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Ordinary differential equations are equations in some unknown quantity

e The unknown quantity is a function

The equations involve the derivatives of the unknown function
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Interrelated changing entities are commonplace in systems modelling

e Changing entities are called variables

The rate of change of one variable with respect to another is a derivative

Relations among variables and their derivatives are differential equations

We are interested in knowing how the variables are related
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Origins Origins Consider the problem of determining the age of a bonfire
Bt Defiititon:
~+ From the remains of charcoal
Linear and Linear and
time-invariant g time-invariant We know a few things, from common sense and notions
General linear General linear
General concepts e Charcoal is burned wood
Remwiter tromefiomn: Fourier transforms e Wood is organic matter
Laplace transforms Laplace transforms . Organic matter is C
e C has two isotopes
~ C™ and C12
In living organisms, the [C12]/[C'4] ratio is constant
o C! is radioactive
o C!2 is stable
T Origins (cont.) . Origins (cont.)
differential differential
equations equations
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onns When organic matter dies its composition changes, with time onens
14 iotion
e C'* lost by radiation is not replaced Let ¢ be the time elapsed since the wood was chopped off its tree
Generalities Generalities
~ [CM] and [C1?]/[CM] change
oot s o s Let z(t) be the amount of C'* in the dead chops/charcoal
The changing entities of this problem are [C'*] and time ¢ e At any time ¢
LU e The changing entities are elate to cach other S
‘ ‘ dz(t
The instantaneous rate at which C* decomposes is %
The relation between them requires the use of derivatives
e The relation is a differential equation
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:,g n‘ We assume that the rate of decomposition varies linearly with z(t) ‘Oﬂg n‘
da(t) dz(t)
Generalities ~ — 7]{‘T(t) Generalities — —kz(t)
et pasiant dt e yasiant di
General linear General linear
e k > 0, proportionality constant For instance, let us suppose that £ = 0.01 and let ¢ be measured in years
R ¢ — sign, [C'] is decreasing R
- ) ~ For z(t)|¢; = 200 [units], we have dz(t)/dt|;; = 2 [units/year]
~ For z(t)|t, = 50 [units], we have dz(t)/dt|s, = 1/2 [units/year
Instantaneous rate of decomposition of C'* is k-times the amount of C4 (®)lez [ ) (t)/dtlsz /21 [year]
e According to this relationship (a differential equation)
T Origins (cont.) . Origins (cont.)
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dz(t
®) = —kz(t)
Origins dt Origins

Definitions

Generalities

Linear and

time-invariant

General linear

Fourier transforms

Laplace transforms

Next task, try to determine a functionality between z and time ¢, z(t)

We multiply both sides of the differential equation by dt¢/z(t)

dz(t) dt ) dt
a =0 0
dz(t)
x(t) = —kdt

By integration,
~ log [z(t)] = —kt+c

¢ is an arbitrary constant

Definitions

Generalities

Linear and

time-invariant

General linear

Fourier transforms

Laplace transforms

log[z(t)] = —kt+ ¢

By the definition of logarithm, we get

~ z({) = e(*k:t+(f) — er:e(fk:f,) _ Ae(—k:t)

This is nearly the answer we are after!

o We need values for A and k

1A relation between the variable quantity z and the variable time t¢.
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z(t) = Ae(—Ft)
General concept General concept
Origins 4 Origins . 1F =)
Definitions At time ¢t = 0, by substitution, we know we had z(¢ = 0) = A units of C! Definitions N
olution ution é‘
Generalities
P From chemistry, we know ~ 99, 876% of A is still present after 10 years ’ g For k = 0.000124
tim nvariant t ant 0.5 | —
e For t = 10, we have z(t = 10) = 0.99876A - Il
@ al lines ) ( ) « al linea . — l(t) — Ae—0A000124I,
I'ransform I'ransforms -~
Fourier transforms Thus, Fourier transforms 1
sy
Laplace transforms Laplace transforms \é/ 0
= Ae(—10k) L : =
B Q98764 = de B 0 2 1
—10k
Picard-Linde 0.99876 = e( ) Picard-Lindelsf t 104
the n theorem
log (0.99876) = —10k
g ( ) ‘We need to determine the value of A
—0.00124 = —10k WY 14
e The initial amount of C
~ k =0.000124
Ordinary Origins (cont.) Ordinary
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By chemical analysis of charcoal, we can measure [C**]/[C"¢]
Ceonerall conasp e Living wood (known) and bonfire (measured) Cenenell qoneep
Origins Origins
Definitions Definitions

Fourier transforms

At time t (now), 85.5% of [C'*] had decomposed
~ 14.5% remained (0.145A)

1 l— —
0.145A — Ae—0-000124¢

. 0.145 = 8—0.00012415
T 0o log (0.145) = —0.000124¢
—1.9310 = —0.000124t

0L ! =

0 2 4 ~s  t=15573
t

-10%

General linear

Fourier transforms
Laplace transforms
Numerical
integration
Picard-Lindelsf

theorem

Definitions

General concepts
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2018.1 2018.1 = 5
Bmple | E 2
5]
. . . . ] ol e P Il
e Consider the function y(z) = log (z) e < .
Generalities We have the successive derivatives Generalities | | i ‘ 0
. 0 5 10 0 5 10
Ge T 8 d 1 1 C 11
enern e 7y($) = — = y enern mneat T T
dz T ol T T ] T T
Rosrover: (momefarmms 42 () - . Fourier transforms - -1 6,000
Laplace transforms — () = — = Laplace transforms
dz’ 2 Y E %
d? 2 w < _100| BIs 14,000 &
—ylz) = = =
&)= =Y " L
_ < = -12,000 =
= >
—200 - B
The equations involve variables and their derivatives : : L : | 0
q 0 5 10 0 5 10
e One independent variable x T T
They are called ordinary differential equations
T Definitions (cont.) . Definitions (cont.)
differential differential
equations equations
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2018.1 2018.1 2(z,y) = 23 — 3zy + 24>
Example e pertisl Certvatives Witk el N
Definitions Definitions

Generalities

Linear and

General linear

Fourier transforms

Laplace transforms

Consider the function

z(z,y) = 2% — 3zy + 2y2

z:f(a:,y)

Generalities

Linear and

time-invariant

General linear

Fourier transforms

Laplace transforms

s}
8—12(1, y) = 3z — 3y

]
dy

2
@Z(z, y) = 6z
62

8—y22($, y) =4

The equations involve variables and their derivatives

e Two independent variables x and y

They are called partial differential equations
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(L T
N L5 L7
Rt S S S S %
NN ' o % Ordi di tial equati
Origins A NSSSSS 5 oy X Origins rdinary differential equation
Definitions Definitions
Let f(z) be a function of z defined over some interval, T: a <z < b
Generalities Generalities . . 3 . . ) .
e o] e £l By ordinary differential equation, we mean an equation involving x, the
e ST function f(z) and one or more of the derivatives of f(x)
General linear General linear
|
Fourier transforms Fourier transforms
Laplace transforms Laplace transforms
Order of a differential equation
The order of a differential equation is the order of the highest derivative
involved in the equation
|
|
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Origins Origins
Definitions Habit Definitions
abits
Solution
S Common custom in writing differential equations uses f(z) for y(z) or y S Solutio n
General linear d General linear . . . .
. Ey(x) tz-[y@)2 =0 Ordinary differential equations
Fourier transforms 2 Fourier transforms
—f(z T - T =0 ~ d
Laplace transforms diltf( ) + [f( )] —y _|_ ny =0 Laplace transforms
dz
v +ay® =0
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Origins Origins
Definitions Definitions
Solution Consider the algebraic equation Seisisiem Consider the differential equation
Generalities Generalities
Linear and 22 22 -3=0 Linear and z2y"” + 2zy’ +y =log(z) + 3z + 1, with z >0
time-invariant time-invariant
General linear General linear
If  is replaced by 3, the equality holds true Function f(z) = log (z) + z is a solution of the differential equation (z > 0)
Fourier transforms Fourier transforms
Laplace transforms e We say that z = 3 is a solution Laplace transforms
f(z) and its first and second derivatives can be substituted in y, y’ and y”
‘We mean that z = 3 satisfies the equation e The equality will hold true
: ; Solution (cont
Ordinar, Ordinar .
diff:rejtiﬁl y = log(z) + =| y'=1/z +1] diff:re:tiil ( )
equations equations
T T T T
UFC/DC UFC/DC
SA (CK0191) 51 B SA (CK0191)
2018.1 - 10 2018.1
Origins ol > 5 Origins
et \ etmtens 22y" +2zy’ +y =log(z) + 3z + 1, withz >0
Solution \¥ Solution
Generalities Generalities
T _5 L | | | | T —— Two things that are worth noting
e 0 2 4 0 2 e
General linear General linear
g Y Values of z for which function f(z) is defined had been clearly specified
Pourier transforms " — —_— Fourier transforms .
:_wlmo h(\nw‘h)nn»- Y 1/17 I :_npl,\w \'h\n»rtonu: ° Though they could have been ta’mtly assumed
T T T ~ log (z) is undefined for z < 0
0 Y 15 . . . . . . .
‘We specified the interval in which the differential equation makes sense
L 10 e Redundant, because of the presence of log (z)
—10 |- -1 5
| | | LL 0
0 2 4 0 2
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Origins

Definitions

Generalities
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time-invariant
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Laplace transforms

Explicit solution

Ezxplicit solution
Let y = f(z) define y as a function of z over an interval, T:a <z <b

We say that function f(z) is an explicit solution of an ordinary differential
equation involving z, f(z) and derivatives, if it satisfies the equation Vz € T

Function f(z) is a solution of the differential equation
F[I7 Y, y/7 o ay(’”)] =0,
if

Flz,f(2),f'(2),--- ,f(2)M] =0, for everyz in T
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Origins

Definitions

Generalities

Linear and

General linear

Fourier transforms

Laplace transforms

Explicit solution (cont.)

F[Z7y>y/7"' 7y(n)] =0

We can replace y by f(z), y' by f'(z), y” by f(2), ..., y™) by f(")(2)
~~ The differential equation reduces to an identity in z

Habits
We use expressions like ‘solve’ or ‘find a solution’ of a differential equation

~ ‘Find a function which is solution of the differential expression’

‘We may refer to a certain equation as the solution of a differential equation

~~» We mean, ‘the function defined by the equation is the solution’
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Origins

Definitions

Generalities

Linear and

time-invariant

General linear

Fourier transforms

Laplace transforms

Explicit solution (cont.)

An equation that does not define a function, cannot be a solution

e Though, you may show that the equation is satisfied

A (real) function

Suppose that to each element of an independent variable z on a set £ (the
set must be specified) there corresponds one and only one (real) value of
a dependent variables y

We say that the dependent variable y is a function of the independent
variable z on the set £
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Definitions
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Linear and

Laplace transforms

Explicit solution (cont.)

The equation y = y/—(1 + z2) does not define a (real) function

We cannot say ‘it is a solution of a(ny) differential equation’ z + yy’ = 0

e Though, z + yy’ = 0 is satisfied

By formal substitution, we obtain an identity
oy =+/—(1+2?)
Y = —a/\/=( T 59
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Origins

Definitions

Generalities

Linear and

Laplace transforms

Explicit solution (cont.)

y=a°
I
20 B
Consider the function
10 |- n y:x2,with—oo<x<oo
oL, . L]
-5 0 5
T

Verify that it is a solution to the differential equation

WP +@)2-—y—32-8=0
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Origins

Definitions

Generalities

Explicit solution (cont.)

Together with y = f(z) = x2, we have
. Y =f@) =2
° y// :f//(l,) — 2

y =2z Yy’ =2
T T T 2.4
10 -
* 2.2
o b {2
- -1 1.8
=100 ! [ ! !
—5 0 5 -5 0 5
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Origins

Definitions

Generalities

Explicit solution (cont.)

") *+ () *— y —32-8=0
~—~— ~~ ~~
' (z)=2 f/(z)=2z f(z)=z2

Substituting these values, we obtain

84 (422 —22) - 322 —8=0

Fla.f(2).f" (2).1" ()]

LHS is zero, y = z? is an explicit solution




Explicit solution (cont.)
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UFC/DC - 100 UFC/DC
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8 B -150
Ot y(z|c) =log(z) + ¢
Definitions Definitions
7l | T T T T
Generalities Generalities
Linear and | | | | 10 Linear and 5 |
o s o SR S Consider fanction
z T
e —y B y =log(z) + ¢, withz >0
Laplace transforms Laplace transforms 0 B
T T
0 | -
= - =20 L L | |
0 1 2 3
—10- = - —40 T
| 1—60 Verify that it is a solution to the differential equation
—20 |- ,
- -1 —80 Yy =1/z
| ! | | ! |
-5 0 5 —5 0 5
z z
T Explicit solution (cont.) . Implicit solution
differential differential
equations equations
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o o We can also test if an implicit solution defined by f(z, y) = 0 is a solution
. e The procedure is much more involved
Generaiiies Together with y = f(z) = log () + ¢, we have Generaiiies
Limear and oy =f(z)=1/z, for z >0 pnead Not always easy to solve the equation f(z,y) = 0 for y in terms of z
General linear General linear
By substitution of these expressions, we get an identity in the variable z ~ y=g(2)
LU e w=los(@)+eisasolutionof y' = 1/, for all > 0 S

Suppose that it can be shown that an implicit function y = g(z) satisfies a
given differential equation over an interval Z:a < 2 < b

e Relation f(z,y) = 0 is an implicit solution of the differential equation
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Implicit solution (cont.)

Implicit function

The relation f(z,y) = 0 defines y as an implicit function of z over the
interval Z : a < < b, if there exists a function y = g(z) defined over Z

~ o flz g(z)] =0, for every z €T
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Implicit solution (cont.)

Consider the relationship
22 4+9y2-25=0

Does it define a function?
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Origins

Definitions

Generalities

Implicit solution (cont.)

Let x > +5o0r z < =5
e The formula will not determine a value of y

e (If z =7, no y can satisfy the relation)

Let -5 <z < +5
e We solve the relation for y

o y= im
The formula does not uniquely define y(z)

y=4+v25—22, (z€[-5,+5))
y=—v25—-22, (x€[-5,+5])
y=+v25—12, (z€[-5,0)
y=-v25—22, (z€(0,+5))

Each formula defines a proper function

e We can choose any of them
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Origins

Definitions

Generalities

Laplace transfo

y=+Vv25—z? y=—v25—z2
T ol T ]
47
9 N
27
4l i
o, ! ! . !
-5 0 -5 0 5
z z
y=+v25— 2 y=—v25— a2
T T ol T ]
47
_9l i
27
4l i
o ! ! I !
-5
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Laplace transform.

Implicit solution (cont.)

Consider the relationship
z2 + y2 —3zy =0

Does it define a function?

If it does, for what values of z will it uniquely determine a value of y?

It is not easy to find the relation for y in terms of z

Ordinary
differential
equations

UFC/DC
SA (CK0191)
2018.1

Origin

Definition

Generalities

Laplace transforms

Implicit solution (cont.)

Implicit solution

A relation f(z,y) = 0 is an implicit solution of the differential equation
Fla,y,y' 9", y™] =0, withz € T = (a, b)

if

1. f(z,y) defines y as an implicit function of x on I (there exists a func-
tion y = g(z) defined over I such that f[z,g(z)] =0 for every z € Z)

2. g(z) satisfies the differential equation
Flz,g(x),9(z), ()", g(z)(™] =0, for every z € T = (a, b)
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Definitions

Generalities

Implicit solution (cont.)

Consider the relation

f@y) =2 +y>—-25=0

Check whether f(z, y) = 0 is an implicit solution of the differential equation

F(z,y,y")=vyy'+2=0, withZ:—5<z<5
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Origin

Definition

Generalities

Implicit solution (cont.)

Function f(z,y) = 22 4+ y2 — 25 defines y as an implicit function of z € Z
~- There is a function g(z) defined on Z such that

f[z,g(z)] =0, VzeZT

Specifically, let g(z) = y = /25 — 22 for -5 <z < +5

Then, f(z,y) = f[z, g(:z:)] =2 4+ [V25 - x2]2 — 25 = 0 is satisfied
———

Y
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g(z) = V25 — z2 g'(z) = —x/V25 — 22
Origins I ! I [T I ] Origins
Definitions 5 Definitions
4 | .
?‘e‘"mlmfs ?e"mlm?s In calculus, we studied methods for integrating elementary functions
e 0 N ) . . . .
R 21 - P o It was the same as solving differential equations
> y(@) =f(2)
Laplace transforms 0 | | | - =5 | | ] Laplace transforms
-5 0 5 -5 0 5
z T
By substituting g(z) for y and g¢’(z) for v’ in F(z,y,y') =yy' + 2 =0
z
~  flz,9(z), 9 (z) :\/25—z2<—7>+z:0
[2:9(2) } V25 —a?
]
Ordinary General solution (cont.) Ordinary General solution (cont.)
differential differential
equations equations
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_ .z
Generalities Consider the differential equation Generalities ~ y@)=e"tarte
Linear and Linear and
time-invariant time-invariant c1 and c2 can take any numerical values
General linear y,(z) = ew General linear y
R e et If y"'(x) = e, then its solution by triple integration
Laplace transforms Laplace transforms

Its solution, by integration
~ gylz)y=€e"+c¢

¢ can take any arbitrary numerical value

~  y(z)=e"+ a1z + cor + c3

c1, c2 and c3 can take any numerical values
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General linear

Fourier transform

Laplace transform.

General solution (cont.)

Two important (yet false) conjectures seem to stem from this example

‘If a differential equation has a solution, it has infinitely many solutions’

~~ As many as there are values of ¢

If a differential equation is first order, then there is only one constant
~ If it is second order, two constants
~ If it is third order, three constants

‘If a differential equation is n-th order, the solution has n constants’
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Generalities

Linear and

time-invariant

General linear

Fourier transforms

Laplace transforms

General solution (cont.)

Consider the first-order differential equation
W) +y*=0
Consider the second-order differential equation

(y//)Q + y2 =0

Both differential equations admit only one solution

~  y(z)=0
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Definitions

Generalities

Linear and

General linear

Fourier transform

Laplace transform.

General solution (cont.)

Consider the first-order differential equation
ly'|+1=0
Consider the second-order differential equation

ly"|+1=0

Both differential equations have no solution
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Definition

Generalities

Linear and

variant

Fourier transforms

Laplace transforms

General solution (cont.)

Consider the first-order differential equation

xzy =1

The equation has no solution if z € Z = (—1,+1)

The differential equation can be formally solved

v y(z) =log(lz]) + ¢

The function is discontinuous at the origin x = 0

~+ So, that’s not okay over the whole 7
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Fourier transforms

Laplace transforms

General solution (cont.)

If z < 0, we have y(z) =log (—z) + c1

e This is a valid solution in z < 0

If z > 0, we have y(z) = log (z) + c2

e This is a valid solution in z > 0

There is no valid solution at z = 0
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General linear

“ourier transforms

Laplace transforms

General solution (cont.)

Consider the first-order differential equation

(v —9)(y —2y) =0

The solution to this differential equation

~ (y—cae)(y— 026213) =0

e Two arbitrary constants (not one)
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General solution (cont.)

The examples warn that not all differential equations have a solution

e Also, the number of constants is not the order of the equation

The conjectures are true for a large class of differential equations
Consider a solution that contains n constants c1, c2,...,cn

~ It is called a n-parameter family of solutions

~ C€1,C2,...,Cy are thus parameters
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General linear

Fourier transforms

Laplace transforms

General solution (cont.)

Family of solutions
Constider the family of functions in the (n + 1) variables z, c1, c2,. .., cn

y:f(m,q,cg,...,cn)

Such functions are called a n-parameter family of solutions of the n-order
differential equation

Flz,y,9/ .- ,y™] =0

if for each choice of a set of values ci, c2, ..., cn the resulting function f(z)
(a function of z alone) is such that

Flz,f(z),f'(z), -+, f™(z)] =0
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General solution (cont.)

Consider the functions

y=f(z,c1,c2) =3+ 2z + c1e” + coe?®

A 2-parameter family of solutions of second-order differential equation

Flo,y,y',v" =y" =3y +2y —4z =0

Let a, b be any two values of c1, c2
Then, as a function of only z

y=f(z) =3+ 2z + ae® + be?®
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General solution (cont.)

y = f(z) = 34 2z + ae® + be*®
The first and second derivatives of y = f(z)
y' = f'(z) = 2+ ae® + 2be%”
y// :f//(x) = ge? +4b€21
Substituting the values of f, f’ and f for y,y’ and y”’, we get

Pz, £ f ) = ae® 4 4be®® — 6 — 3ae® — 6be?®
+ 4z 4 6 + 2ae” + 2be?* — 4z
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General solution (cont.)

We now discuss the inverse problem of finding a differential equation

~~ Given that its n-parameter family solutions is known

The family will contain the necessary number of n constants
e The n-order equation does not contain them

e The constants need be eliminated (not easy)
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General solution (cont.)

Find a differential equation for the 1-parameter family of solutions

8
+
& 400 - .
i This family has one constant
Q
o
I 200*/\7 y = ccos(z) +
< /’— We seek a first-order equation
8
ERYsl | L]

—50 0 50

&

By differentiating the family of solutions, we obtain

’

y' = —csin(z) +1
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Dernitions D e
o Example
Generalities = —csin(z) +1 Generalities . N N N X X
s o Y (@) e o Find a differential equation for the 2-parameter family of solutions
Gl ey This differential equation still contains the constant Genrel! e y=cre® 4+ cpe ®
e It is not the searched one : o
Hower ranstorme Honmer transtonme ‘We assume it is second-order
Laplace transforms Laplace transforms
We eliminate it by performing some manipulations (How?)
What is it?
|
Ordinary General solution (cont.) Ordinary General solution (cont.)
differential differential
equations equations
UFC/DC UFC/DC
SA (CK0191) SA (CK0191)
2018.1 2018.1
Origins Origins
Consider the n-parameter family of solutions of a n-order equation Consider the first-order parameter family of solutions
Generalities Generalities

Linear and

General linear

Fourier transforms

Laplace transforms

e This family is traditionally called a general solution

e (Of the differential equation)

The function that results from it then becomes a particular solution
e We give a definite set of values to the constants

o (c1=a,c2=b,...,cn="--")

Linear and

time-invariant

General linear

Fourier transforms

Laplace transforms

y = ce”
It is a general solution to the differential equation

Yy —y=0

Let ¢ = —2, then y = —2e” becomes a particular solution
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General solution (cont.)

By its name, a general solution is expected to contain all solutions
e It should be possible to obtain every particular solutions

e (By giving proper values of the parameters/constants)

The expectation is not necessarily true for all differential equations
e There are cases whose solution cannot be retrieved

e (No matter what values are given to the constants)
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General solution (cont.)

Consider the first-order differential equation

y=my' + (y)>

For a solution, it has the 1-parameter family

o y:cz+02

Traditionally, this solution would be called a general solution

e Since it contains one parameter

Yet, it is not a truely general-general-general solution

e It does not contain every particular solution
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General solution (cont.)

y:c:t-l—cQ

It can be shown that function y = —22/4 is also a solution
o (Verify it)

This solution cannot be obtained from the general solution
e Whatever is the the value we give to ¢

e (It is a second order equation)
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General solution (cont.)

Consider solutions that cannot be retrieved from the general solution

e Singular solutions

Both the wording ‘general’ and ‘singular solution’ are inappropriate

e Source of unnecessary confusion

‘We show this by examples
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General solution (cont.)

Consider the first-order differential equation

y/ _ _2y3/2

Its solution (verify it)

1

CEE

The differential equation has also another solution
> Yy = 0

This one cannot be gotten by assigning a value to ¢
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General solution (cont.)

1

V= Gror

By the traditional definition y = 0 would be a singular solution
We could write the ‘general solution’ (check it)
CQ
Y=~
(Cz+1)

According to this form, y = 0 is not a singular solution if C' =0
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General solution (cont.)

Consider the first order differential equation

(' —y)(y —2y)=0

Two distinct 1-parameter families of solutions
> Yy =c1 e’

~ Yy = CzeQZ

How can they both be general/singular solutions?
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General solution (cont.)

Particular solution

A solution of a differential equation is called a particular solution if it
satisfies the equation and it does not contain any arbitrary constants

]
General solution

A n-parameter family of solutions of a differential equation is called a gen-
eral solution if it contains every particular solution of the equation
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General solution (cont.)

There is an infinite number of ways of choosing the n constants

e How do we actually set/choose them?

Usually, we want one solution that satisfies certain conditions

e Typically, these are initial conditions
e y(z=0), y'(z=0),
The parameters must be set accordingly
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General solution (cont.)

Assume that motion of a body is given by a 2-parameter family
z =16t + c1t + c2
z(t) denotes the position of the body from some origin

‘We know that at ¢ = 0, we had
~ z(t=0)=10
~ v(t=0)=20

v=dz/dt =32t + 1
‘We must set ¢1 and ca
By substituting the initial values [¢ = 0, z(t = 0) = 10 and v(t = 0) = 20]

c1 =20
co =10
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General solution (cont.)

With those parameter values, the particular solution

z = 16t% + 20t + 10
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General solution (cont.)

Initial conditions

The conditions that enable us to determine the values of the arbitrary con-
stants/parameters ci,ca,...,cn n a n-parameter family of solutions are
called initial conditions

o [f given in terms of one value of the independent variable, t = 0

|
Normally, number of initial conditions and order of the equation must match

e There are exceptional cases, which we do not consider
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General solution (cont.)

Find the 1-parameter family of solutions of the differential equation

vy = (y + 1)

Find a particular solution for the initial conditions y(z = 2) =0

If y # —1, we can divide the differential equation by (y + 1)2

~> /ﬁdy:/dﬂu (y#-1)

The 1-parameter family, by integration

1
o ——+log(ly+1))=z+c, (y#-1)
y+1
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General solution (cont.)

1
——+log(ly+1))=z+¢c, (y#-1)
y+1

The value of the parameter for which z =2 and y =0

1=24+c¢c ~c=-1
The particular solution

1
o ——+log(ly+1)=z—-1, (y#-1)
y+1

Ordinary
differential
equations

UFC/DC
SA (CK0191)
2018.1

Origins

Definitions

Generalities

General solution (cont.)

‘We had to discard the function y = —1
e This function also is a solution
o (check!)

It cannot be obtained from the family
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General solution (cont.)

Consider the second order differential equation of a forced spring

d2z(t) dz(t)
gt

2 5 v2a(t) = w(t)

!

~ and v are constants

Force w(t) is some given function (may/may not depend on time)
e Position z(t) is the dependent variable

e Time ¢ is the independent variable

The equation is called inhomogeneous, because of the forcing term
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General solution (cont.)

The solution to the differential equation is defined as particular solution
o It satisfies the ordinary differential equation

e Does not contain arbitrary constants

A general solution contains every possible particular solutions

o Parameterised by some free constants

Ge
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Numerical

General solution (cont.)

To solve the equation, we tie together general solution and initial conditions

We need to know the spring position z(t) and velocity dz(to)/d¢

e At some fixed initial time #g

Given the initial conditions, there is a unique solution to the equation

e (provided that w(t) is continuous)

Numerical
T i e
Picard-Lind Picard-Lindel&f
the theorem
Ordinary General solution (cont.) Ordinary General solution (cont.)
differential differential
e~ caraifers
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General concept General concept
:l”‘ \ It is common to omit dependencies of z and w on t Tj -
T 42 0 d © 4 v2a() » Tt
Generalities —x ~— vex = w Generalities
Linear and dt2 /dt Linear and
i”‘ ;H‘ Differential equations of arbitrary order n can almost always be converted
e Time derivatives are often denoted using dot (Newtonian) notation Bmefiomm ~+ Vector differential equations of order one
Fourier transforms

Fourier transforms

Laplace transforms

integration

Picard-Lind
theore

E(t) 4 ~va(t) + v2a(t) = w(t)

~ &(t) = d2z(t)/dt
~ &(t) = da(t)/dt

Laplace transforms

Numerical

integration

Picard-Lindel&f

theorem
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@i 42 d 5 . The more general form
Definitions —x(t) +vy=x(t) + voz(t) = w(t Definitions
olution TR (= u xlt) = fx(t), ] + L[x(t), t]w(t)
Generalities Generalities dt ’ ’
Linear and For the spring model, we can define the state variable x(t) Linear and
time-invariant time-invariant
ool e o x(t) = [m(8), 22(0)] = [(t), dz(t)/dt] ot tes e The vector values function x(¢) € R"™ is called the state of the system
I'ransform I'ransforms
T e et e The vector valued function w(t) € R* is the forcing (input) function
foes We re-write the original equation as a first-order equation faples trantons . ) ) .
Numerica Numerical It is possible to absorb the second term in the RHS into the first one
integration inte ration
: da:](t)/dt - 0 1 T (f) 0 )
“u H_TJ_WLV ¢ |:d:L'2(t)/dt =|_,2 | () -+ 1 w(t) ‘\;‘muu_m(um ‘We get,
leorem 1leorem dx(t)
g = f[x(t), ]
dx(t)/dt £lx(t)] L dt ’
Ordinary General solution (cont.) Ordinary General solution (cont.)
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Origins Origins
Definitions Definitions
olution olution The spring model is a special case of linear differential equation
Generalities Generalities
Bise The first-order vector representation of a n-order differential equation oo
General linear ~~ The state-space representation General linear = F(t)x(t) + L()w(t
I'ransform I'ransforms dt ( ) ( ) ( ) ( )
Fomrier o ‘We develop the theory and solution methods for first-order equations Fourier transforms
LD GRnEL GRS GCNTlENIT It is an important class of differential equations
Numerical Numerical .
tegration P S———— ~~ We can actually solve these equations
Picard-Lindel&f

Picard-Lindel¢
theorem

theorem
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Linear and time-invariant

Consider a scalar linear homogeneous differential equation

di(f) =f-a(t), given 2(0)

f is a constant (time-independent) scalar

The equation can be solved by variable separation

dz(t)
(1)

=f-dt

We integrate the LHS from z(0) to z(t) and the RHS from 0 to ¢

o Infz(®)] —[z(0)] =Ff-t ~ z(t)==z(0)e?
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Linear and time-invariant (cont.)

Another way of solving the equation consists of integrating both sides

dz(t
Z(t ) =f-z(t), given z(0)
Integrating from 0 to t, we get fot dz/dt = z(t) — z(0)

t
~ z(t) = z(0) +/ drf - z(1)
0
We can now substitute the RHS of the equation for z(t) in the integral
t T
() = 5(0) + / arf - [(0) +/ arf - a(7)]
0 0

:27(0)+f'Z(O)/{)TdT-i-/Ot/Othzf'z(T)
:x(0)+f~x(0)~t/0t/0td7'f2~x(7')
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Linear and time-invariant (cont.)

The same procedure can be performed again on the last integral

x(t):x(0)+f-x(0)-t/ot/OthZfQ[x(O)+/0Td7—f-x(7—)]

:x(O)-I—f-x(O)-t+f2-a:(O)/Ot/OthQ-I—/Ot/Ot/Otf?’-x(T)d-r?’

It is easy to repeat the same procedure
t2 t3

2(t) =2(0) +f-2(0) - t+f* - 2(0) -+ f* - 2(0) =+

2, t2 3. t3
f n /

2! 3!

elft)

=(1+f-t+ +~~-)z(0)

As the Taylor expansion of e(/"t) converges, we have

~ o z(t) = eV Y g(0)
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Linear and time-invariant (cont.)

The multivariate generalisation of homogeneous linear differential equations

dx(t
x(t ) given x(0)

BT Fx(1),

F is a constant (time-independent) matrix

Ge
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Linear and time-invariant (cont.)

We can use the expansion-based type solution

F2t2 F3t3
" x(t):(I+Ft+ + +---)x(o)
2! 3!
(Ft)

The series (always) converges [To the matrix exponential e(Ft)]

Numerical Numerical
integration We cannot use variable separation integration
t) = eFx(0
Picard-Lindel¢ Picard-Lindel&: ~ X( ) =e€ X( )
theorem theorem
T Linear and time-invariant (cont.) . Linear and time-invariant (cont.)
differential differential
equations equations
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theorem

The matrix exponential can be evaluated analytically
e Taylor series expansion
e Laplace transform
e Fourier transform
e Cayley-Hamilton

olution
Generalities

Linear and
time-invariant

General linear
I'ransforms

Fourier transforms
Laplace transforms

Numerical

integration

Picard-Lindel&f

theorem

Consider the linear differential equation, with inhomogeneous term

dx(t)

i 0
a5 given x(0)

Fx(t) + Lw(t),

F and L are constant (time-independent) matrices

These equations can be solved using the integrating factor method
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Linear and time-invariant (cont.)

We first move Fx(t) to the LHS and then we multiply by e(—F1)

dx(¢
e(th)%f eCFOFx(t) = e CFOL(H)w(t)

From the definition of matrix exponential, we derive
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Linear and time-invariant (cont.)

Thus, we can re-write

- %[e<_F”)x(t)] = eFOL()w(t)

By integrating between ty and ¢, we get

I'ransform d t
Fourier transforms ~ 5[6<7Ft)] = —e(-FOF . v eCFDx (1) — e(CFl)x (1) = / dre"FIL(r)w(r)
Laplace transforms Laplace transforms to
Numerical Numerical
integration integration
Picard-Lindelsf We haVe, Picard-Lindel&f The Complete SOIUtlon
theorem theorem
d: r _ry dx(?) —Ft ~ o x(t) = e[_F("_‘”)] x(to) + t(lTG[F(L_T>}L(T)W(T)
~ —[e( >x(t)] = ("Ft) 22 o )Fx(t) .
dt dt -0

Oty e — General linear

differential differential

equations equations
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Picard-Lindelsf

theorem
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Solution
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Numerical
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Picard-Lindel&f

theorem

e The solution in terms of matrix exponential is not valid

We can still formulate the implicit solution

~ X(t) = \I’(t, tU)X(tU)
~» W(t, tp) is the transition matrix

Given the transition matrix, we can build the solution
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General linear (cont.)

Transition matrix

The properties that define the transition matrix ¥ (¢, to)

O¥(r,t)/0T = F(1)¥ (7, t)

0¥ (r,t)/0t = - (1, t)F(t)
U(r,t) = ¥(r,s)¥(s,t)
W(t,7)=® (1, t)
W(t,t)=1
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General linear (cont.)

Consider the inhomogeneous case

dx(t)

T F(t)x(t) + L(t)w(t), given x(to)

The solution is analogous to the time-invariante case
e The integrating factor is ¥ (o, t)

‘We obtain the solution,

~  x(t) =¥ (t, to)x(to) + /t dr¥ (¢, 7)L(T)w(T)
to
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Transforms

Ordinary differential equations
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Fourier transforms

Transforms
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Fourier transforms

Useful for solving inhomogeneous linear time-invariant differential equations

The Fourier transform of a function g(t)

- Gm@:f@uﬂ:/xd@uprﬂ

The corresponding inverse transform

1 gdeoe)
~ (](t) = F*l [G(zw)} = %/ dWG(iw)€(77Wf')
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Fourier transforms (cont.)

The main usefulness comes from the following property

w  Fldmg(t)/dt"] = (iw)" F[h(t)]

~- Differentiation transformed into multiplication by (iw)

Also convolution can be transformed into multiplication
~ Flg@) = h(t)] = Flg(t)] F[hr(t)]

~» This is known as the convolution theorem?

2Convolution is defined as

g(t) % (1) :/jo drg(t — T)h(r).
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Fourier transforms (cont.)

These properties require that the initial conditions are zero

e Not an actual restriction
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Fourier transforms (cont.)

Consider the spring model

d%z(t) dz(t) .
az g TV e

By taking the Fourier transform, we get

o (1w)2 X (1w) 4+ y(iw) X (iw) 4+ V2 X (iw) = W (iw)

e X (iw) is the Fourier transform of z(t)

e W (iw) is the Fourier transform of w(t)
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Fourier transforms (cont.)

(iw)? X (iw) + v(iw) X (iw) + v2 X (iw) = W (iw)

We first solve for X (iw), we get

Ordinary
differential
equations

UFC/DC
SA (CK0191)
2018.1

General concept

Origins

Definitions

Fourier transforms (cont.)

For a general w(t), we note that the RHS is a product

W (iw) _ 1
(iw)? + y(iw) + 12 (iw)2? +~(iw) + v2

W (iw) = H (iw) W (iw)

This product can be converted into a convolution

General linear X ) W(ZUJ) General linear
R W) = —5———> et . .
;’;uriel ranaforme (i) (iw)? + y(iw)v? Ipome‘r R We compute the impulse response function
Laplace transforms Laplace transforms 1
Nume : Numerical ARl
B We take the inverse-transform, we get o h(t)=F {(iw)Q PR e 1/2}
S - () ,Fl[ W (iw) S = b~ Le(— ) sin (bt)u(t)
o (iw)? + v(iw) + v2
This is the solution ~ We have a = /2 and b = \/v? —~2/4
~ u(t), the Heaviside step function
T Fourier transforms (cont.) . Fourier transforms (cont.)
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General concept General concept
@i Origins We can use the Fourier transform for general LTI equations

Definitions

Fourier transforms

Laplace transforms

Numerical

Then, we get the full solution

~  z(t) = /Do drh(t — 7)w(T)

We construct z(¢) by feeding the signal w(t) through a linear system
e (a filter) with impulse responses h(t)

Definitions

General linear

I'ransforms
Fourier transforms
Laplace transforms

Numerical

integration

Picard-Lindel&f
theorem

dx(t)
dt

= Fx(t) + Lw(t)

By taking the Fourier transform, we get

~  (w)X(iw) = FX(iw) + LW (iw)

By solving for X(iw), we get

w  X(iw) = [(iw)I - F] " LW (iw)
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Generalities

General linear

I'ransforms
Fourier transforms

Laplace transforms

Fourier transforms (cont.)

X (iw) = [(iw)I - F] ' LW (iw)

We compare it with the solution

t
x(t) = W(t, to)x(to) +/t dr® (¢, 7)L(T)w(T)

We obtain the useful identify
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General concepts

Origins
Definitions
Solution

Generalities

time-invariant

General linear

I'ransforms
Fourier transforms

Laplace transforms

Laplace transforms

Transforms

Numerical Numerical
integration 1 —1 (Ft) integration
Picard-Lindelsf o F {[(’“"))I_F} } =¢€ u(t) Picard-Lindelsf
theorem theorem
This is a valid way of computing matrix exponentials
Ot Laplace transforms Oty
differential differential
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General concept General concepts
Origins Origins
Definitions Another transform commonly used for solving LTI equations Bt
Solution

Solution
Generalities

Linear and

time-invariant

General linear
Transforms

Fourier transforms
Laplace transforms

Numerical

integration

Picard-Lindel&f

theorem

The Laplace transform of a function f(¢)

- F(s) = L[f(1)](s) :/00o dif(t)el=*", fort >0

The corresponding inverse transform

= f(t) = LTHF()]()

Generalities
Linear and

time-invariant

General linear

I'ransforms

Fourier transforms

Laplace transforms

Numerical
integration

Picard-Lindel&f

theorem

Numerical integration

Ordinary differential equations
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General linear

Fourier transforms

Laplace transforms

Numerical integration

Consider the nonlinear differential equation

dx

ETR- f[x(t), t}, given x(to)

‘We cannot derive an analytical solution
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Origins

Definitions

Generalities

Linear and
time-invariant

General linear

Fourier transforms

Laplace transforms

Numerical integration (cont.)

dx
W f[x(t), t]

We integrate the equation from ¢ to ¢t + At

"t AL
x(t + At) :x(t)+/ drf[x(r), 7]

o] ~~ We resort to a numerical solution o]
integration ~+ An approximation integration
We generate the solution at time steps tg, t1 = to + At, t2 = to + 2A¢,- -+
e We must know how to calculate the integral
T Numerical integration (cont.) . Numerical integration (cont.)
differential differential
equations equations
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Euler’s method
Origins Origins
Definitions Bt Use the integral approximation
(to+ a0 =x(w)+ [ artx(r),7] .
B x(to + At) = x(to +/ 7f|x(7), T B t+AT
. o [ artlx(, ) = g0 e
time-invariant to+2At time-invariant t
Grermered] e x(to + 2At) = x(to) +/ drf [x(‘r), 7'] Cermoa il
to:_f;At Start from %(t9) = x(fp) and divide the integration interval [to, t]
Fourier transforms 0 Fourier transforms
Laplace transforms x(to + 3At) 4 x(to) +/ drf [x(T),T] Tt oyl G ~ nosteps, fop < t1 < - < tp =1t
Numerical to+2A1 Numerical - _ _
st A et At =tpp1 =t

Different approximations of the integral lead to different numerical methods

At each step k, we approximate the solution

o K(tpr) = %(4) + F[R (), ] At
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. We can improve this approximation by using a trapezoidal approximation
. The global order of a numerical method Sirion
Definitions Definitions t+At At
It is defined to be the smallest exponent p such that if we numerically solve / drf[x(7), 7] & —{f[x(1), t] + f[x(t + At), t + At]}
N an ODE using n = 1/At¢ steps of length A¢, there is a constant K such that P t 2
Linear and Linear and
R ~ % (tn) — x(ta)| < K(AL)P . The resulting approximation integration rule
Fourier transforms X(tn) is the approximation of x(¢,), the true solution Fourier transforms ~ £: f f
Laplace transforms " bp & Laplace transforms ~ x(tk’+1) ~ x(tk:) + 7{ [x(tk’)’ tk’} + [x(tk’+l)’ tl‘:+l}}
Numerical Numerical
integration The error of integrating over 1/At steps is proportional to At integration
e The first discarded term is order (At)?2 This is an implicit recursion rule [x(#x+1) appears also on the RHS]
. e We must solve a nonlinear system of equation to use this rule
Thus, the Euler method is order p =1 X .
e (At each iteration step, heavy for large x)
T Numerical integration (cont.) . Numerical integration (cont.)
differential differential
equations equations
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Heun’s method
ij,”‘ Replace the the RHS of the solution with its Euler’s approximation ij‘
o Start from X(#) = x(tp) and divide the integration interval [to, ¢] P
I,\n(::n and . ~n steps, tO < tl < < tn =t :,,‘,(i\‘~ and .
General linear At =ty — b, General linear Another useful class of methods are the Runge-Kutta methods
e We consider the classical 4-th order case
;‘ “t At each step k, we approximate the solution :1 ’i
o = Klepn) = %(0) +1[%(0), ] At e

~ o R(tga1) = X(t) + %{f{&(tk;), tr] + £[R(tgg1), toyr]

The method has global order p = 2
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time-invariant
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Numerical integration (cont.)

Runge-Kutta method (4-th order)

Start from %(fy) = x({y) and divide the integration interval [to, ¢]
~ mosteps, o<t << tp =1t
At =ty —

At each step k, we approximate the solution

Ax) = f[%(tg), tr] At
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Definitions
Solution
Generalities

Linear and
time-invariant

General linear
I'ransforms

Fourier transforms

Numerical integration (cont.)

The method can be derived by writing the Taylor expansion for the solution

e Select coefficient so that lower-order terms cancel out

Fourier transforms
Ax} At T The method has global order p = 4
Laplace t £ Axﬁ:f[fc(tk)—i- k,tk-i-—]At Laplace £
Numerical 2 2 Numerical
integration 5 integration
Ax t
Picard-Lindel A %:f[f((tk)—‘er,tk-‘r?]At Picard-Lindelsf
theorem theorem
Axp = f[x(tp) + A, 4 + At] At
o o 1 1 2 3 4
o X(tpy1) = x(t) + E(Axk + 2Axj + 2Ax;, + Axy)
Ordinary Numerical integration (cont.) Ordinary
differential differential
equations equations
UFC/DC UFC/DC
SA (CK0191) SA (CKO0191)
2018.1 2018.1
General concept General concept
Origins Origins
Definitions Definitions
olution olution
Generalities Generalities 4 L4 (XJ
Picard-Lindel6f theorem

Linear and

time-invariant
General linear
I'ransform

Fourier transforms

Laplace transforms

Numerical
integration

Picard-Lindel¢
theorem

There is a wide class of methods for integrating ordinary differential forms

The methods that we have overviewed have fixed step length

e There exists various variable step size methods

Linear and
time-invariant

General linear
I'ransforms

Fourier transforms

Laplace transforms

Numerical

integration

Picard-Lindelsf
theorem

Ordinary differential equations
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time-invariant

General linear

Fourier transforms

Laplace transforms

Picard-Lindelsf

Picard-Lindelof theorem

It is important to know whether a solution to a ODE exists and is unique

‘We consider a general equation

%: £x(t), t]

e Function f(x(t), t) is given

Suppose that function f — f[x(t)7 t] is integrable in the Reimann sense

e We can integrate both sides of the equation from ty to ¢

o x(t):X()—‘r/./de[X(T),T}
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Fourier transforms

Laplace transforms

Picard-Lindelsf
theorem

Picard-Lindelsf theorem (cont.)

Picard’s algorithm
Start with an initial guess ¢o(t) = xo

Then, compute the approximations ¢1t,2(t),p3(t),.. .,

¢
~  pnt1(t) = %o +/ drf [pn(t), t]

to

e Same recursion used for linear differential equations

The procedure converges to the unique (around ¢ = #g) solution

~ erme n(t) =x(1)

theorem
to
The identity can be used to find approximate solutions f(x, t) must be continuous in x and ¢, and Lipschitz continuous in x
e Picard’s iteration
Ordinary Picard-Lindelsf theorem (cont.)
differential
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Origins

Definitions

Generalities
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General linear

Fourier transforms

Laplace transforms

Picard-Lindelsf
theorem

The Picard-Lindel6f theorem, informally

Under the above continuity conditions, the differential equation has a solu-
tion and that solution is unique in a certain interval around t = tg




