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Modern cyber-physical systems are usually comprised of multiple subsystems operated by local self-
interested decision-making agents. The inherent large-scale and distributed nature of most applications,
together with information asymmetry, render the centralized approach to controller design not applica-
ble. Dynamic game theory provides a framework for determining competitive equilibria (e.g., the Nash
equilibrium [1, 2]) which provide locally optimal, yet strategically stable, operating conditions for each
non-cooperative agent. However, the computation of a Nash equilibrium is a challenging task, except for
specific problems [3]. In particular, potential games characterise a broad class of problems for which a
Nash equilibrium can be obtained efficiently using Best-Response Dynamics (BRD) algorithms [4, 5]. In
dynamical settings, BRD methods are mostly studied for computing open-loop Nash equilibria, where the
strategy of each player depends only on the initial state of the game. The design of numerical routines
for obtaining closed-loop equilibria, where agents react to changes in the game state, is still under active
research.

In this work, we present a method towards the computation of closed-loop ε-Nash equilibria of dynamic
potential games. We restrict ourselves to affine-quadratic difference games. Leveraging the recent System
Level Synthesis approach (SLS, [6]), we propose a BRD algorithm in which the agents iteratively update
their strategies by optimizing system responses from the other players’ actions. By parameterizing all
stabilizing controllers, these system responses can then be used to reconstruct a state-feedback control
strategy for each player. Due to its closed-loop nature, the resulting strategy profiles allow the agents
to simultaneously react to perturbations on the game state. Additionally, the method allows to enforce
desirable structures to each controller (e.g., spatiotemporal information patterns), without changing the
structure of the game. We demonstrate the behaviour of this method on illustrative examples.
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