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Michaelis-Menten theory

The Michaelis-Menten reaction models the kinetics of

enzyme E reacting with substrate S to form complex ES
and release product P and the enzyme:

E + S
k1


k−1

ES
k2


k−2

E + P.

In this analysis, it is assumed that:

There is a single molecule enzyme in eitherE orES form
and the number of molecules of S and P is large enough
to not be affected by the reaction.

The reactions are modeled as random interactions in an

environment at temperature T in contact with a thermal
reservoir which is assumed to be in equilibrium.9

Figure 1. Figure adapted from Seifert (2010),9 where the solution is

composed by substrate (filled circle), product (empty circle) and single

enzyme (red square). The single enzyme interacts with the solution and

changes its state.

The system consists of nE molecules of E and nES

molecules of ES, being the system states {x ∈ X |x =
(xi, xi′)} with X = {0, ..., nE}×{0, ..., nES}.

The evolution of the system is modeled as a Markov jump

process between states x whose probability px(t) solves
the following master equation10,3

dpx(t)
dt

=
∑
X

Wxx′px′(t) − Wx′xpx(t) (1)

Wxx′(kν) is the probability transition rate from a state x′

to state x, it depends on the kinetics, and it is an element
of the |X | × |X | rate transition matrix W equal to:5

−
∑

ν

aν(x, kν)δ(x − x′) + aν(x − sν, kν)δ(x − x′ + sν),

where the following terms were defined:

- aν(x, kν) =
∏

xi∈x kν

xi!
(xi − si,ν)!

is the propensity function

for the ν-th reaction with rate kν;

- Sν = (si,ν, si′,ν) is the change in the number ofmolecules
of xi ∈ x participating in the ν-th reaction;
- δ(x) = 1 only if x ≡ (0, 0), otherwise is 0.

Considering the systemwith nE +nES = 1, it can be verified
that the states (0, 0) and (1, 1) have no transitions coming
to or leaving them, thusW can be reduced to 2 × 2 and set
px(t) = 0 for those states.

Stochastic Thermodynamics (ST)

The energy transfer in systems modeled at the

mesoscopic scale with stochastic dynamics which are

open and out-of-equilibrium is the subject of Stochastic

Thermodynamics.6,2

Systems at equilibrium are reversible, i.e. the transition

x → x′ occurs with rate Wxx′, and its reversed transition

x′ → x has the rate Wx′x = Wxx′.

At nonequilibrium a system is kept at steady-state by

exchanging an entropy to the reservoir (local detailed

balance, LDB) which is proportional to ln(Wxx′/Wx′x).4

The transition x′ → x exchanges with the reservoir an
amount of entropy equal to

sflu
x′→x = kBT ln Wxx′

Wx′x
. (2)

In the same transition, the system produces an amount

of entropy equal to

sprod
x′→x = kBT ln Wxx′px′(t)

Wx′xpx(t)
.

The entropy balance during the transition is

sbal
x′→x = kBT ln

px′(t)

px(t)
.

which is equal to sprod
x′→x − sflu

x′→x.

The average of (2) over the probability of the system to

transition to x gives the average entropy flux rate:6

Ṡflu = kBT
1
2
∑
x6=x′

[Wxx′px′(t) − Wx′xpx(t)] ln Wxx′

Wx′x

The average entropy production rate and the average

entropy balance rate8 are, respectively:

Ṡprod = kBT
1
2
∑
x 6=x′

[Wxx′px′(t) − Wx′xpx(t)] ln Wxx′px′(t)
Wx′xpx(t)

;

Ṡbal = kBT
1
2
∑
x 6=x′

[Wx′xpx(t) − Wxx′px′(t)] ln px′(t)
px(t)

.

The nonequilibrium free energy F (t) is the information I
needed to specify the nonequilibrium system at time t1

F (t) − F eq = kBTI(t) ≡ kBTDKL(p(t)||peq) (4)

where F eq is the time-independent equilibrium free energy.

DKL is the Kullback-Leibler divergence measuring the

“difference” between the nonequilibrium probability p(t)
and the equilibrium probability peq, mathematically:

DKL(p(t)||peq) =
∑
X

px(t) ln px(t)
peq

x
.

The nonequilibrium free energy rate is given by the

derivative of (4) with respect to time

Ḟ (t) = kBT
∑
x 6=x′

[Wxx′px′(t) − Wx′xpx(t)] ln px(t)
peq

x
.

Results

Figure 2. Single trajectory of the Markov jump process for the

Michaelis-Menten with k1 = 0.5, k−1 = 0.005, k2 = 0.1 and k−2 ≈ 0.0,
and entropy exchange/balance/production for that trajectory.

Figure 3. Time evolution of the probability of the states of the system,

pE and pES, and the probability of the states for the system in

equilibrium, peq
E and peq

ES.

Figure 4. Average entropy flux rate, average entropy production rate,

free energy rate and average entropy balance rate.

Some conclusions are:

The system relaxes to the equilibrium and, once there, it

stabilizes at reservoir properties (e.g. intensive quantities

as temperature, chemical potential, etc.);

The nonequilibrium free energy of the system is greater

than the equilibrium one, thus indicating thatwork can be

exchanged between the system and the reservoir before

it gets equilibrated;

To sustain the nonequilibrium, work must be applied to

the system, which is object of future investigations;

The evaluation of the quantities sprod, sbal, their respective

average rates Ṡflu, Ṡprod, and Ṡbal is only possible because

of the numerical solution of (1), which is hard to solve for

systemswith large number of particles. The conventional

approach is to use Gillespie algorithm to obtain an

ensemble of trajectories;

Future explorations are needed to compare the results of

the entropies evaluatedwith the ensemble of trajectories

and the numerical integration of (1).
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