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Abstract: We present a structural analysis of a class of activated sludge process models that
include the dynamics and measurements describing greenhouse gas emissions. For the task,
we mapped the state-space model of the process onto a complex network in which stability,
controllability, and observability are studied from a structural perspective: That is, without a
reference to any specific linearisation. Both weak and strong conditions are evaluated for this
largely under-actuated and under-observed system with 280 state variables, 13 controls and 20
disturbances, and 33 output measurements. We show that the model is i) stable for almost all
possible realisations of the dynamics, ii) full-state controllable in a weak structural sense but
not in a strong sense, and iii) not full-state observable, for any realisation of the state-space.
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1. INTRODUCTION

We are interested in the emissions of greenhouse gases
(GHG), such as carbon dioxide (CO2), nitrous oxide
(N2O), and methane (CH4) from wastewater treatment
plants (WWTPs). In WWTPs, such gases can be gener-
ated directly from the biochemical processes and indirectly
from energy consumption (Huang et al., 2020). Focusing
on direct emissions, long-term online monitoring of GHG
from WWTPs shows that N2O alone contributes 86% of
total GHG emissions, while CH4 and fossil CO2 contribute
13% and about 1%, respectively (Kosonen et al., 2016).

Approaches from systems analysis based on control and
optimisation are at the forefront of the technological ad-
vancements that aim at containing GHG emissions from
WWTPs. Model-based approaches relying on mechanistic
descriptions of wastewater treatment processes offer op-
portunities to understand the relationships existing be-
tween water and sludge fluxes, operational practices, as
well as their connection with GHG emissions (Lu et al.,
2023). In this context, Benchmark Simulation Models
(BSMs), the reference platforms commonly used to de-
scribe the operation of the units in a typical WWTPs
(Gernaey et al., 2014), have been widely applied for the
development and verification of control-oriented strategies
that address traditional WWTPs objectives. The exten-
sions of the BSM family to include GHG emissions (from
the first efforts by Flores-Alsina et al. (2011), to the recent
improvements related to the dynamics of N2O (Chen et al.,
2020)) opens these models to more contemporary tasks.

⋆ This work was done for the project Control4Reuse (IC4WATER
programme - Water Challenges for a Changing World, Water JPI).

In this work, we focus on the activated sludge process
(ASP), as one of the main contributors of GHG inWWTPs
(Huang et al., 2020). We investigate stability, controlla-
bility and observability properties of the ASP from the
perspective of the biological process model by Guo and
Vanrolleghem (2014). For the task, we mapped the system
onto a complex network in which we studied the properties
of the model from a classical and a structural point of view.

2. ASP WITH GHG EMISSIONS: PROCESS MODEL

We consider a conventional ASP for the removal of or-
ganic matter and nutrients from an influent wastewater.
Specifically, we consider a process consisting of a series
of five biological reactors followed by a secondary settler
(Figure 1). Influent wastewater flows through the first two
reactors kept in near-anoxic conditions and then through
the last three rectors, which are kept in aerobic conditions
by insufflating air. Wastewater from the fifth reactor is
then feed to the settler, where solids are separated by sed-
imentation. Mixed-liquor from the fifth reactor and sludge
from the settler are recirculated into the first reactor.

Nitrogen removal occurs by converting the influent ammo-
nium (NH4) into molecular nitrogen (N2). This conversion
is obtained by microbiological nitrification and denitrifi-
cation mechanisms. The first mechanism can be described
by a sequence of two aerobic reactions: the oxidation of
ammonium into nitrite (NO2) by ammonium-oxidation
bacteria, and the oxidation of nitrite into nitrate (NO3)
by nitrite-oxidation bacteria. The second mechanism con-
sists in four anoxic reactions, conducted by different het-
erotrophic bacteria, which reduce nitrate and nitrite into



Fig. 1. The activated sludge plant.

molecular nitrogen and generate NO2, nitric acid (NO),
and nitrous oxide (N2O) as intermediate products.

The dynamics of the five bioreactors are described by an
extended Activated Sludge Model no. 1 (ASM1, Henze
et al. (2006)) with i) a two-step nitrification and a four-
step denitrification mechanism (Hiatt and Grady, 2008)
and ii) the ASM1G addition (Guo and Vanrolleghem,
2014) to account for GHG emissions. By considering the
effect of dissolved oxygen in the formation of N2O, the
ASM1G modifies the role of ammonium-oxidation bacteria
in the denitrification mechanism. For the settler, the
double exponential settling velocity function by Takács
et al. (1991) is used for the 10-layer settling model.

Each r-th reactor (r ∈ {R1, . . . , R5}) consists of 18 state

variables, x(r) and two controls u(r) = (KLa
(r), Q

(r)
EC)

T

(the oxygen transfer coefficient and external carbon flow-
rate). Each s-th layer (s ∈ {S1, . . . , S10}) of the settler is
described by 19 state variables, x(s). In addition to the
u(r), the plant is also operated through three additional
controls: Internal and external recycle flow-rates (QA and
QR), and wastage flow-rate QW . The system is subject to
20 disturbances: The influent temperature T and flow-rate
QIN and its concentrations x(IN) entering the first reactor.

The set of state variables in the reactors and settler is
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As for the sensors, we consider the set of measurements
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reactor, the concentrations of the effluent (from the top
layer, S10, of the settler) and the gas emissions in terms of
carbon dioxideGCO2

and nitrous oxideGN2O. Collectively,
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According to Flores-Alsina et al. (2011), GCO2
is assumed

to be generated by the endogenous respiration of biomass
and by nitrification and denitrification, while GN2O is only
generated during nitrogen removal. As such, these concen-
trations can be expressed as functions of the state variables
and disturbances (quality of the influent wastewater). As

for the oxygen demands and total nitrogen in the effluent,
usual state-output (Henze et al., 2006)) relations are used
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In state-space form, the process model can be written as

ẋ(t) = f(x(t), u(t), w(t)|θx); (1a)

y(t) = g(x(t), w(t)|θy), (1b)

with state variables x(t) = (x(R1), . . . , x(R5), x(S1), . . . ,

x(S10)) ∈ RNx

≥0 , controls u(t) = (u(R1), . . . , u(R5), QA, QR,

QW ) ∈ RNu

≥0 , disturbances w(t) = (T,QIN , x(IN)) ∈ RNw

≥0 ,

and measurements y(t) = (y(R1), . . . , y(R5), SS10

NO2
, SS10

NO3
,

SS10

NH , BODS10
5 , CODS10 , NS10

TOT , GCO2
, GN2O) ∈ RNy

≥0 , at

time t. The parameters are θ = (θx, θy) ∈ RNp

≥0. The model

thus consists of Nx = (18 × 5) + (19 × 10) = 280 state
variables, Nu = (2×5)+3 = 13 controls, Nw = 2+18 = 20
disturbances, and Ny = (5× 5) + 8 = 33 outputs.

3. STRUCTURAL DYNAMICS: PRELIMINARIES

The general state-space representation of a deterministic
and time-homogeneous control system is given as

ẋ(t) = f(x(t), u(t), w(t)|θx); (2a)

y(t) = g(x(t), u(t), w(t)|θy). (2b)

The pair of functions f(·) and g(·) respectively describe
how the state x(t) ∈ X ⊆ RNx evolves in time and how
it is emitted to form the measurements y(t) ∈ Y ⊆ RNy ,
given its value at time t and a set of controllable and non-
controllable inputs u(t) ∈ U ⊆ RNu and w(t) ∈ W ⊆ RNw .
The potentially non-linear and time-varying functions are
parametrised by the fixed vector θ = (θx, θy) ∈ P ⊆ RNp .

For the structural analysis, we consider the representation

ẋ(t) = Ax(t) +Bu(t) + Ew(t) (3a)

y(t) = Cx(t) +Du(t) + Fw(t) (3b)

with matrices A ∈ RNx×Nx , B ∈ RNx×Nu , and E ∈
RNx×Nw , and C ∈ RNy×Nx , D ∈ RNy×Nu and F ∈
RNy×Nw are only known in a structural sense: That is,
we only know whether their entries are zeros or non-zeros
but potentially unknown (Reinschke, 1988). The structural
system (A,B,E,C,D, F ) is defined from the Jacobians of
f(·) and g(·): ∂f/∂x, ∂f/∂u, ∂f/∂w, and ∂g/∂x, ∂g/∂u,
and ∂g/∂w. Evaluating the Jacobians at specified points
(x, u, w)SS leads to linear time-invariant approximations
(LTI), with the known matrices A, B, E, C, D, and F .

3.1 Classical properties

For LTI systems, stability (Callier and Desoer, 1991) is a
property of the system verified from the state matrix A:



Theorem 1. (Stability, LTI) Let Σ(A) be the spectrum of
A, with distinct eigenvalues {λi} and multiplicities {ν(λi)}

• The system is asymptotically stable IFF for any λi ∈
Σ(A), we have that Re(λi) < 0;

• The system is stable IFF for any λi ∈ Σ(A), we have
Re(λi) ≤ 0 and IFF for some λi ∈ Σ(A) such that
Re(λi) < 0 we have that ν(λi) = 1;

Similarly, controllability and observability can be verified
using the usual conditions (Kalman, 1963; Hautus, 1969):

Lemma 2. (Controllability, LTI) The statement ‘the pair
(A,B)’ is controllable is equivalent to the statements

rank(C) = Nx; (4a)

det(Wc(t)) ̸= 0, ∀t > 0; (4b)

rank([λI −A B]) = Nx, ∀λ ∈ C; (4c)

rank([λiI −A B]) = Nx, ∀λi ∈ σ(A) ⊂ C. (4d)

C ∈ RNx×NxNu is the controllability matrix C =[
B AB A2B · · · ANx−1B

]
, Wc(t) ∈ RNx×Nx is the con-

trollability Gramian Wc(t) =
∫ t

0
eAτBBT eA

T τdτ .

Lemma 3. (Observability, LTI) The statement ‘the pair
(A,C)’ is controllable is equivalent to the statements

rank(O) = Nx; (5a)

det(Wo(t)) ̸= 0, ∀t > 0; (5b)

rank(
[
λI −AT CT

]T
) = Nx, ∀λ ∈ C; (5c)

rank(
[
λiI −AT CT

]T
) = Nx, ∀λi ∈ σ(A) ⊂ C. (5d)

O ∈ RNyNx×Nx is the observability matrix O =[
CT ATCT (AT )2CT · · · (AT )Nx−1CT

]T
,Wo(t) ∈ RNx×Nx

is the observability Gramian Wo(t) =
∫ t

0
eA

T τCTCeAτdτ .

Controllability and observability are binary properties.
When verified, a number of energy-based metrics can be
used to quantify control and measurement efforts from the
Gramians (Pasqualetti et al., 2014). These notions were
extended by Summers et al. (2016) to quantify control
(measurement) efforts for single controls (sensors) directly
actuating on (measuring) individual state variables.

3.2 Structural properties

System (2) can be studied from a graph of the relations be-
tween its variables. This is done by mapping the structural
subsystem (A,B,C) in Eq. (3) onto the directed graph
G = (V, E), with vertex set V = VA ∪ VB ∪ VC (union
of vertex sets VA = {x1, . . . , xNx

}, VB = {u1, . . . , uNu
},

VC = {y1, . . . , yNy
}, and edge set E = EA ∪ EB ∪ EC (the

union of edge sets EA = {(xnx
, xn′

x
)|An′

x,nx
̸= 0}, EB =

{(unu
, xnx

)|Bnx,nu
̸= 0}, EC = {(xnx

, yny
)|Cny,nx

̸= 0}).

Structural stability: For a structural system (A,B,C),
structural stability guarantees that if some known matrix
Ā is stable, then all systems whose matrix A is structurally
equivalent to A are also stable, for almost all possible
values of its non-zero entries (Belabbas, 2013). This notion
depends on the structural equivalence of two matrices.

Definition 4. (Structural equivalence, Reinschke (1988))
Matrix A and Ā are structurally equivalent if they have the
same dimension and if each entry An′

x,nx of A is non-zero

whenever the corresponding entry Ān′
x,nx of Ā is non-zero.

Structural stability can be determined (Belabbas, 2013)
from the directed subgraph GA = (VA, EA) ⊆ G in terms of

existence of a Hamiltonian decomposition {Gng
⊂ G}Ng

ng=1

in disjoint subgraphs Gng
= (Vng

, Eng
), with ∩ng

Gng
= ∅.

Each subgraph Gng
must also admit a Hamiltonian cycle.

Structural stability of A is determined from the conditions:

Theorem 5. (Structural stability) Matrix A is structurally
stable if it has a directed graph representation GA where

• Necessary condition: GA admits a Hamiltonian sub-
graph with ng vertices, for each ng = 1, . . . , Nx;

• Sufficient condition: GA contains the nested Hamilto-
nian subgraphs, G(1) ⊂ · · · ⊂ G(ng) ⊂ · · · ⊂ GA.

Structural controllability and observability: (A,B,C) is
structurally controllable (respectively, observable) if it is
possible to verify the property for all possible (Ā, B̄, C̄)
such that (A,B) ((A,C)) has an equivalent structure
to (Ā, B̄) (respectively, (Ā, C̄)) (Lin, 1974). The pairs
(A,B) and (Ā, B̄) are structurally equivalent if A is
structurally equivalent to Ā and B to B̄. The same
holds for the structural equivalence of (A,C) and (Ā, C̄).
The pair (A,B) ((A,C)) is then structurally controllable
(observable) if the non-zeros of A and B (C) can be set in
such a way that the resulting LTI system is controllable
(observable). Formally, we have the definitions

Definition 6. (Controllability, structural) The pair (A,B)
is structurally controllable IFF for some ε > 0, there exists
a controllable pair (Ā, B̄) that is structurally equal to
(A,B) and such that ||Ā−A|| < ε and ||B̄ −B|| < ε.

Definition 7. (Observability, structural) The pair (A,C) is
structurally observable IFF for some ε > 0, there exists an
observable pair (Ā, C̄) that is structurally equal to (A,C)
and such that ||Ā−A|| < ε and ||C̄ − C|| < ε.

Structural controllability of (A,B) can be assessed from
properties of directed subgraph GAB = (VAB , EAB) ⊆ G
VAB = VA ∪ VB = {x1, . . . , xNx

} ∪ {u1, . . . , uNu
} (6a)

EAB = EA ∪ EB (6b)

= {(xnx
, xn′

x
)|An′

x,nx
̸= 0} ∪ {(unu

, xnx
)|Bnx,nu

̸= 0}

Theorem 8. (Controllability, structural) The pair (A,B)
is said to be structurally controllable if it has a digraph
representation GAB such that the two conditions hold

• (Accessibility) For each vertex xnx
∈ VA, there exists

a path from at least a vertex unx
∈ VB to xnx

;
• (Dilation-free) For all subsets S ⊆ VA of state ver-

texes, there exists a set Tin(S) = {vi ∈ VAB |
(vi, vj) ∈ EAB ∧ vj ∈ S} of S such that |Tin(S)|≥ |S|.

Accessibility for GAB can be verified with any graph search
algorithm (Cormen et al. (2009)). For a graph without
isolated state vertices, the dilation-free can be verified
using the approach by Commault et al. (2002) based on
the bipartite graph K = (V+ ∪ V−,Γ), where V+ and V−

are two disjoint sets of vertices, V+ = {x+
1 , x

+
2 , . . . , x

+
Nx

}∪
VB and V− = {x−

1 , x
−
2 , . . . , x

−
Nx

}. The edge set Γ of

directed edges from the vertices in V+ to the vertices in
V− is defined based on GAB , in such a way that Γ =
{(x+

nx
, x−

n′
x
)|(xnx , xn′

x
) ∈ EAB} ∪ {(unu , x

−
nx
)|(unu , xnx) ∈

EAB}. If K has a set of edges in which none of its elements



share a common vertex, a condition denoted as matching,
with a cardinality equal to Nx, then GAB has no dilations.

Structural observability of (A,C) can be verified, by dual-
ity, from the directed graph GAC = (VAC , EAC) ⊆ G,

VAC = VA ∪ VC = {x1, . . . , xNx} ∪ {y1, . . . , yNy} (7a)

EAC = EA ∪ EC (7b)

= {(xnx
, xn′

x
)|An′

x,nx
̸= 0} ∪ {(xnx

, yny
)|Cny,nx

̸= 0}

Theorem 9. (Observability, structural) The pair (A,C) is
said to be structurally observable if it has a digraph
representation GAC such that the two conditions hold

• (Accessibility) For each vertex xnx
∈ VA, there exists

at least one path from xnx
to an vertex ynx

∈ VC

• (Contraction-free) For all subsets S ⊆ VA of state
vertexes, there exists a set Tout(S) = {vj ∈ VAC |
(vi, vj) ∈ EAC ∧vi ∈ S} of S such that |Tout(S)|≥ |S|.

Accessibility and contraction-free for GAC can be verified
using graph search and matching algorithms (Cormen
et al., 2009; Commault et al., 2002). By duality, (A,C)
is observable if and only if (AT , CT ) is controllable.

The notions and criteria of structural controllability (ob-
servability) cannot guarantee that all numerical realisa-
tions of (A,B,C) are controllable (observable) in the clas-
sical sense; There may exist numerical values of the non-
zeros for which the system is not controllable (observable).
Mayeda and Yamada (1979) introduced notions and crite-
ria of strong structural controllability and observability:

Definition 10. (Strong controllability and observability,
structural) For the structural system (A,B,C), we have:

• The pair (A,B) (respectively, (A,C)) is strongly con-
trollable (observable) if any structurally equivalent
realisation (Ā, B̄) of the pair (A,B) (respectively,
equivalent realisation (Ā, C̄) of the pair (A,C)) is
controllable (observable) in the classical sense.

Strong structural controllability (observability) of (A,B)
((A,C)), originally verified using structural and algebraic
criteria (Mayeda and Yamada, 1979)-Reinschke et al.
(1992), did not consider that potentially non-zeros entries
of (A,B,C) may actually be zeros. Jia et al. (2020)
overcomes this limitation by i) introducing a third type
of structural entry (α) which can be either zero or non-
zero, and ii) integrating the edge subset Eα ⊂ E where
Eα = EAα ∪ EBα ∪ ECα with EAα = {(xnx

, xn′
x
) | Anx,nx

=
α}, EBα = {(unu

, xnx
) | Bnu,nx

= α}, and ECα =
{(xnx

, yny
)|Cnx,ny

= α}. To determine whether (A,B) is
strongly structural controllable, the conditions must hold

• Necessary condition: Matrix MAB = [A | B] is full-
rank for all realisations of the pair (A,B).

• Sufficient condition: Matrix MA′B = [A′ | B] is full-
rank for all realisations of (A′, B) with A′ ∈ RNx×Nx

A′ =


A′

nxn′
x
= Anxn′

x
, nx ̸= n′

x

A′
nxnx

̸= 0, Anxnx
= 0

A′
nxnx

= α, otherwise

. (8)

Strong structural controllability can then be verified us-
ing graph colouring techniques applied to the directed
(sub)graphs GAB in Eq. (6) and GA′B = (VA′B , EA′B),

VA′B = VA′ ∪ VB = {x1, . . . , xNx} ∪ {u1, . . . , uNu} (9a)

EA′B = EA′ ∪ EB (9b)

= {(xnx , xn′
x
)|A′

n′
x,nx

̸= 0} ∪ {(unu , xnx)|Bnx,nu ̸= 0}.

Definition 11. (Strong controllability, colouring) Consider
graph GAB (or GA′B) where all vertices are not coloured.
GAB (or GA′B) is colourable if for all state vertices

(1) We select a vertex of state xi which is this in the
neighbourhood of a vertex v ∈ VAB and there exists
an edge (v, xi) ∈ EAB − EAα − EBα.

(2) xi is coloured if it is the only uncoloured vertex in the
neighbourhood of v.

(3) We repeat the process until there is no more possibil-
ity of colouring.

From Jia et al. (2020), MAB is full rank for all realisations
of (A,B) if GAB is colourable and MA′B is full-rank for all
possible realisations of the (A′, B) if GA′B is colourable.

Theorem 12. (Strong structural controllability) The pair
(A,B) is strongly structurally controllable IFF

• Necessary condition: GAB is colourable;
• Sufficient condition: GA′B is colourable.

By duality, it is possible to check whether (A,C) is strong
structurally observable from the graph representation of
(A,C) and (A′, C): GAC and GA′C = (VA′C , EA′C)

VA′C = VA′ ∪ VC = {x1, . . . , xNx
} ∪ {y1, . . . , yNy

} (10a)

EA′C = EA′ ∪ EC (10b)

= {(xnx , xn′
x
) | A′

n′
x,nx

̸= 0} ∪ {(xnx , yny ) | Cnx,ny ̸= 0}

Both full row rank of MAC = [A|C]T and MA′C = [A′|C]T

can be verified on GAC and GA′C by a colouring process:

Definition 13. (Strong observability, colouring) Consider
a graph GAC (or GA′C) where all vertices are not colored.
GAC (or GA′C) is colourable if for all state vertices

(1) We select a vertex of state xi which is this in the
neighbourhood of a vertex v ∈ VAC and there exists
an edge (xi, v) ∈ EAC − EAα − ECα.

(2) xi is coloured if it is the only uncoloured vertex in the
neighbourhood of v.

(3) We repeat the process until there is no more possibil-
ity of colouring.

Theorem 14. (Strong observability, structural) The pair
(A,C) is strongly structurally observable if and only if

• Necessary condition: The graph GAC is colourable;
• Sufficient condition: The graph GA′C is colourable.

Graph centralities: The relevance of a node in a graph is
quantified by its centrality measures (Estrada and Knight,
2015). With reference to graph GA ⊂ G, adjacency matrix

Ã with ones wherever ∂f/∂x ̸= 0 and zeros elsewhere, an
arbitrary vertex xnx

∈ VA, and a Nx-vector of ones (1Nx
),

• The in-degree κin(xnx
) = (Ã)nx

1Nx
is the number of

edges incoming to xnx
. It quantifies how pervasive are

the dynamics of the other state variables are on xnx
;

• The out-degree κout(xnx) = (Ã)Tnx
1Nx is the number

of edges departing from xnx . It quantifies how perva-
sive is xnx on the dynamics of other state variables.



Analogous quantities can be evaluated for the complete
system graph G, as well as for the portions GAB and GAC .
In these cases, with the additional possibility to explicitly
distinguish between contributions to the in- and out-
degree centralities strictly related to controls and outputs.

The in-degree is relevant for observability, as it quantifies
how many state variables can be reached (‘observed’) by
directly measuring xnx

, whereas the out-degree is relevant
for controllability, as it quantifies how many state variables
can be reached (‘controlled’) by directly actuating on xnx

.
We refer to Bof et al. (2017) and Liu et al. (2012) for the
connection between centralities and energy-based metrics.

4. ASP WITH GHG EMISSIONS: ANALYSIS

In this section, we analyse stability, full-state controlla-
bility, and observability properties of the ASP with GHG
emissions (Section 2), from a structural perspective. The
necessary structural representation (A,B,C) is obtained
by symbolically linearising the dynamics and the measure-
ment equation (1) to get the matrices A = (∂f/∂x) ∈
R280×280, B = (∂f/∂u) ∈ R280×13, and C = (∂g/∂x) ∈
R33×280. Note that because matrices D = (∂g/∂u) ∈
R33×13 and F = (∂g/∂w) ∈ R33×20 are not identically
equal to zero, the system’s output admits a feedthrough
of both controls and disturbances. The structure of the
(A,B,C) portion of the state-space model is shown in Fig-
ure 2, where the associated graph G = (V, E) is depicted.

Fig. 2. Structural system (A,B,C): Left) Graph G =
(V, E) with state vertices in black (self-loops are
omitted), control vertices in blue, and output vertices
in red. Right) The structural matrices A, B, and C.

4.1 Structural properties

Stability: The stability of the model is studied from the
state-state subgraph GA ⊂ G with node- and edge-set
VA = {x1, . . . , xNx

} and EA = {(xnx
, xn′

x
)|An′

x,nx
̸= 0},

respectively. The existence of a self-loop in each of the
state variables/vertexes leads to verify the necessary and
sufficient conditions for structural stability (Theorem 5),
with each subgraph Gng

⊂ GA admitting a decomposition
into a Hamiltonian cycle with a single vertex. Because
stable in the structural sense, A is asymptotically stable
almost surely (Theorem 1) also in the classical sense.

Weak controllability and observability: The controllabil-
ity and observability properties of the system are firstly
analysed from the input-state GAB ⊂ G and state-output
subgraphs GAC ⊂ G. The weak analysis is based on the ver-
ification of the conditions stated in Theorem 6 and 7. The

accessibility condition in GAB is satisfied by the existence
of input vertices that reach all the state vertices. This is
not true for GAC , in which a number of state-vertices (like,

nitrogen gas S
(·)
N2

and alkalinity S
(·)
ALK in the reactors and

the settler) cannot directly or indirectly reach any output
vertex. The potential occurrence of dilations in GAB is
compensated by the existence of self-loops, which lead to a
dilation-free structure, and together with its accessibility
to a full-state controllable structural pair (A,B). On the
other hand, the violation of the accessibility condition
for GAC leads to a pair (A,C) which is not full-state
observable in a structural sense and thus in classical sense,
regardless of the verification of the absence of contractions.

We conclude that for the ASP model with GHG emissions,
it is possible to design a controller capable to reach any
desired state in the state-space in finite time, nearly
regardless of the realisation of the pair (A,B). However,
it will not be possible to design an observer capable
to estimate the initial state from a finite sequence of
measurements, whatever the realisation of the pair (A,C):
This is intuitive, when recognising the non-uniqueness of
profiles in the settler that would match the measurements.

Strong controllability and observability: For all the reali-
sations of (A,B) and (A,C) to be controllable/observable
in a classical sense, the strong conditions in Theorem 12
and 14 must be satisfied. The colorability of GAB and GA′B ,
and GAC and GA′C must be verified (Definition 11 and 13):

• GAB is not colourable because for each node v ∈ VAB

(either xnx or unu) there is more than one state vertex
xnx , such that the edge (v, xnx) belongs to EAB . Pair
(A,B) is controllable but not strongly controllable;

• GAC is not colourable because the non-accessible state
vertices xnx ∈ VAC can not be coloured. This result
reinforces what verified in terms of weak observability.

Because (A,B) is not controllable in a strong sense, there
is at least one realisation of the pair that violates the
conditions for classical controllability (Lemma 2). This
is expected, when recognising the impossibility to enforce
any arbitrary profile of soluble matter in the settler. We
note that because the state matrix A is Hurwitz for almost
any realisation, we can conclude that the system is still
stabilisable and detectable (Callier and Desoer, 1991).

Degree centrality: The controllability results suggest
that for a given controllable realisation (A,B), it is possi-
ble to design a state-feedback controller capable to control
also greenhouse gas emissions {GCO2

, GN2O}. These quan-
tities are not state variables, but rather outputs depending
on the state and disturbances. To quantify the magnitude
of the related control efforts, we study the degree central-
ities of the associated state variables: The concentrations
of suspended solids {X(r)

I , X
(r)
S , X

(r)
BH , X

(r)
BA1, X

(r)
BA2, X

(r)
P }

and nitrous oxide {S(r)
N2O

} in all reactors, effluent solids

{X(S10)
I , X

(S10)
S , X

(S10)
BH , X

(S10)
BA1 , X

(S10)
BA2 , X

(S10)
P }, substrates

{S(S10)
S , X

(S10)
S }, and nitrogens {S(S10)

NH , S
(S10)
ND , X

(S10)
ND }. The

feedthrough controls are the aeration constants {KLa
(r)},

whereas the feedthrough disturbances are the influent pro-
file {SIN

S , XIN
S , XIN

BH , XIN
BA1, X

IN
BA2} and flow-rate QIN .
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Fig. 3. Out- (left) and in-degree (right) centralities of GA.

The analysis of the degree centralities of GA (Figure 3)
shows that the out-degree of the state nodes associated
with suspended solids in reactor R5 are the largest. There-
fore, the effort to control the system with only individual
controls, each acting on those variables, is the smallest.

However, as those variables can only be indirectly actuated
through recirculation flow-rates (QA and QR), we would
need to rely on their control through directly actuating on
other state-variables. This is a difficult task, as the small
in-degree centralities of state-nodes associated with sus-
pended solids (in the reactors) imply that those variables
are affected by a small number of state-variables. More-

over, we note that only {S(r)
O , S

(r)
NO, S

(r)
N2O

, S
(r)
N2

} can be di-
rectly actuated through a control handle (namely, aeration
KLa

(r)) in each r-th reactor. Being those variables associ-
ated with state-nodes of small out-degree centralities, we
conclude that steering the process to a desired state, thus
controlling the total GHG emissions, is a demanding task.
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