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4. The structural dynamics of the fWRRF
In this section, we analyze fWRRF stability, controllabil-

ity, and observability using the structural approach discussed
in previous sections.

The analysis is performed with the model’s structural
matrices, e.g. A À R280ù280, B À R280ù13 and C À R28ù280,
which were obtained by calculating state space functions f
(5a) and g (5b) partial derivatives. Its topology is given by a
graph G = (V , E), represented in the Figure 2.

Figure 2: System structural model represented by a graph
G = (V , E) composed by state (black vertices), output (red
vertices) and input vertices (blue vertices) and state space
matrices structures, which had their non-zero entries coloured.
In the graph, the self-loops were omitted to simplify the
visualization.

4.1. Structural stability of the fWRRF
WRRF’s structural stability is verified using a subgraph

GA = (VA, EA), represented in Figure 3. In this graph,
every state vertex has a self-loop. Given that a self loop
is an Hamiltonian cycle, every subgraph of GA admits a
Hamiltonian decomposition formed by a set of self loops.
Therefore, every subgraph of GA is a Hamiltonian subgraph,
this satisfies both structural stability necessary and su�cient
condition.

Figure 3: State variable structural model represented by the
graph GA = (VA, EA) and matrix A structure.

4.2. Structural controllability and observability
Structural controllability analysis uses a graph GAB =

(VAB , EAB), which is represented in Fig.4. In terms of ac-
cessibility criteria, the existence of inputs a�ecting all state
vertexes, e.g. QR1

EC , WA, and QR, guarantees every state

vertex accessibility. Regarding dilation occurrence, the ex-
istence of self-loops at each state vertex defines a matching
with cardinality equal to 48, which satisfies the dilation-free
criteria. These results shows that GAB respects accessibility
and dilation-free criteria, which guarantees the structurally
controllability of (A,B). Therefore, there are realizations of
(A,B) for which fWRRF is fully state controllable.

Figure 4: fWRRF: Structural model of the pair (A,B). In the
left side the graph GAB composed by states and inputs vertices.
In the right side the structure of A and B.

The structural observability analysis is performed in
GAC = (VAC , EAC ) œ G, represented in Fig.5. In terms of
the accessibility criteria, the existence of state vertices from
which it is not possible to perform a path to a sensor, SRi

ALK ,
SRi
N2

, determines the existence of isolated vertices in the
graph. Based on this, (A,C) is not structurally observable.
Therefore, for this set of outputs, fWRRF is not observable.

Figure 5: fWRRF: Structural model of the pair (A,C). In the
left side the graph GAC composed by states and output vertices.
In the right side the structure of the matrices A and C.

4.2.1. Strong structural controllability and
observability

Strong structural controllability and observability were
investigated using respectively the subgraphs GAB and GAC ,
each one represented separately in the Figures 4 and 5.
Di�erently from the previous analysis, strong structural pro-
prieties analysis also considers scenarios where some edge
disappear due to the plant dynamics. In the context of
fWRRF, assuming that recirculation flow rates (.e.g QR and
QA) are always non-zero, the edges may varies due to valves
WA, WB and WC values. Therefore, as WA and WB only
a�ect the influent feed, they do not change the matrices

A1, A2, A3, and A4: Preprint submitted to Elsevier Page 10 of 13


