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Ordinary differential equations

Ordinary differential equations are equations in some unknown quantity

• The unknown quantity is a function

The equations involve the derivatives of the unknown function

We provide some general background on ODEs
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theorem

General concepts

Interrelated changing entities are commonplace in systems modelling

• Changing entities are called variables

The rate of change of one variable with respect to another is a derivative

Relations among variables and their derivatives are differential equations

We are interested in knowing how the variables are related
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Origins

Example

Consider the problem of determining the age of a bonfire

! From the remains of charcoal

We know a few things, from common sense and notions

• Charcoal is burned wood

• Wood is organic matter

• Organic matter is C

• C has two isotopes

! C14 and C12

In living organisms, the [C12]/[C14] ratio is constant

• C14 is radioactive

• C12 is stable
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Origins (cont.)

When organic matter dies its composition changes, with time

• C14 lost by radiation is not replaced

! [C14] and [C12]/[C14] change

The changing entities of this problem are [C14] and time t

• The changing entities are related to each other

The relation between them requires the use of derivatives

• The relation is a differential equation
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Origins (cont.)

Let t be the time elapsed since the wood was chopped off its tree

Let x(t) be the amount of C14 in the dead chops/charcoal

• At any time t

The instantaneous rate at which C14 decomposes is
dx(t)

dt
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Origins (cont.)

We assume that the rate of decomposition varies linearly with x(t)

!
dx(t)

dt
= −kx(t)

• k > 0, proportionality constant

• − sign, [C14] is decreasing

Instantaneous rate of decomposition of C14 is k -times the amount of C14

• According to this relationship (a differential equation)
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Origins (cont.)

dx(t)

dt
= −kx(t)

For instance, let us suppose that k = 0.01 and let t be measured in years

! For x(t)|t1 = 200 [units], we have dx(t)/dt |t1 = 2 [units/year]

! For x(t)|t2 = 50 [units], we have dx(t)/dt |t2 = 1/2 [units/year]
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Origins (cont.)

dx(t)

dt
= −kx(t)

Next task, try to determine a functionality between x and time t , x(t)

We multiply both sides of the differential equation by dt/x(t)

dx(t)

dt

dt

x(t)
= −kx(t)

dt

x(t)

!
dx(t)

x(t)
= −kdt

By integration,
! log

[
x(t)

]
= −kt + c

c is an arbitrary constant M
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Origins (cont.)

log [x(t)] = −kt + c

By the definition of logarithm, we get

! x(t) = e(−kt+c) = ece(−kt) = Ae(−kt)

This is nearly the answer we are after1

• We need values for A and k

1A relation between the variable quantity x and the variable time t.
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Origins (cont.)

x(t) = Ae(−kt)

At time t = 0, by substitution, we know we had x(t = 0) = A units of C14

From chemistry, we know ∼ 99, 876% of A is still present after 10 years

• For t = 10, we have x(t = 10) = 0.99876A

Thus,

0.99876A = Ae(−10k)

0.99876 = e(−10k)

log (0.99876) = −10k

−0.00124 = −10k

! k = 0.000124 M
A
R
18
,
20
18

–
FC

–

Ordinary
differential
equations

UFC/DC
SA (CK0191)

2018.1

General concepts

Origins

Definitions

Solution

Generalities

Linear and
time-invariant

General linear

Transforms

Fourier transforms

Laplace transforms

Numerical
integration

Picard-Lindelöf
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Origins (cont.)
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For k = 0.000124

! x(t) = Ae−0.000124t

We need to determine the value of A

• The initial amount of C14
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Origins (cont.)

By chemical analysis of charcoal, we can measure [C14]/[C12]

• Living wood (known) and bonfire (measured)

At time t (now), 85.5% of [C14] had decomposed

! 14.5% remained (0.145A)
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0.145A = Ae−0.000124t

0.145 = e−0.000124t

log (0.145) = −0.000124t

−1.9310 = −0.000124t

! t = 15573 M
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theorem

Definitions
General concepts



M
A
R
18
,
20
18

–
FC

–

Ordinary
differential
equations

UFC/DC
SA (CK0191)

2018.1

General concepts

Origins

Definitions

Solution

Generalities

Linear and
time-invariant

General linear

Transforms

Fourier transforms

Laplace transforms

Numerical
integration

Picard-Lindelöf
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Definitions

In calculus, we studied methods for differentiating elementary functions

Example

Consider the function y(x) = log (x)

We have the successive derivatives

d

dx
y(x) =

1

x
= y ′

d2

dx
y(x) =

− 1

x2
= y ′′

d3

dx
y(x) =

2

x3
= y ′′′

· · · = · · ·

The equations involve variables and their derivatives

• One independent variable x

They are called ordinary differential equations
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Definitions (cont.)

Example

−1 0 1 −1
0

1
0

10

x
y

z
=

f
(x

,y
) Consider the function

z(x , y) = x3 − 3xy + 2y2
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Definitions (cont.)

z(x , y) = x3 − 3xy + 2y2

The partial derivatives with respect to x and y

∂

∂x
z(x , y) = 3x2 − 3y

∂

∂y
z(x , y) = −3x + 4y

∂2

∂x2
z(x , y) = 6x

∂2

∂y2
z(x , y) = 4

· · · = · · ·

The equations involve variables and their derivatives

• Two independent variables x and y

They are called partial differential equations
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Definitions (cont.)

Definition

Ordinary differential equation

Let f (x) be a function of x defined over some interval, I : a < x < b

By ordinary differential equation, we mean an equation involving x , the
function f (x) and one or more of the derivatives of f (x)

"

Definition

Order of a differential equation

The order of a differential equation is the order of the highest derivative
involved in the equation

"
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Definitions (cont.)

Habits

Common custom in writing differential equations uses f (x) for y(x) or y

d

dx
f (x) + x ·

[
f (x)

]2
= 0 !

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d

dx
y(x) + x · [y(x)]2 = 0

d

dx
y + xy2 = 0

y ′ + xy2 = 0
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Solution

Consider the algebraic equation

x2 − 2x − 3 = 0

If x is replaced by 3, the equality holds true

• We say that x = 3 is a solution

We mean that x = 3 satisfies the equation
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Solution (cont.)

Consider the differential equation

x2y ′′ + 2xy ′ + y = log (x) + 3x + 1, with x > 0

Function f (x) = log (x) + x is a solution of the differential equation (x > 0)

f (x) and its first and second derivatives can be substituted in y , y ′ and y ′′

• The equality will hold true
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Solution (cont.)

x2y ′′ + 2xy ′ + y = log (x) + 3x + 1, with x > 0

Two things that are worth noting

Values of x for which function f (x) is defined had been clearly specified

• Though they could have been tacitly assumed

! log (x) is undefined for x ≤ 0

We specified the interval in which the differential equation makes sense

• Redundant, because of the presence of log (x)
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Explicit solution

Definition

Explicit solution

Let y = f (x) define y as a function of x over an interval, I : a < x < b

We say that function f (x) is an explicit solution of an ordinary differential
equation involving x , f (x) and derivatives, if it satisfies the equation ∀x ∈ I

Function f (x) is a solution of the differential equation

F
[
x , y , y ′, · · · , y(n)] = 0,

if

F
[
x , f (x), f ′(x), · · · , f (x)(n)

]
= 0, for every x in I

"
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Explicit solution (cont.)

F
[
x , y , y ′, · · · , y(n)] = 0

We can replace y by f (x), y ′ by f ′(x), y ′′ by f ′′(x), ..., y(n) by f (n)(x)

! The differential equation reduces to an identity in x

Habits

We use expressions like ‘solve’ or ‘find a solution’ of a differential equation

! ‘Find a function which is solution of the differential expression’

We may refer to a certain equation as the solution of a differential equation

! We mean, ‘the function defined by the equation is the solution’
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Explicit solution (cont.)

Remark

An equation that does not define a function, cannot be a solution

• Though, you may show that the equation is satisfied

A (real) function

Suppose that to each element of an independent variable x on a set E (the
set must be specified) there corresponds one and only one (real) value of
a dependent variables y

We say that the dependent variable y is a function of the independent
variable x on the set E
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Explicit solution (cont.)

Example

The equation y =
√

−(1 + x2) does not define a (real) function

We cannot say ‘it is a solution of a(ny) differential equation’ x + yy ′ = 0

• Though, x + yy ′ = 0 is satisfied

By formal substitution, we obtain an identity

! y =
√

−(1 + x2)

! y ′ = −x/
√

−(1 + x2)

"
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Explicit solution (cont.)

Example

−5 0 5

0

10

20

x

y = x2

Consider the function

y = x2, with −∞ < x < ∞

Verify that it is a solution to the differential equation

(y ′′)3 + (y ′)2 − y − 3x2 − 8 = 0
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Explicit solution (cont.)

Together with y = f (x) = x2, we have

• y ′ = f ′(x) = 2x

• y ′′ = f ′′(x) = 2
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x

y ′ = 2x

−5 0 5
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x

y ′′ = 2
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Explicit solution (cont.)

(y ′′)
︸ ︷︷︸

f ′′(x)=2

3 + (y ′)
︸︷︷︸

f ′(x)=2x

2 − y
︸︷︷︸

f (x)=x2

−3x2 − 8 = 0

Substituting these values, we obtain

8 + (4x2 − x2)− 3x2 − 8
︸ ︷︷ ︸

F
[

x ,f (x),f ′(x),f ′′(x)
]

= 0

LHS is zero, y = x2 is an explicit solution



M
A
R
18
,
20
18

–
FC

–

Ordinary
differential
equations

UFC/DC
SA (CK0191)

2018.1

General concepts

Origins

Definitions

Solution

Generalities

Linear and
time-invariant

General linear

Transforms

Fourier transforms

Laplace transforms

Numerical
integration

Picard-Lindelöf
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theorem

Explicit solution (cont.)

Example

0 1 2 3

0

5

x

y(x |c) = log(x) + c

Consider function

y = log (x) + c, with x > 0

Verify that it is a solution to the differential equation

y ′ = 1/x
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Explicit solution (cont.)

Together with y = f (x) = log (x) + c, we have

• y ′ = f ′(x) = 1/x , for x > 0

By substitution of these expressions, we get an identity in the variable x

• y = log (x) + c is a solution of y ′ = 1/x , for all x > 0
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Implicit solution

We can also test if an implicit solution defined by f (x , y) = 0 is a solution

• The procedure is much more involved

Not always easy to solve the equation f (x , y) = 0 for y in terms of x

! y = g(x)

Suppose that it can be shown that an implicit function y = g(x) satisfies a
given differential equation over an interval I : a < x < b

• Relation f (x , y) = 0 is an implicit solution of the differential equation
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Implicit solution (cont.)

Implicit function

The relation f (x , y) = 0 defines y as an implicit function of x over the
interval I : a < x < b, if there exists a function y = g(x) defined over I

! f
[
x , g(x)

]
= 0, for every x ∈ I

M
A
R
18
,
20
18

–
FC

–

Ordinary
differential
equations

UFC/DC
SA (CK0191)

2018.1

General concepts

Origins

Definitions

Solution

Generalities

Linear and
time-invariant

General linear

Transforms

Fourier transforms

Laplace transforms

Numerical
integration

Picard-Lindelöf
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Implicit solution (cont.)

Example

−5
0

5−5

0

5−20

0

20

x
y

z = x2 + y2 − 25

Consider the relationship

x2 + y2 − 25 = 0

Does it define a function?

M
A
R
18
,
20
18

–
FC

–

Ordinary
differential
equations

UFC/DC
SA (CK0191)

2018.1

General concepts

Origins

Definitions

Solution

Generalities

Linear and
time-invariant

General linear

Transforms

Fourier transforms

Laplace transforms

Numerical
integration

Picard-Lindelöf
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Implicit solution (cont.)

Let x > +5 or x < −5

• The formula will not determine a value of y

• (If x = 7, no y can satisfy the relation)

Let −5 ≤ x ≤ +5

• We solve the relation for y

• y = ±
√
25− x2

The formula does not uniquely define y(x)

y = +
√

25− x2, (x ∈ [−5,+5])

y = −
√

25− x2, (x ∈ [−5,+5])

y = +
√

25− x2, (x ∈ [−5, 0])

y = −
√

25− x2, (x ∈ (0,+5))

Each formula defines a proper function

• We can choose any of them
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−5 0 5

0

2

4

x

y = +
√
25 − x2

−5 0 5

−4

−2

0

x

y = −
√
25− x2

−5 0 5

0

2

4

x

y = +
√
25 − x2

−5 0 5

−4

−2

0

x

y = −
√
25− x2

"
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Implicit solution (cont.)

Example

−5
0

5−5

0

50

100

x
y

z = x2 + y2 − 3 ∗ x ∗ y

Consider the relationship

x2 + y2 − 3xy = 0

Does it define a function?

If it does, for what values of x will it uniquely determine a value of y?

It is not easy to find the relation for y in terms of x
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Implicit solution (cont.)

Definition

Implicit solution

A relation f (x , y) = 0 is an implicit solution of the differential equation

F
[
x , y , y ′, y ′′, · · · , y(n)] = 0, with x ∈ I = (a, b)

if

1. f (x , y) defines y as an implicit function of x on I (there exists a func-
tion y = g(x) defined over I such that f [x , g(x)] = 0 for every x ∈ I)

2. g(x) satisfies the differential equation

F
[
x , g(x), g(x)′, g(x)′′, · · · , g(x)(n)

]
= 0, for every x ∈ I = (a, b)
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Implicit solution (cont.)

Example

−5
0

5−5

0

5−20

0

20

x
y

z = x2 + y2 − 25

Consider the relation

f (x , y) = x2 + y2 − 25 = 0

Check whether f (x , y) = 0 is an implicit solution of the differential equation

F (x , y , y ′) = yy ′ + x = 0, with I : −5 < x < 5 M
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Implicit solution (cont.)

Function f (x , y) = x2 + y2 − 25 defines y as an implicit function of x ∈ I

! There is a function g(x) defined on I such that

f
[
x , g(x)

]
= 0, ∀x ∈ I

Specifically, let g(x) = y =
√
25− x2 for −5 ≤ x ≤ +5

Then, f (x , y) = f
[

x , g(x)
]

= x2 + [
√

25− x2]
︸ ︷︷ ︸

y

2
− 25 = 0 is satisfied
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Implicit solution (cont.)

−5 0 5

0

2

4

x

g(x) =
√
25 − x2

−5 0 5

−5

0

5

x

g ′(x) = −x/
√
25− x2

By substituting g(x) for y and g ′(x) for y ′ in F (x , y , y ′) = yy ′ + x = 0

! f
[

x , g(x), g ′(x)
]

=
√

25− x2
(

−
x

√
25− x2

)

+ x = 0
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General solution

In calculus, we studied methods for integrating elementary functions

• It was the same as solving differential equations

! y ′(x) = f (x)
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General solution (cont.)

Example

Consider the differential equation

y ′(x) = ex

Its solution, by integration

! y(x) = ex + c

c can take any arbitrary numerical value
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General solution (cont.)

If y ′′(x) = ex , then its solution by double integration

! y(x) = ex + c1x + c2

c1 and c2 can take any numerical values

If y ′′′(x) = ex , then its solution by triple integration

! y(x) = ex + c1x
2 + c2x + c3

c1, c2 and c3 can take any numerical values

"
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General solution (cont.)

Two important (yet false) conjectures seem to stem from this example

‘If a differential equation has a solution, it has infinitely many solutions’

! As many as there are values of c

If a differential equation is first order, then there is only one constant

! If it is second order, two constants

! If it is third order, three constants

! · · ·
‘If a differential equation is n-th order, the solution has n constants’
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General solution (cont.)

Example

Consider the first-order differential equation

(y ′)2 + y2 = 0

Consider the second-order differential equation

(y ′′)2 + y2 = 0

Both differential equations admit only one solution

! y(x) = 0
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General solution (cont.)

Example

Consider the first-order differential equation

|y ′|+ 1 = 0

Consider the second-order differential equation

|y ′′|+ 1 = 0

Both differential equations have no solution
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General solution (cont.)

Example

Consider the first-order differential equation

xy ′ = 1

The equation has no solution if x ∈ I = (−1,+1)

The differential equation can be formally solved

! y(x) = log (|x |) + c

The function is discontinuous at the origin x = 0

! So, that’s not okay over the whole I
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General solution (cont.)

If x < 0, we have y(x) = log (−x) + c1

• This is a valid solution in x < 0

If x > 0, we have y(x) = log (x) + c2

• This is a valid solution in x > 0

There is no valid solution at x = 0
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General solution (cont.)

Example

Consider the first-order differential equation

(y ′ − y)(y ′ − 2y) = 0

The solution to this differential equation

! (y − c1e
x )(y − c2e

2x) = 0

• Two arbitrary constants (not one)
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General solution (cont.)

The examples warn that not all differential equations have a solution

• Also, the number of constants is not the order of the equation

The conjectures are true for a large class of differential equations

Consider a solution that contains n constants c1, c2, . . . , cn

! It is called a n-parameter family of solutions

! c1, c2, . . . , cn are thus parameters
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General solution (cont.)

Definition

Family of solutions

Consider the family of functions in the (n + 1) variables x , c1, c2, . . . , cn

y = f (x , c1, c2, . . . , cn)

Such functions are called a n-parameter family of solutions of the n-order
differential equation

F
[
x , y , y ′, · · · , y(n)] = 0

if for each choice of a set of values c1, c2, . . . , cn the resulting function f (x)
(a function of x alone) is such that

F
[
x , f (x), f ′(x), · · · , f (n)(x)

]
= 0

"
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General solution (cont.)

Example

Consider the functions

y = f (x , c1, c2) = 3 + 2x + c1e
x + c2e

2x

A 2-parameter family of solutions of second-order differential equation

F
[

x , y , y ′, y ′′
]

= y ′′ − 3y ′ + 2y − 4x = 0

Let a, b be any two values of c1, c2

Then, as a function of only x

y = f (x) = 3 + 2x + aex + be2x M
A
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General solution (cont.)

y = f (x) = 3 + 2x + aex + be2x

The first and second derivatives of y = f (x)

y ′ = f ′(x) = 2 + aex + 2be2x

y ′′ = f ′′(x) = aex + 4be2x

Substituting the values of f , f ′ and f ′′ for y , y ′ and y ′′, we get

! F (x , f , f ′, f ′′) = aex + 4be2x − 6− 3aex − 6be2x

+ 4x + 6 + 2aex + 2be2x − 4x

= 0
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General solution (cont.)

We now discuss the inverse problem of finding a differential equation

! Given that its n-parameter family solutions is known

The family will contain the necessary number of n constants

• The n-order equation does not contain them

• The constants need be eliminated (not easy)
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General solution (cont.)

Example

Find a differential equation for the 1-parameter family of solutions

−50 0 50
0

200

400

x

y
(x

|c
)
=

c
co
s
(x

)
+

x

This family has one constant

y = c cos (x) + x

We seek a first-order equation

By differentiating the family of solutions, we obtain

y ′ = −c sin (x) + 1
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General solution (cont.)

y ′ = −c sin (x) + 1

This differential equation still contains the constant

• It is not the searched one

We eliminate it by performing some manipulations (How?)
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General solution (cont.)

Example

Find a differential equation for the 2-parameter family of solutions

y = c1e
x + c2e

−x

We assume it is second-order

What is it?
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General solution (cont.)

Consider the n-parameter family of solutions of a n-order equation

• This family is traditionally called a general solution

• (Of the differential equation)

The function that results from it then becomes a particular solution

• We give a definite set of values to the constants

• (c1 = a, c2 = b, . . . , cn = · · · )
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General solution (cont.)

Example

Consider the first-order parameter family of solutions

y = cex

It is a general solution to the differential equation

y ′ − y = 0

Let c = −2, then y = −2ex becomes a particular solution

"
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General solution (cont.)

By its name, a general solution is expected to contain all solutions

• It should be possible to obtain every particular solutions

• (By giving proper values of the parameters/constants)

The expectation is not necessarily true for all differential equations

• There are cases whose solution cannot be retrieved

• (No matter what values are given to the constants)
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General solution (cont.)

Example

Consider the first-order differential equation

y = xy ′ + (y ′)2

For a solution, it has the 1-parameter family

! y = cx + c2

Traditionally, this solution would be called a general solution

• Since it contains one parameter

Yet, it is not a truely general-general-general solution

• It does not contain every particular solution
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General solution (cont.)

y = cx + c2

It can be shown that function y = −x2/4 is also a solution

• (Verify it)

This solution cannot be obtained from the general solution

• Whatever is the the value we give to c

• (It is a second order equation)
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General solution (cont.)

Consider solutions that cannot be retrieved from the general solution

• Singular solutions

Both the wording ‘general’ and ‘singular solution’ are inappropriate

• Source of unnecessary confusion

We show this by examples
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General solution (cont.)

Example

Consider the first-order differential equation

y ′ = −2y3/2

Its solution (verify it)

! y =
1

(x + c)2

The differential equation has also another solution

! y = 0

This one cannot be gotten by assigning a value to c M
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General solution (cont.)

y =
1

(x + c)2

By the traditional definition y = 0 would be a singular solution

We could write the ‘general solution’ (check it)

y =
C2

(Cx + 1)2

According to this form, y = 0 is not a singular solution if C = 0

"
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General solution (cont.)

Example

Consider the first order differential equation

(y ′ − y)(y ′ − 2y) = 0

Two distinct 1-parameter families of solutions

! y = c1e
x

! y = c2e
2x

How can they both be general/singular solutions?
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General solution (cont.)

Definition

Particular solution

A solution of a differential equation is called a particular solution if it
satisfies the equation and it does not contain any arbitrary constants

"

Definition

General solution

A n-parameter family of solutions of a differential equation is called a gen-
eral solution if it contains every particular solution of the equation

"
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General solution (cont.)

There is an infinite number of ways of choosing the n constants

• How do we actually set/choose them?

Usually, we want one solution that satisfies certain conditions

• Typically, these are initial conditions

• y(x = 0), y ′(x = 0), · · ·
The parameters must be set accordingly
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General solution (cont.)

Example

Assume that motion of a body is given by a 2-parameter family

x = 16t2 + c1t + c2

x(t) denotes the position of the body from some origin

We know that at t = 0, we had

! x(t = 0) = 10

! v(t = 0) = 20

v = dx/dt = 32t + c1

We must set c1 and c2

By substituting the initial values [t = 0, x(t = 0) = 10 and v(t = 0) = 20]

c1 = 20

c2 = 10
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General solution (cont.)

With those parameter values, the particular solution

0 0.5 1
0

20

40

t

x

x = 16t2 + 20t + 10
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General solution (cont.)

Definition

Initial conditions

The conditions that enable us to determine the values of the arbitrary con-
stants/parameters c1, c2, . . . , cn in a n-parameter family of solutions are
called initial conditions

• If given in terms of one value of the independent variable, t = 0

"

Remark

Normally, number of initial conditions and order of the equation must match

• There are exceptional cases, which we do not consider

"
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General solution (cont.)

Example

Find the 1-parameter family of solutions of the differential equation

yy ′ = (y + 1)2

Find a particular solution for the initial conditions y(x = 2) = 0

If y ≠ −1, we can divide the differential equation by (y + 1)2

!

∫
y

(y + 1)2
dy =

∫

dx , (y ≠ −1)

The 1-parameter family, by integration

!
1

y + 1
+ log (|y + 1|) = x + c, (y ≠ −1) M
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General solution (cont.)

1

y + 1
+ log (|y + 1|) = x + c, (y ≠ −1)

The value of the parameter for which x = 2 and y = 0

1 = 2 + c ! c = −1

The particular solution

!
1

y + 1
+ log (|y + 1|) = x − 1, (y ≠ −1)
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General solution (cont.)

We had to discard the function y = −1

• This function also is a solution

• (check!)

It cannot be obtained from the family

"
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General solution (cont.)

Consider the second order differential equation of a forced spring

d2x(t)

dt2
+ γ

dx(t)

d
+ ν2x(t) = w(t)

γ and ν are constants

Force w(t) is some given function (may/may not depend on time)

• Position x(t) is the dependent variable

• Time t is the independent variable

The equation is called inhomogeneous, because of the forcing term
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General solution (cont.)

The solution to the differential equation is defined as particular solution

• It satisfies the ordinary differential equation

• Does not contain arbitrary constants

A general solution contains every possible particular solutions

• Parameterised by some free constants
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General solution (cont.)

To solve the equation, we tie together general solution and initial conditions

We need to know the spring position x(t0) and velocity dx(t0)/dt

• At some fixed initial time t0

Given the initial conditions, there is a unique solution to the equation

• (provided that w(t) is continuous)
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General solution (cont.)

It is common to omit dependencies of x and w on t

d2

dt2
x(t) + γ

d

dt
x(t) + ν2x(t) = w(t)

Time derivatives are often denoted using dot (Newtonian) notation

ẍ(t) + γẋ(t) + ν2x(t) = w(t)

! ẍ(t) = d2x(t)/dt

! ẋ(t) = dx(t)/dt
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General solution (cont.)

Differential equations of arbitrary order n can almost always be converted

! Vector differential equations of order one



M
A
R
18
,
20
18

–
FC

–

Ordinary
differential
equations

UFC/DC
SA (CK0191)

2018.1

General concepts

Origins

Definitions

Solution

Generalities

Linear and
time-invariant

General linear

Transforms

Fourier transforms

Laplace transforms

Numerical
integration

Picard-Lindelöf
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General solution (cont.)

d2

dt2
x(t) + γ

d

d
x(t) + ν2x(t) = w(t)

For the spring model, we can define the state variable x(t)

! x(t) =
[
x1(t), x2(t)

]
=

[
x(t), dx(t)/dt

]

We re-write the original equation as a first-order equation

!

[
dx1(t)/dt
dx2(t)/dt

]

︸ ︷︷ ︸

dx(t)/dt

=

[
0 1

−ν2 −γ

] [
x1(t)
x2(t)

]

︸ ︷︷ ︸

f[x(t)]

+

[
0
1

]

︸︷︷︸

L

w(t)
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General solution (cont.)

The more general form

dx(t)

dt
= f

[
x(t), t

]
+ L

[
x(t), t

]
w(t)

• The vector values function x(t) ∈ Rn is called the state of the system

• The vector valued function w(t) ∈ Rs is the forcing (input) function

It is possible to absorb the second term in the RHS into the first one

We get,

!
dx(t)

dt
= f

[
x(t), t

]
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General solution (cont.)

The first-order vector representation of a n-order differential equation

! The state-space representation

We develop the theory and solution methods for first-order equations
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General solution (cont.)

The spring model is a special case of linear differential equation

dx(t)

dt
= F(t)x(t) + L(t)w(t)

It is an important class of differential equations

! We can actually solve these equations
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Linear and time-invariant
Solution
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Linear and time-invariant

Consider a scalar linear homogeneous differential equation

dx(t)

dt
= f · x(t), given x(0)

f is a constant (time-independent) scalar

The equation can be solved by variable separation

!
dx(t)

x(t)
= f · dt

We integrate the LHS from x(0) to x(t) and the RHS from 0 to t

! ln [x(t)]− ln [x(0)] = f · t ! x(t) = x(0)e(f ·t)
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Linear and time-invariant (cont.)

Another way of solving the equation consists of integrating both sides

dx(t)

dt
= f · x(t), given x(0)

Integrating from 0 to t , we get
∫ t
0 dx/dt = x(t)− x(0)

! x(t) = x(0) +

∫ t

0
dτ f · x(τ)

We can now substitute the RHS of the equation for x(t) in the integral

x(t) = x(0) +

∫ t

0
dτ f ·

[

x(0) +

∫ τ

0
dτ f · x(τ)

]

= x(0) + f · x(0)
∫ τ

0
dτ +

∫ t

0

∫ t

0
dτ2f · x(τ)

= x(0) + f · x(0) · t
∫ t

0

∫ t

0
dτ f 2 · x(τ) M
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Linear and time-invariant (cont.)

The same procedure can be performed again on the last integral

x(t) = x(0) + f · x(0) · t
∫ t

0

∫ t

0
dτ2f 2

[

x(0) +

∫ τ

0
dτ f · x(τ)

]

= x(0) + f · x(0) · t + f 2 · x(0)
∫ t

0

∫ t

0
dτ2 +

∫ t

0

∫ t

0

∫ t

0
f 3 · x(τ)dτ3

It is easy to repeat the same procedure

x(t) = x(0) + f · x(0) · t + f 2 · x(0)
t2

2
+ f 3 · x(0)

t3

6
+ · · ·

=
(

1 + f · t +
f 2 · t2

2!
+

f 3 · t3

3!
+ · · ·

)

︸ ︷︷ ︸

e(f ·t)

x(0)

As the Taylor expansion of e(f ·t) converges, we have

! x(t) = e(f ·t)x(0)
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Linear and time-invariant (cont.)

The multivariate generalisation of homogeneous linear differential equations

dx(t)

dt
= Fx(t), given x(0)

F is a constant (time-independent) matrix

We cannot use variable separation
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theorem

Linear and time-invariant (cont.)

We can use the expansion-based type solution

! x(t) =
(

I+Ft +
F2t2

2!
+

F3t3

3!
+ · · ·

)

︸ ︷︷ ︸

e(Ft)

x(0)

The series (always) converges [To the matrix exponential e(Ft)]

! x(t) = e(Ft)x(0)
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Linear and time-invariant (cont.)

The matrix exponential can be evaluated analytically

• Taylor series expansion

• Laplace transform

• Fourier transform

• Cayley-Hamilton

• · · ·
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theorem

Linear and time-invariant (cont.)

Consider the linear differential equation, with inhomogeneous term

dx(t)

dt
= Fx(t) + Lw(t), given x(0)

F and L are constant (time-independent) matrices

These equations can be solved using the integrating factor method
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Linear and time-invariant (cont.)

We first move Fx(t) to the LHS and then we multiply by e(−Ft)

! e(−Ft) dx(t)

dt
− e(−Ft)Fx(t) = e(−Ft)L(t)w(t)

From the definition of matrix exponential, we derive

!
d

dt

[
e(−Ft)] = −e(−Ft)F

We have,

!
d

dt

[
e(−Ft)x(t)

]
= e(−Ft) dx(t)

dt
− e(−Ft)Fx(t)
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Linear and time-invariant (cont.)

Thus, we can re-write

!
d

dt

[

e(−Ft)x(t)
]

= e(−Ft)L(t)w(t)

By integrating between t0 and t , we get

! e(−Ft)x(t)− e(−Ft0)x(t0) =

∫ t

t0

dτe(−Fτ)L(τ)w(τ)

The complete solution

! x(t) = e
[

−F(t−t0)
]

x(t0) +

∫ t

t0

dτe
[

F(t−τ)
]

L(τ)w(τ)
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General linear
Solution
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General linear

Consider the general time-varying linear differential equations

dx(t)

dt
= F(t)x(t), given x(t0)

• The solution in terms of matrix exponential is not valid

We can still formulate the implicit solution

! x(t) = Ψ(t , t0)x(t0)

! Ψ(t , t0) is the transition matrix

Given the transition matrix, we can build the solution
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General linear (cont.)

Transition matrix

The properties that define the transition matrix Ψ(t , t0)

∂Ψ(τ, t)/∂τ = F(τ)Ψ(τ, t)

∂Ψ(τ, t)/∂t = −Ψ(τ, t)F(t)

Ψ(τ, t) = Ψ(τ, s)Ψ(s, t)

Ψ(t , τ) = Ψ−1(τ, t)

Ψ(t , t) = I
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General linear (cont.)

Consider the inhomogeneous case

dx(t)

dt
= F(t)x(t) + L(t)w(t), given x(t0)

The solution is analogous to the time-invariante case

• The integrating factor is Ψ(t0, t)

We obtain the solution,

! x(t) = Ψ(t , t0)x(t0) +

∫ t

t0

dτΨ(t , τ)L(τ)w(τ)
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Transforms
Ordinary differential equations
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theorem

Fourier transforms
Transforms
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Fourier transforms

Useful for solving inhomogeneous linear time-invariant differential equations

The Fourier transform of a function g(t)

! G(iω) = F
[
g(t)

]
=

∫
∞

−∞

dtg(t)e(−iωt)

The corresponding inverse transform

! g(t) = F−1[G(iω)
]

=
1

2π

∫
∞

−∞

dωG(iω)e(−iωt)
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Fourier transforms (cont.)

The main usefulness comes from the following property

! F
[

dng(t)/dtn
]

= (iω)nF
[

h(t)
]

! Differentiation transformed into multiplication by (iω)

Also convolution can be transformed into multiplication

! F
[
g(t) ⋆ h(t)

]
= F

[
g(t)

]
F
[
h(t)

]

! This is known as the convolution theorem2

2Convolution is defined as

g(t) ⋆ (t) =

∫
∞

−∞

dτg(t − τ)h(τ).
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Fourier transforms (cont.)

Remark

These properties require that the initial conditions are zero

• Not an actual restriction

"
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Fourier transforms (cont.)

Consider the spring model

d2x(t)

dt2
+ γ

dx(t)

dt
+ ν2 = w(t)

By taking the Fourier transform, we get

! (iω)2X (iω) + γ(iω)X (iω) + ν2X (iω) = W (iω)

• X (iω) is the Fourier transform of x(t)

• W (iω) is the Fourier transform of w(t)
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Fourier transforms (cont.)

(iω)2X (iω) + γ(iω)X (iω) + ν2X (iω) = W (iω)

We first solve for X (iω), we get

X (iω) =
W (iω)

(iω)2 + γ(iω)ν2

We take the inverse-transform, we get

! x(t) = F−1
[ W (iω)

(iω)2 + γ(iω) + ν2

]

This is the solution
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Fourier transforms (cont.)

For a general w(t), we note that the RHS is a product

W (iω)

(iω)2 + γ(iω) + ν2
=

1

(iω)2 + γ(iω) + ν2
W (iω) = H (iω)W (iω)

This product can be converted into a convolution

We compute the impulse response function

h(t) = F−1
[ 1

(iω)2 + γ(iω) + ν2

]

= b−1e(−at) sin (bt)u(t)

! We have a = γ/2 and b =
√

ν2 − γ2/4

! u(t), the Heaviside step function
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Fourier transforms (cont.)

Then, we get the full solution

! x(t) =

∫
∞

−∞

dτh(t − τ)w(τ)

We construct x(t) by feeding the signal w(t) through a linear system

• (a filter) with impulse responses h(t)
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Fourier transforms (cont.)

We can use the Fourier transform for general LTI equations

dx(t)

dt
= Fx(t) + Lw(t)

By taking the Fourier transform, we get

! (iω)X(iω) = FX(iω) + LW(iω)

By solving for X(iω), we get

! X(iω) =
[
(iω)I − F

]
−1LW(iω)
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Fourier transforms (cont.)

X(iω) =
[
(iω)I − F

]
−1

LW(iω)

We compare it with the solution

x(t) = Ψ(t , t0)x(t0) +

∫ t

t0

dτΨ(t , τ)L(τ)w(τ)

We obtain the useful identify

! F−1
{[

(iω)I − F
]
−1}

= e(Ft)u(t)

This is a valid way of computing matrix exponentials
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Laplace transforms
Transforms
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Laplace transforms

Another transform commonly used for solving LTI equations

The Laplace transform of a function f (t)

! F (s) = L
[
f (t)

]
(s) =

∫
∞

0
dtf (t)e(−st), for t ≥ 0

The corresponding inverse transform

! f (t) = L−1[F (s)](t)
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Numerical integration

Consider the nonlinear differential equation

dx

dt
= f

[
x(t), t

]
, given x(t0)

We cannot derive an analytical solution

! We resort to a numerical solution

! An approximation
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Numerical integration (cont.)

dx

dt
= f [x(t), t ]

We integrate the equation from t to t +∆t

x(t +∆t) = x(t) +

∫ t+∆t

t

dτ f
[

x(τ), τ
]

We generate the solution at time steps t0, t1 = t0 +∆t , t2 = t0 + 2∆t , · · ·
• We must know how to calculate the integral
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Numerical integration (cont.)

x(t0 +∆t) = x(t0) +

∫ t0+∆t

t0

dτ f
[

x(τ), τ
]

x(t0 + 2∆t) = x(t0) +

∫ t0+2∆t

t0+∆t

dτ f
[

x(τ), τ
]

x(t0 + 3∆t) = x(t0) +

∫ t0+3∆t

t0+2∆t

dτ f
[

x(τ), τ
]

· · · = · · ·

Different approximations of the integral lead to different numerical methods
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Numerical integration (cont.)

Euler’s method

Use the integral approximation

∫ t+∆τ

t

dτ f
[
x(τ), τ

]
≈ f

[
x(t), t

]
∆t

Start from x̂(t0) = x(t0) and divide the integration interval [t0, t ]

! n steps, t0 < t1 < · · · < tn = t

! ∆t = tk+1 − tk

At each step k , we approximate the solution

! x̂(tk+1) = x̂(tk ) + f
[
x̂(tk ), tk

]
∆t
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Numerical integration (cont.)

The global order of a numerical method

It is defined to be the smallest exponent p such that if we numerically solve
an ODE using n = 1/∆t steps of length ∆t , there is a constant K such that

!
∣
∣x̂(tn)− x(tn)

∣
∣ ≤ K (∆t)p

x̂(tn ) is the approximation of x(tn), the true solution

The error of integrating over 1/∆t steps is proportional to ∆t

• The first discarded term is order (∆t)2

Thus, the Euler method is order p = 1
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Numerical integration (cont.)

We can improve this approximation by using a trapezoidal approximation

∫ t+∆t

t

dτ f [x(τ), τ ] ≈
∆t

2
{f [x(t), t ] + f [x(t +∆t), t +∆t ]}

The resulting approximation integration rule

! x(tk+1) ≈ x(tk ) +
∆t

2

{

f
[

x(tk ), tk
]

+ f
[

x(tk+1), tk+1
]}

This is an implicit recursion rule [x(tk+1) appears also on the RHS]

• We must solve a nonlinear system of equation to use this rule

• (At each iteration step, heavy for large x)
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Numerical integration (cont.)

Heun’s method

Replace the the RHS of the solution with its Euler’s approximation

Start from x̂(t0) = x(t0) and divide the integration interval [t0, t ]

! n steps, t0 < t1 < · · · < tn = t

! ∆t = tk+1 − tk

At each step k , we approximate the solution

! x̃(tk+1) = x̂(tk ) + f
[

x̂(tk ), tk
]

∆t

! x̂(tk+1) = x̂(tk ) +
∆t

2

{
f
[
x̂(tk ), tk

]
+ f

[
x̃(tk+1), tk+1

]}

The method has global order p = 2 M
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Numerical integration (cont.)

Another useful class of methods are the Runge-Kutta methods

• We consider the classical 4-th order case
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Numerical integration (cont.)

Runge-Kutta method (4-th order)

Start from x̂(t0) = x(t0) and divide the integration interval [t0, t ]

! n steps, t0 < t1 < · · · < tn = t

! ∆t = tk+1 − tk

At each step k , we approximate the solution

∆x1
k = f

[

x̂(tk ), tk
]

∆t

∆x2
k = f

[

x̂(tk ) +
∆x1

k

2
, tk +

∆t

2

]

∆t

∆x3
k = f

[

x̂(tk ) +
∆x2

k

2
, tk +

∆t

2

]

∆t

∆x4
k = f

[
x̂(tk ) +∆x3

k , tk +∆t
]
∆t

! x̂(tk+1) = x̂(tk ) +
1

6
(∆x1

k + 2∆x2
k + 2∆x3

k +∆x4
k ) M
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Numerical integration (cont.)

The method can be derived by writing the Taylor expansion for the solution

• Select coefficient so that lower-order terms cancel out

The method has global order p = 4
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Numerical integration (cont.)

There is a wide class of methods for integrating ordinary differential forms

The methods that we have overviewed have fixed step length

• There exists various variable step size methods
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Picard-Lindelöf theorem

It is important to know whether a solution to a ODE exists and is unique

We consider a general equation

dx

dt
= f

[

x(t), t
]

• Function f(x(t), t) is given

Suppose that function f ,→ f
[
x(t), t

]
is integrable in the Reimann sense

• We can integrate both sides of the equation from t0 to t

! x(t) = x0 +

∫ t

t0

dτ f
[
x(τ), τ

]

The identity can be used to find approximate solutions

• Picard’s iteration M
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Picard-Lindelöf theorem (cont.)

Picard’s algorithm

Start with an initial guess ϕ0(t) = x0

Then, compute the approximations ϕ1t ,ϕ2(t),ϕ3(t),. . . ,

! ϕn+1(t) = x0 +

∫ t

t0

dτ f
[

ϕn(t), t
]

• Same recursion used for linear differential equations

The procedure converges to the unique (around t = t0) solution

! lim
n→∞

ϕn(t) = x(t)

f(x, t) must be continuous in x and t , and Lipschitz continuous in x
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Picard-Lindelöf theorem (cont.)

The Picard-Lindelöf theorem, informally

Under the above continuity conditions, the differential equation has a solu-
tion and that solution is unique in a certain interval around t = t0


