

N∑
i=1

I(j ∈ Ni,l+1) ≤
N∑
i=1

N∑
j′=1

N∑
j′′=1

I(j′ ∈ Ni,l)I(j′ ∈ Nj′′,l)I(j ∈ Nj′′,l)

≤ c
N∑

j′′=1

N∑
j′=1

I(j′ ∈ Nj′′,l)I(j ∈ Nj′′,l)

≤ c2
N∑

j′′=1

I(j ∈ Nj′′,l) ≤ c3(38)

for any 1 ≤ j ≤ N . �

Lemma 2 can be used to prove the following result, which will turn out to be

useful for bounding the moments of random variables expressible as a sum over an

extended neighborhood.

Lemma 3. Assume that Assumption (A1) holds. For any N > 0, let (ai)
N
i=1 be a

sequence of positive numbers and fix arbitrary integers l ≥ 1 and s ≥ 1. Then for

some N0 > 0 and all N > N0,

N∑
i=1

 ∑
j∈Ni,l

aj

s

≤ c
N∑
i=1

asi

for some constant c > 0 independent of N and (ai)
N
i=1.

Proof. We observe that

N∑
i=1

∑
j∈Ni,l

aj =

N∑
i=1

ai

 N∑
j=1

I(i ∈ Nj,l)

 .

By Lemma 2 we know that

N∑
j=1

I(i ∈ Nj,l) ≤ c1
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and consequently
N∑
i=1

∑
j∈Ni,l

aj ≤ c1
N∑
i=1

ai

for some constant c1 > 0. Moreover, by Jensen’s inequality [18] and Lemma 2, ∑
j∈Ni,l

aj

s

≤ |Ni,l|s−1
∑
j∈Ni,l

asj ≤ c2
∑
j∈Ni,l

asj

for some constant c2 > 0 independent of N and 1 ≤ i ≤ N . Consequently, the case

s > 1 follows from the proof for s = 1. �

The following lemma is a corollary of Lemma 3 and Assumption (A2).

Lemma 4. Assume that Assumptions (A1)-(A2) hold. Then for any α > 0 and

integer l ≥ 0,

lim sup
N→∞

E

 ∑
j∈N1,l

‖Xj‖α
 <∞.

Lemmas 1 and 4 in conjunction with Hölder’s inequality yield the following result.

Lemma 5. Assume that Assumptions (A1)-(A2) hold. Then for any ξ ≥ 0, l ≥ 0

and α > 0,

(39) E


1 +

∑
j∈N1,l

‖XN [1,j]‖

ξ

dα1,K

→ 0

in the limit N →∞.

In order to prove our main results, we will invoke the theory in [17] based on

stabilizing random functionals. To this end, we must establish a radius of stabi-

lization result in the case of the spatial Poisson process (also known as the Poisson

point process) of unit intensity on <n (denoted by P). Consider the undirected

K-nearest neighbor graph (a widely studied structure in computational geometry,

see e.g. [16]) with vertices given by

A ∪ {0}

for a set of points A ⊂ <n, where for any r > 0, A ∩ B(0, r) is a finite set with

unique pointwise distances (to ensure that the graph is well-defined); for each point,
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there is an edge between the point and its K nearest neighbors. Closely related to

Equations (5)-(6) with a slightly different perspective, we define

Z lK [A] = {x ∈ A ∪ {0} : the shortest path between x and 0 has at most l edges}.

As an example, the set Z1
K [A] contains the zero vector 0, the K nearest neighbors

of 0 and conversely, the points for which 0 is among the K nearest neighbors. Our

stability result is a variation of Lemma 6.1 in [15] with an adaptation for our slightly

different conceptual framework.

Lemma 6. For any integer l ≥ 1, there exists a random variable R acting as a

radius of stabilization, i.e., associating a positive number with each realization of P

in such a way that almost surely

(40) Z lK [(P ∩B(0, R)) ∪ Y] = Z lK [P]

for all finite point sets Y ⊂ B(0, R)C .

Proof. We define Z0
K [P] = {0} and state the inductive hypothesis that the claim

holds for an integer l ≥ 0 with a radius of stabilization R. For formal correctness,

it should be remarked that in the following, we will take the notational liberty to

denote by P and R fixed realizations of the actual random variables.

Fix a small number 0 < ε < 1 and choose the cones S1, . . . , SL ⊂ <n such that

for all 1 ≤ j ≤ L and x, y ∈ Sj , we have

xT y ≥ (1− ε)‖x‖‖y‖

and ∪Lj=1Sj = <n. For 0 < r1 < r2, we define Sj,r1,r2 = Sj ∩B(0, r2) \B(0, r1).

Without losing generality, we assume that

(41) |Sj,2R,4R ∩ P| ≥ K
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for j = 1, . . . , L. Consider two vectors x ∈ Sj,4R,∞ and y ∈ Sj,2R,4R for some

1 ≤ j ≤ L. Then

‖x− y‖2 − min
z∈B(0,R)

‖x− z‖2

≤ ‖x− y‖2 − (‖x‖ −R)2

≤ −2xT y + 2R‖x‖+ ‖y‖2 −R2

≤ −2(1− ε)‖y‖‖x‖+ 2R‖x‖+ ‖y‖2 −R2

≤ (4ε− 2)R‖x‖+ 3R2 ≤ (16ε− 5)R2 ≤ 0(42)

for all 0 < ε < 5/16 (setting ‖y‖ = 2R to maximize the right side of the third

inequality). Aiming to demonstrate that 12R serves as a radius of stabilization for

Z l+1
K [P], let us consider

A = (P ∩B(0, 12R)) ∪ Y ∪ {0}

for an arbitrary finite set Y ⊂ B(0, 12R)C . Equations (41) and (42) imply that no

point in A located outside B(0, 4R) contains a point in B(0, R) among its K nearest

neighbors. To the other direction, recalling that by construction, we certainly have

|B(0, 4R) ∩ P| ≥ K + 1

ensuring that the K nearest neighbors of the points in B(0, 4R) are contained in

B(0, 12R).

To complete the proof, we observe that Z l+1
K [A] constitutes of the points in

Z lK [A], their K nearest neighbors and the points in A with a K nearest neighbors in

Z lK [A]. We have demonstrated that these are determined by the points in B(0, 4R)

and their K nearest neighbors, which in turn are determined by the points in

B(0, 12R) regardless of Y. We conclude that

Z l+1
K [A] = Z l+1

K [P ∩B(0, 12R)]

establishing 12R as a radius of stabilization for Z l+1
K [P]. �

5.2. Results for Local Random Variables. In this section, we consider func-

tions of the points in the K nearest neighborhood of a given point. More specifically,

we will examine random variables {hN,i}Ni=1 of the form

(43) hN,i = h(XN [i,0], YN [i,0], . . . , XN [i,K], YN [i,K])
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for a fixed measurable function h mapping (<n)K+1 to <.

As a fundamental result of statistics, under general conditions, the standard

deviation of the mean of a sequence of independent identically distributed random

variables approaches zero proportionally to N−1/2. However, if the terms in the

average exhibit a local dependency structure instead of full independence, a more

elaborate analysis is necessary. To prove such results, the Efron-Stein inequality

has turned out to be a convenient tool [6].

Lemma 7. Assume that Assumption (A1) hold with random variables of the form

(43). Then we have

Var

[
1√
N

N∑
i=1

hN,i

]
≤ c

(
E[h2N,1] + E[h2N−1,1]

)
for some constant c > 0 independent of N > K + 1.

Prior to proceeding to the actual proof, we formulate the following restatement

of the Efron-Stein inequality in a form suitable for the proof of Lemma 7. See [1]

for a derivation of the result among other concentration inequalities.

Lemma 8. Let {Zi}Ni=1 be a set of i.i.d. random vectors and for 1 ≤ i ≤ N , define

the random variables

G = gN (Z1, . . . , ZN ) and

Gi = gN−1(Z1 . . . , Zi−1, Zi+1, . . . , ZN ),

where gN and gN−1 are measurable functions taking values in <. Assuming that

the random variables G and Gi are square integrable, we have

Var[G] ≤
N∑
i=1

E[(G−Gi)2].

Proof of Lemma 7. Observe that the random variables hN−1,i (1 ≤ i ≤ N − 1) are

computed using {Xi, Yi}N−1i=1 corresponding to the removal of the N -th observation.

Setting hN−1,N = 0, we observe that for any 1 ≤ i ≤ N ,

(44) hN,i − hN−1,i = 0
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unless

(45) N ∈ {N [i, 0], . . . , N [i,K]}

implying the more general condition

(46) i ∈ NN,1.

Lemma 8, Hölder’s inequality and Equations (44)-(46) imply the following inequal-

ity:

Var

[
1√
N

N∑
i=1

hN,i

]
≤ E

( N∑
i=1

hN,i − hN−1,i

)2
 ≤ E


 ∑
i∈NN,1

|hN,i − hN−1,i|

2


≤ E

|NN,1| ∑
i∈NN,1

(hN,i − hN−1,i)2


≤ 3E

|NN,1| ∑
i∈NN,1

h2N,i + h2N−1,i

 ,

where in the last inequality the fact that (a+ b)2 ≤ 3a2 + 3b2 for any a, b ∈ < was

used. Moreover, by invoking Lemma 2, Lemma 3 and a symmetry argument, we

have

E

|NN,1| ∑
i∈NN,1

h2N,i + h2N−1,i

 ≤ c1E

 ∑
i∈NN,1

h2N,i + h2N−1,i


=
c1
N

E

 N∑
j=1

∑
i∈Nj,1

h2N,i + h2N−1,i


≤ c2
N

E

[
N∑
i=1

h2N,i + h2N−1,i

]
≤ c2E[h2N,1 + h2N−1,1]

for some constants c1, c2 > 0 independent of N . �

Recall that in addition to investigating variance, we also aim to prove asymptotic

normality in the class of estimators covered by our framework. We will attain this

goal by establishing a sufficiently strong central limit theorem for functions of the

form (43). The following lemma demonstrates a local dependency structure alike to

those in [2] and [3], where various local dependency structures were shown to imply
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a central limit theorem together with non-asymptotic bounds on the approximation

error by a normal distribution.

Lemma 9. Assume that the random variables hN,i are of the form (43) and As-

sumption (A1) holds. Conditioning on ΞN and fixing arbitrary l ≥ 0, N > K and

1 ≤ i ≤ N , {hN,j}j∈Ni,l
is independent of {hN,j}j∈{1,...,N}\Ni,l+2

.

Proof. Let {ij}l1j=1 and {̃ij}l2j=1 be two sets of indices in {1, . . . , N}. We consider

conditional independence on the events⋃
j∈Ni,l

Nj,0 = {ij}l1j=1

and ⋃
j∈{1,...,N}\Ni,l+2

Nj,0 = {̃ij}l2j=1

observing that by Equation (6), the two sets of indices must be disjoint. However,

on this event, each random variable in {hN,j}j∈Ni,l
may be represented as

(47) f(Xi1 , Yi1 , . . . , Xil1
, Yil1 )

for a measurable function f and analogously, the random variables in

{hN,j}j∈{1,...,N}\Ni,l+2

take the form

(48) g(Xĩ1
, Yĩ1 , . . . , Xĩl2

, Yĩl2
)

for a measurable function g. The claim of the lemma follows due to the fact that

{Xij , Yij}
l1
j=1

is independent from

{Xĩj
, Yĩj}

l2
j=1.

�

The analogy between Lemma 9 and conditions (LD1)-(LD2) in Section 4.7 of

[2] (alternatively, the results in [3] could be used) provides us the appropriate

tool for a concise proof of conditional asymptotic normality. It should be stressed

that similar results are well-known in the existing literature on local geometry and

nearest neighbors [5].
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Lemma 10. Assume that the random variables hN,i are of the form (43) and

Assumption (A1) holds with

Var

[
1√
N

N∑
i=1

hN,i

∣∣∣∣∣ΞN
]
→ σ2

in probability for some constant σ > 0 when N →∞, while

lim sup
N→∞

E[|hN,1|3] <∞.

Then (in the terminology introduced in Section 2.1) we have the convergence in

distribution

(49)
1√
N

N∑
i=1

hN,i − E [hN,i|ΞN ]→ N(0, σ2)

conditionally on ΞN in the limit N →∞.

Proof. Set

MN =
1√
N

N∑
i=1

hN,i − E [hN,i|ΞN ]

and

σ2
N = Var[MN |ΞN ].

By Lemma 3, we have

lim sup
N→∞

1

N
E

 N∑
i=1

 ∑
j∈Ni,4

|hN,j |

3
 <∞

from which it follows that

(50)
1

σ3
NN

3/2

N∑
i=1

E


 ∑
j∈Ni,4

|hN,j |

3
∣∣∣∣∣∣∣ΞN

→ 0

in probability in the limit N → ∞. In this context, recalling the dependency

structure in Lemma 9 and associating Ni,2 with the sets Ai and Ni,4 with Bi in

Theorem 4.13 of [2] implies the convergence in distribution

P

(
MN

σN
≤ t
∣∣∣∣ΞN)→ Φ(t)

in probability for any fixed t > 0 in the limit N → ∞, where Φ refers to the

cumulative distribution function of the normal distribution of mean zero and unit

variance.
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However, as (by the statement of the lemma) σN → σ in probability, we also

have

P

(
MN

σ
≤ t
∣∣∣∣ΞN)→ Φ(t).

�

5.3. Asymptotic Variance of a Weighted Average of Residuals. In the fol-

lowing, we consider random variables of the form

(51) hN,i =

K∑
j=0

K∑
j′=0

Wi,j,j′rN [i,j]rN [i,j′]

for the weights introduced in (7). It will turn out that (51) is the most important

random variable to examine in the proof of Theorems 2 and 3 after excluding

asymptotically negligible terms.

As a preliminary remark, observe that recalling the notation X̃n in Section 2.1,

b
(1)
l1,l2

and b
(2)
l in Equations (21) and (22) may be considered as bounded (by Lemma

2) scalar functions <n × X̃n 7→ <. As a matter of fact, by depending only on

the positions of the points and not their indexes, the definitions (21) and (22)

uniquely define functions for all arguments (x,Y) ∈ <× X̃n belonging to the range

of (Xi,ΞN ) for some N > K with ΞN viewed as a member of X̃n. This construction

implicitly assumes that x ∈ Y, whereas in the opposite case we simply consider

(x, {x} ∪ Y). Moreover, in the absence of ties, the definition trivially extends to

any (x,Y) ∈ < × X̃n, while in the non-pertinent case of ties we may always define

the value as 0.

Lemma 11. Suppose that Assumptions (A1)-(A2) hold. Then, considering the

random variables in Equation (23),

QN → A1E[σ(X1)4] +A2E[V ′4(X1)]

in mean in the limit N → ∞ with the constants A1 and A2 determined by the

specific form of the functions fj,j′ (0 ≤ j, j′ ≤ K) in Equation (8).

Proof. By the invariance of the weights (9) and (10) together with the fact that

nearest neighbor indices are invariant with respect to scaling and translation, we

have

(52) b
(1)
l1,l2

(x,Y) = b
(1)
l1,l2

(0, a(Y − x))
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for a > 0, x ∈ <n and Y ∈ X̃n with a similar equation for b
(2)
l . Furthermore, the

right side of (52) is invariant to setting a = 1 and letting Y vary in such a way

that Z3
K [Y − x] stays intact. As a matter of fact, the value is determined by the

points in Z2
K [Y − x] and their K nearest neighbors, both of which stay unchanged.

Consequently, Lemma 6 with l = 3 provides the radius of stabilization R as defined

in [17]: for almost all realizations of the spatial Poisson process P and the associated

radius R,

(53) lim
r→∞

b
(1)
l1,l2

(0, B(0, r) ∩ P) = b
(1)
l1,l2

(0, (B(0, R) ∩ P) ∪ Y)

and

(54) lim
r→∞

b
(2)
l (0, B(0, r) ∩ P) = b

(2)
l (0, (B(0, R) ∩ P) ∪ Y)

for all finite sets of points Y ⊂ B(0, R)C .

Employing the radius of stabilization formulated in Equations (53) and (54) in

conjunction with the invariance (52), Assumption (A2) (which ensures the finiteness

of the moments involved) and Theorem 2.1 in [17], we have

QN =
1

N

N∑
i=1

σ(Xi)
4

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN ) + V ′4(Xi)

K∑
l=0

b
(2)
l (Xi,ΞN )


→ A1E[σ(X1)4] +A2E[V ′4(X1)]

in mean in the limit N →∞, where the constants A1 and A2 are defined by

A1 = E

 K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(0,P)

 and

A2 = E

[
K∑
l=0

b
(2)
l (0,P)

]
(55)

for the spatial Poisson process P of unit intensity on <n adopting the notation

b
(1)
l1,l2

(0,P) = lim
r→∞

b
(1)
l1,l2

(0,P ∩B(0, r))

for b
(1)
l1,l2

(0,P) with a similar definition for b
(2)
l (0,P). �

The asymptotic variance for random variables of the form (51) may now be

characterized as follows.
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Lemma 12. Suppose that Assumptions (A1)-(A2) hold and the terms hN,i are of

the form (51). Then, setting N →∞, we have

Var

[
1√
N

N∑
i=1

hN,i

∣∣∣∣∣ΞN
]
→ A1E[σ(X1)4] +A2E[V ′4(X1)]

in mean for the constants A1 and A2 in Lemma 11.

Proof. Observe that by the conditional independence of the residuals,

Cov
[
rN [i,l1]rN [i,l2], rN [j,l3]rN [j,l4]

∣∣ΞN] = 0

unless N [i, l1] = N [j, l3] and N [i, l2] = N [j, l4], or alternatively, N [i, l1] = N [j, l4]

and N [i, l2] = N [j, l3]. Recalling the definition (20), while distinguishing the cases

l1 = l2 and l1 6= l2, a short computation reveals that

1

N
Var

[
N∑
i=1

hN,i

∣∣∣∣∣ΞN
]

=
1

N

N∑
i=1

N∑
j=1

( K∑
l1,l2=0
l1 6=l2

K∑
l3,l4=0
l3 6=l4

(δi,j,l1,l2,l3,l4 + δi,j,l1,l2,l4,l3)σ(XN [i,l1])
2σ(XN [i,l2])

2

+

K∑
l1=0

K∑
l2=0

δi,j,l1,l1,l2,l2V
′
4(XN [i,l1])

)

=
1

N

N∑
i=1

( K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN )σ(XN [i,l1])
2σ(XN [i,l2])

2

+

K∑
l=0

b
(2)
l (Xi,ΞN )V ′4(XN [i,l])

)
.

Due to Lemma 11, the claim follows by observing that the continuity assumptions

stated in Assumption (A1) together with the boundedness of b
(1)
l1,l2

and b
(2)
l allow

us to invoke Lemma 5 to show that

E

[∣∣∣∣ 1

N

N∑
i=1

( K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN )σ(XN [i,l1])
2σ(XN [i,l2])

2

+

K∑
l=0

b
(2)
l (Xi,ΞN )V ′4(XN [i,l])

)
−QN

∣∣∣∣]

≤ c

N

N∑
i=1

E

[(
1 +

K∑
l=0

‖XN [i,l]‖β
)
dβ
′

i,K

]
→ 0
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in the limit N →∞, where c, β and β′ are positive constants independent of N .

�

6. Proofs

6.1. Proof of Theorems 1, 2 and 3. Reflecting different aspects of common as-

ymptotic considerations, the proofs of our three main results will be jointly demon-

strated. For notational brevity, we introduce the notation

(56) ∆i,j = m(Xi)−m(Xj)

and decompose the residual variance estimator (7) as

SN = R1 +R2 +R3,(57)

where, applying Equations (9) and (10), we have

R1 =
1

N

N∑
i=1

K∑
j=0

K∑
j′=0

Wi,j,j′rN [i,j]rN [i,j′],

R2 =
1

N

N∑
i=1

K∑
j=0

K∑
j′=0

Wi,j,j′m(XN [i,j])rN [i,j′]

+
1

N

N∑
i=1

K∑
j=0

K∑
j′=0

Wi,j,j′rN [i,j]m(XN [i,j′])

=
1

N

N∑
i=1

K∑
j=0

K∑
j′=0

Wi,j,j′∆N [i,j],irN [i,j′]

+
1

N

N∑
i=1

K∑
j=0

K∑
j′=0

Wi,j,j′rN [i,j]∆N [i,j′],i and

R3 =
1

N

N∑
i=1

K∑
j=0

K∑
j′=0

Wi,j,j′m(XN [i,j])m(XN [i,j′])

=
1

N

N∑
i=1

K∑
j=0

K∑
j′=0

Wi,j,j′∆N [i,j],i∆N [i,j′],i.

In order to verify Theorem 1, we will examine E[R1], E[R2] and E[R3]. The more

challenging task of providing the asymptotic formulas (18) and (19) is achieved by

first establishing the asymptotic negligibility result

(58) NVar[R2] +NVar[R3]→ 0
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and consequently,

(59)

NVar[E [R2|ΞN ]] +NVar[E [R3|ΞN ]] +NE[Var[R2|ΞN ]] +NE[Var[R3|ΞN ]]→ 0

in the limit N →∞. Observe that by Equation (58)

lim sup
N→∞

NVar[E [R1|ΞN ]] <∞

implies that

E[|Var[SN |ΞN ]−Var[R1|ΞN ]|] ≤ E[|(SN − E [SN |ΞN ])2 − (R1 − E [R1|ΞN ])2|]

≤ E[Var[R2 +R3|ΞN ]]

+ 2
√

E[Var[R1|ΞN ]]
√

E[Var[R2 +R3|ΞN ]]→ 0

and

NVar[E [SN |ΞN ]]−NVar[E [R1|ΞN ]]→ 0

in the limit N → ∞. Consequently, once Equation (58) has been proven to hold,

it will remain to consider the terms Var[E [R1|ΞN ]] and Var[R1|ΞN ].

Concerning E[R1], by the properties of conditional expectations together with

the independence of the residuals, we have

E [R1|ΞN ] =
1

N

N∑
i=1

K∑
j=0

K∑
j′=0

Wi,j,j′E
[
rN [i,j]rN [i,j′]

∣∣ΞN]
=

1

N

N∑
i=1

K∑
j=0

Wi,j,jσ(XN [i,j])
2

=
1

N

N∑
i=1

σ(Xi)
2 +

1

N

N∑
i=1

K∑
j=0

Wi,j,j(σ(XN [i,j])
2 − σ(Xi)

2),(60)

where, the weights Wi,j,j′ being bounded, Lemma 5 and Equation (9) yield

(61)
1

N

N∑
i=1

K∑
j=0

Wi,j,j(σ(XN [i,j])
2 − σ(Xi)

2)→ 0

in mean in the limit N → ∞ keeping in mind that σ(x)2 is a continuous function

in the sense of Equation (4).

To advance further towards a proof of Theorem 1, we observe that by the prop-

erties of conditional expectations,

E[R2] = E[E [R2|ΞN ]] = 0.
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Moreover, we impose Jensen’s inequality as follows:

E


 K∑
j=0

K∑
j′=0

Wi,j,j′∆N [i,j],irN [i,j′]

2
∣∣∣∣∣∣∣ΞN


≤ K3E

 K∑
j=0

K∑
j′=0

W 2
i,j,j′∆

2
N [i,j],ir

2
N [i,j′]

∣∣∣∣∣∣ΞN


≤ K3

(
max

1≤j,j′≤K
W 2
i,j,j′

)
E

 K∑
j=0

r2N [i,j]

∣∣∣∣∣∣ΞN
 K∑

j=0

∆2
N [i,j],i


≤ c1

1 +

K∑
j=0

‖XN [i,j]‖β
 dβ

′

i,K

for some positive constants c1, β and β′ independent of N and 1 ≤ i ≤ N with an

analogous derivation for the other terms present in R2 and R3. Lemmas 5 and 7

then imply that Equation (58) holds and E[R3]→ 0 in the limit N →∞ finalizing

the proof of Theorem 1.

Having demonstrated the negligibility of R2 and R3 both in terms of expecta-

tions and variances, we proceed towards determining the asymptotic behaviour of

Var[E [R1|ΞN ]] and Var[R1|ΞN ]. Observing that since by Lemmas 5 and 7, there

exists a positive number c2 ≥ 0 with

lim sup
N→∞

Var

 1√
N

N∑
i=1

K∑
j=0

Wi,j,j(σ(XN [i,j])
2 − σ(Xi)

2)


≤ c2 lim sup

N→∞
E


 K∑
j=0

W1,j,j(σ(XN [1,j])
2 − σ(X1)2)

2
 = 0,(62)

we may make use of Equation (60) to establish the limit

NVar[E [R1|ΞN ]]→ Var[σ(X1)2],

while by Lemma 12,

(63) NVar[R1|ΞN ]→ A1E[σ(X1)4] +A2E[V ′4(X1)]

in mean for some constants A1 and A2 determined by n and the specific form of the

residual variance estimator completing the proofs of the limits (18) and (19). To
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address the proof of Theorem 3, we observe that Lemma 12 also implies the limit

QN → A1E[σ(X1)4] +A2E[V ′4(X1)]

in mean when N →∞.

In order to establish the asymptotic normality required in Theorem 2, we observe

that

√
N(R1 − E[R1]) =

√
N(R1 − E [R1|ΞN ]) +

√
N(E [R1|ΞN ]− E[R1])

=
√
N(R1 − E [R1|ΞN ]) +

1√
N

N∑
i=1

(σ(Xi)
2 − E[σ(X1)2]) + Ξ,(64)

where by Equations (60) and (62), the term

Ξ =
√
N(E [R1|ΞN ]− E[R1])− 1√

N

N∑
i=1

(σ(Xi)
2 − E[σ(X1)2])

is asymptotically negligible due to the fact that

E[Ξ2] = Var

 1√
N

N∑
i=1

K∑
j=0

Wi,j,j(σ(XN [i,j])
2 − σ(Xi)

2)

 .

Let us introduce the notations

ZN =
√
N(R1 − E [R1|ΞN ])

and

Z ′N =
1√
N

N∑
i=1

σ(Xi)
2 − E[σ(X1)2].

Taking into account that the addends in ZN certainly possess bounded third mo-

ments, Equation (63) and a representation of Lemma 10 in terms of characteristic

functions yield

(65) E
[
eitZN

∣∣ΞN ]→ e−
1
2 (A1E[σ(X1)

4]+A2E[V ′4 (X1)])t
2

for any t ∈ < in probability when N → ∞. Moreover, since Z ′N is asymptotically

(unconditionally) normally distributed by the standard central limit theorem, the

asymptotic normality of (64) follows from

E
[
eit(ZN+Z′N )

]
= E

[
E
[
eitZN

∣∣ΞN] eitZ′N ]
by invoking the limit (65) as the convergence in probability suffices in this case due

to the boundedness of characteristics functions.
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6.2. Proof of Theorem 4. Theorem 3 implicitly implies that

QN − E[QN ]→ 0

in mean in the limit N → 0. For our proof, it thus suffices to show that

(66) Q̂N −QN → 0

in mean in the limit N →∞.

We recall the definition (56) and introduce the further notations

(67) δi,j = ri − rj

and

(68) Si = V̂ 2
2,i

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN ).

Assuming without losing generality that K ≥ 3 to ensure that

(69) ‖XNaux[N [i,2],i] −XN [i,2]‖ ≤ ‖XN [i,3] −XN [i,2]‖ ≤ 2di,K

and

(70) {i,N [i, 1], N [i, 2], Naux[N [i, 2], i]} ⊂ Ni,1

for 1 ≤ i ≤ N , consider the first term in the right side of Equation (27),

1

N

N∑
i=1

Si =
1

4N

N∑
i=1

δ2N [i,1],iδ
2
Naux[N [i,2],i],N [i,2]

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN ) +R,(71)

where, by Equations (69) and (70) together with the boundedness of the random

variables in Equations (21) and (22) (guaranteed by Lemma 2), the residual term

is bounded by

|R| ≤ c1
N

N∑
i=1

(
sup

x,y∈B(Xi,2di,K)

|m(x)−m(y)|

) ∑
j∈Ni,1

|m(Xj)|+ |rj |

3

for a constant c1 > 0 independent of N . In this context, Lemma 5 together with

the continuity requirement in Assumption (A1) ensures the asymptotic negligibility

E[|R|]→ 0

in the limit N →∞.
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Concerning the first term in the right side of (71), introducing the notation

Υi = (σ(Xi)
2 + σ(XN [i,1])

2)(σ(XN [i,2])
2 + σ(XNaux[N [i,2],i])

2),

we have

E
[
δ2N [i,1],iδ

2
Naux[N [i,2],i],N [i,2]

∣∣∣ΞN] = Υi,

whereas by Assumption (A1) and Lemma 5,

1

4N

N∑
i=1

Υi

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN )− 1

N

N∑
i=1

σ(Xi)
4

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN )→ 0

in mean in the limit → ∞. Putting the preceding logical steps together, we have

shown that

(72) E

[
1

N

N∑
i=1

Si

∣∣∣∣∣ΞN
]
− 1

N

N∑
i=1

σ(Xi)
4

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN )→ 0

in mean in the limit N →∞.

By the independence of the observations and Equation (70),

Cov [Si,Sj |ΞN ] = 0

unless j ∈ Ni,2. Based on this observation, the inclusion (70) and Lemma 2, we

have

E

[
Var

[
1√
N

N∑
i=1

Si

∣∣∣∣∣ΞN
]]

= E

Cov

S1, ∑
i∈N1,2

Si

∣∣∣∣∣∣ΞN
 ≤ E

 ∑
i∈N1,2

S21 + S2i


≤ c2E

 ∑
i∈N1,3

Y 8
i

 ≤ c3E[Y 8
1 ] <∞(73)

for some constants c2, c3 > 0 independent of N , where we have used the fact that

for any indices i1, . . . , i8 ∈ N1,3, the inequality

8∏
j=1

Yij ≤
∑
i∈N1,3

Y 8
i

holds, while when expanding the terms S21+S2i in the right side of the first inequality

in (73), the output variables appear as products of such form. Taking into account
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Equation (72), this establishes the limit

1

N

N∑
i=1

Si −
1

N

N∑
i=1

σ(Xi)
4

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN )→ 0

in mean in the limit N →∞.

The proof for the expectation of the second term in Q̂N is analogous by consid-

ering that we may decompose in a similar fashion to Equation (71):

1

N

N∑
i=1

V̂ ′4,i

K∑
l=0

b
(2)
l (Xi,ΞN )

=
1

N

N∑
i=1

(
4∏
l=1

δN [i,l],i −
1

4
δ2N [i,1],iδ

2
Naux[N [i,2],i],N [i,2]

)
K∑
l=0

b
(2)
l (Xi,ΞN ) + o(1),

where o(1) denotes an asymptotically negligible residual term and

E

[(
4∏
l=1

δN [i,l],i −
1

4
δ2N [i,1],iδ

2
Naux[N [i,2],i],N [i,2]

)
K∑
l=0

b
(2)
l (Xi,ΞN )

∣∣∣∣∣ΞN
]

=

(
V4(Xi)−

1

4
Υi

) K∑
l=0

b
(2)
l (Xi,ΞN ).

The second part of the theorem, establishing the limit (29), is essentially included

in the first part of the proof setting

K∑
l1,l2=0
l1 6=l2

b
(1)
l1,l2

(Xi,ΞN )

equal to 1.
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[12] Elia Liitiäinen. Advances in the Theory of Nearest Neighbor Distributions. PhD thesis, Aalto

University School of Science and Technology, 2010.
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