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We overview fundamental concepts in linear algebra

• Matrix and vectors, definitions

• Main matrix operators

• Matrix determinant and rank

• Systems of linear equations

• Matrix inverse

• Eigenvalues and eigenvectors
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Matrices and vectors

Definition

A matrix

A matrix A of dimension (m × n) is a table of elements

• m rows and n columns

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 a1,2 · · · a1,j · · · a1,n
a2,1 a2,2 · · · a2,j · · · a2,n
...

...
. . .

...
. . .

...
ai,1 ai,2 · · · ai,j · · · ai,n
...

...
. . .

...
. . .

...
am,1 am,2 · · · am,j · · · am,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We use the notation A = {ai,j } to denote that matrix A has elements ai,j

• At the intersection of row i with column j
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Matrices and vectors (cont.)

We consider real matrices, in which element ai,j ∈ R

To indicate a matrix, we use upper-case bold letters

A,B,C, . . .

Am×n indicates a matrix A of dimension (m × n)
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Matrices and vectors (cont.)

Example

Consider the (2 × 3) matrix

A =

[
1 3.5 2
0 1 3

]

The elements of the matrix

" a1,1 = 1

" a1,2 = 3.5

" a1,3 = 2

" a2,1 = 0

" a2,2 = 1

" a2,3 = 3
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Matrices and vectors

Definition

A scalar and a vector

A scalar is a matrix of dimension (1 × 1)

A vector is a matrix in which one of the dimensions is one

" Row-vector, a (m × 1) matrix (a column)

" Column-vector, (1 × n) matrix (a row)

!

To indicate a vector, we use lower-case bold letters

x,y, z, . . .

x ∈ Rm indicates a column-vector x of dimension (m × 1) A
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Matrices and vectors (cont.)

Example

Consider the 2 vectors

x =

⎡

⎣

1
0
2

⎤

⎦ , y =
[
2 3 0 1.4

]

The type of vectors

" Vector x has dimension (3× 1), a column-vector with 3 components

" Vector y has dimension (1× 4), a row-vector with 4 components
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Matrices and vectors (cont.)

A (m × n) matrix is understood as consisting of n (m × 1) column-vectors

" A =
[

a1 | a2 | · · · | an

]

" ai is the i-th column

A (m × n) matrix is understood as consisting of m (1× n) row-vectors

" A =

⎡

⎢
⎢
⎢
⎣

a′
1

a′
2
...
a′
n

⎤

⎥
⎥
⎥
⎦

" a′
i is the i-th row
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Matrices and vectors (cont.)

Example

Consider the (2 × 3) matrix

A =

[
1 3.5 2
0 1 3

]

As component columns

a1 =

[
1
0

]

, a2 =

[
3.5
1

]

, a3 =

[
2
3

]

As component rows

a′
1 =

[
1 3.5 2

]
, a′

2 =
[
0 1 3

]
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Matrices and vectors (cont.)

Definition

A square matrix

A matrix A is said to be a square matrix if its dimension is (n × n)

• The number of rows equals the number of columns

The diagonal of a square matrix A of order n is the set of elements

{

a1,1, a2,2, · · · , an,n
}

They have the same row- and column-number
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Matrices and vectors (cont.)

Example

Consider the order 4 square matrix

A =

⎡

⎣

1 3.5 2
0 4 3
3 2 6

⎤

⎦

The diagonal
{1, 4, 6}
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Matrices and vectors

Definition

Square matrices

Diagonal

• All off-diagonal elements are zero

Block-diagonal

• All elements are zero except for some square blocks along the diagonal

Lower- (upper-) triangular

• All elements above (below) the diagonal are zero

Lower- (upper-) block-triangular

• All elements above (below) the diagonal are zero except for some
square blocks along the diagonal

Identity matrix

• A diagonal matrix whose diagonal elements are equal to one, I or In
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Matrices and vectors (cont.)

Example

Consider the order 4 square matrices

A =

⎡

⎣

4 0 0
0 3 0
0 0 4

⎤

⎦ , B =

⎡

⎣

4 0 0
2 3 0
6 0 4

⎤

⎦ , C =

⎡

⎣

4 2 6
0 3 0
0 0 4

⎤

⎦

I =

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦

" Matrix A is diagonal

" Matrix B is lower-triangular

" Matrix C is upper-triangular

" Matrix I is an identity of order 3
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Matrices and vectors (cont.)

Matrix Ã is block-diagonal

Ã =

⎡

⎣

Ã1 0 0

0 Ã2 0

0 0 Ã3

⎤

⎦ =

⎡

⎢
⎢
⎣

0 2 0 0
2 1 0 0
0 0 2 0
0 0 0 4

⎤

⎥
⎥
⎦

Three blocks, Ã1, B̃2 and B̃3, one of order 2 and 2 of order 1
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Matrices and vectors (cont.)

Matrix Ã is upper-block-triangular

Ã =

[
B̃1 B̃3

0 B̃2

]

=

⎡

⎢
⎢
⎣

1 2 1 0
0 3 0 4
0 0 2 0
0 0 3 4

⎤

⎥
⎥
⎦

Two diagonal blocks, B̃1 and B̃2, both of order 2
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Transposition

Definition

Matrix transposition

Consider a matrix A = {ai,j } of dimension (m × n)

A =

⎡

⎢
⎢
⎢
⎣

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

⎤

⎥
⎥
⎥
⎦

The transpose of A is the matrix AT =
{
a′
i,j = aj ,i

}
of dimension (n ×m)

AT =

⎡

⎢
⎢
⎢
⎣

a1,1 a2,1 · · · am,1

a1,2 a2,2 · · · am,2

...
...

. . .
...

a1,n a2,n · · · am,n

⎤

⎥
⎥
⎥
⎦

• On the j -th row of AT , the elements of the j -th column of A

• On the i-th column of AT , the elements of the j -th row of A
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Transposition (cont.)

Example

Consider the (2 × 3) matrix

A =

[
1 3.5 2
0 1 3

]

Its transpose

AT =

⎡

⎣

1 0
3.5 1
2 3

⎤

⎦

!
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Transposition (cont.)

The following properties hold

• If D is a diagonal matrix, we have D = DT

• If A is lower-triangular, then AT is upper-triangular

• If A is upper-triangular, then AT is lower-triangular

• If A is a row-vector, AT is a column-vector

• If A is a column-vector, AT is a row-vector

• If B = AT , we have BT = (AT )T
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Definition

Matrix sum and difference

Consider two matrices A = {ai,j } and B = {bi,j } both of dimension (m × n)

Define the sum of A and B as the (m × n) matrix C = {ci,j = ai,j + bi,j }

C = A+B

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 + b1,1 a1,2 + b1,2 · · · a1,j + b1,j · · · a1,n + b1,n
a2,1 + b2,1 a2,2 + b2,2 · · · a2,j + b2,j · · · a2,n + b2,n

...
...

. . .
...

. . .
...

ai,1 + bi,1 ai,2 + bi,2 · · · ai,j+bi,j · · · ai,n + bi,n
...

...
. . .

...
. . .

...
am,1 + bm,1 am,2 + bm,2 · · · am,j + bm,j · · · am,n + bm,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

• Element ci,j is equal to the sum of elements ai,j and bi,j

Define the difference of A and B as the (m × n) matrix

D = A−B = {di,j = ai,j − bi,j }
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Example

Consider the two (2× 3) matrices

A =

[
1 3.5 2
0 1 3

]

, B =

[
1 2 3
4 5 6

]

Their sum

C = A+B =

[
2 2.5 5
4 6 9

]

Their difference

D = A−B =

[
0 1.5 −1
−4 −4 −3

]
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Matrix-scalar product

Definition

Matrix-scalar product

Consider a number s ∈ R and a (m × n) matrix A = {ai,j }

Define matrix-scalar product of A and s as the (m × n) matrix B = sA

B = sA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s · a1,1 · · · s · a1,j · · · s · a1,n
...

. . .
...

. . .
...

s · ai,1 · · · s·ai,j · · · s · ai,n
...

. . .
...

. . .
...

s · am,1 · · · s · am,j · · · s · am,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

• Element bi,j is equal to the product of s and element ai,j
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Example

Let s = 4 and let A =

[
1 3.5 2
0 1 3

]

We have,

sA = 4

[
1 3.5 2
0 1 3

]

=

[
4 14 8
0 4 12

]
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Definition

Matrix-matrix product

Let A = {ai,j } be a (m × n) matrix and let B = {bi,j } be a (n × p) matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 · · · a1,k · · · a1,n
...

. . .
...

. . .
...

ai,1 · · · ai,k · · · ai,n
...

. . .
...

. . .
...

am,1 · · · am,k · · · am,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1,1 · · · b1,j · · · b1,p
...

. . .
...

. . .
...

bk,1 · · · bk,j · · · bk,p
...

. . .
...

. . .
...

bn,1 · · · bn,j · · · bn,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The product between A and B is defined as a (m × p) matrix C = {ci,j }

C = {ci,j =
n∑

k=1

ai,k bk,j }
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Matrix-matrix product (cont.)

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1,1 c1,2 · · · c1,j · · · c1,p−1 c1,p
c2,1 c2,2 · · · c2,j · · · c2,p−1 c2,p
...

...
. . .

...
. . .

...
...

ci,1 ci,2 · · · ci,j · · · ci,p−1 ci,p
...

...
. . .

...
. . .

...
...

cm−1,1 cm−1,2 · · · cm−1,j · · · cm−1,p−1 cm−1,p

cm,1 cm,2 · · · cm,j · · · cm,p−1 cm,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Element ci,j of matrix C is given by the scalar product between a′
i and bj

ci,j = a′
ibj =

[
ai,1 ai,2 · · · ai,k · · · ai,n

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1,j
b2,j
...

bk,j
...

bn,j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ai,1b1,j + ai,2b2,j + · · ·+ ai,n bn,j =
n∑

k=1

ai,k bk,j
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Matrix-matrix product (cont.)

Example

Let A =

⎡

⎣

1 3.5 2
0 1 3
0 0 1

⎤

⎦ and let B =

⎡

⎣

1 2
3 4
5 6

⎤

⎦

We have,

C = AB =

⎡

⎣

1 · 1 + 3.5 · 3 + 2 · 5 1 · 2 + 3.5 · 4 + 2 · 6
0 · 1 + 1 · 3 + 3 · 5 0 · 2 + 1 · 4 + 3 · 6
0 · 1 + 0 · 3 + 1 · 5 0 · 2 + 0 · 4 + 1 · 6

⎤

⎦

=

⎡

⎣

21.5 28
18 22
5 6

⎤

⎦
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Matrix-matrix product (cont.)

For every (m × n) matrix A, we have

Im
︸ ︷︷ ︸

(m×m)

A
︸ ︷︷ ︸

(m×n)

= A
︸ ︷︷ ︸

(m×n)

In
︸ ︷︷ ︸

(n×n)

= A
︸ ︷︷ ︸

(m×n)

Right- and left-multiplication of matrix A by an identity matrix
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Matrix-matrix product (cont.)

Matrix product is not necessarily commutative, AB ≠ BA

A
︸︷︷︸

(m×n)

B
︸︷︷︸

(n×p)

= C
︸︷︷︸

(m×p)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 · · · a1,k · · · a1,n
...

. . .
...

. . .
...

ai,1 · · · ai,k · · · ai,n
...

. . .
...

. . .
...

am,1 · · · am,k · · · am,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1,1 · · · b1,j · · · b1,p
...

. . .
...

. . .
...

bk,1 · · · bk,j · · · bk,p
...

. . .
...

. . .
...

bn,1 · · · bn,j · · · bn,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The product BA is not defined

A and B must be both square and of the same order
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Matrix-matrix product (cont.)

A (n × n) diagonal matrix D commutes with any (n × n) matrix A

DA = AD

D
︸︷︷︸

(n×n)

A
︸︷︷︸

(n×n)

= C
︸︷︷︸

(n×n)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1,1 · · · d1,k · · · d1,n
...

. . .
...

. . .
...

di,1 · · · di,k · · · di,n
...

. . .
...

. . .
...

dn,1 · · · dn,k · · · dn,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 · · · a1,j · · · a1,n
...

. . .
...

. . .
...

ak,1 · · · ak,j · · · ak,n
...

. . .
...

. . .
...

an,1 · · · an,j · · · an,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

" cij = ✟✟di,1a1,j + · · · + di,kak,j + · · · + ✟✟di,nan,j = di,kak,j
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Matrix-matrix product (cont.)

A
︸︷︷︸

(n×n)

D
︸︷︷︸

(n×n)

= C
︸︷︷︸

(n×n)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 · · · a1,j · · · a1,n
...

. . .
...

. . .
...

ak,1 · · · ak,j · · · ak,n
...

. . .
...

. . .
...

an,1 · · · an,j · · · an,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1,1 · · · d1,k · · · d1,n
...

. . .
...

. . .
...

di,1 · · · di,k · · · di,n
...

. . .
...

. . .
...

dn,1 · · · dn,k · · · dn,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

" cij = ak,1✟✟d1,k + · · · + ak,j di,k + · · · + ak,n✟✟dn,k = ak,j di,k
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Example

Let A =

[
1 2
0 2

]

and let B =

[
2 0
2 3

]

We have,

AB =

[
6 6
4 6

]

≠

[
2 4
2 10

]

= BA

!
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Matrix-matrix product (cont.)

Proposition

Let A be a (m × n) matrix

A =

⎡

⎢
⎢
⎢
⎣

a′
1

a′
2
...

a′
m

⎤

⎥
⎥
⎥
⎦

Let B be a (n × p) matrix

B =
[
b1|b2| · · · |bp

]

Let S and Z be order m and order p diagonal matrices

S =

⎡

⎢
⎢
⎢
⎣

s1 0 · · · 0
0 s2 · · · 0
...

...
. . . 0

0 0 0 sm

⎤

⎥
⎥
⎥
⎦
, Z =

⎡

⎢
⎢
⎢
⎣

z1 0 · · · 0
0 z2 · · · 0
...

...
. . . 0

0 0 0 zp

⎤

⎥
⎥
⎥
⎦

We can state a number of identities
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Matrix-matrix product (cont.)

AB =

⎡

⎢
⎢
⎢
⎣

a′
1

a′
2
...

a′
m

⎤

⎥
⎥
⎥
⎦
B =

⎡

⎢
⎢
⎢
⎣

a′
1B

a′
2B
...

a′
mB

⎤

⎥
⎥
⎥
⎦

= A
[
b1|b2| · · · |bp

]
=

[
Ab1|Ab2| · · · |Abp

]
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Matrix-matrix product (cont.)

SA =

⎡

⎢
⎢
⎢
⎣

s1 0 · · · 0
0 s2 · · · 0
...

...
. . . 0

0 0 0 sm

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a′
1

a′
2
...

a′
m

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

s1a′
1

s2a′
2

...
sma′

m

⎤

⎥
⎥
⎥
⎦

BZ =
[
b1|b2| · · · |bp

]

⎡

⎢
⎢
⎢
⎣

z1 0 · · · 0
0 z2 · · · 0
...

...
. . . 0

0 0 0 zp

⎤

⎥
⎥
⎥
⎦

=
[
z1b1|z2b2| · · · |zpbp

]
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Matrix powers

Definition

Powers of a matrix

Let A be a square matrix of order n

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 · · · a1,j · · · a1,n
...

. . .
...

. . .
...

ai,1 · · · ai,j · · · ai,n
...

. . .
...

. . .
...

an,1 · · · an,j · · · an,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The k-th power of matrix A is defined as matrix Ak of order n

Ak =AA · · ·A
︸ ︷︷ ︸

k times

Special cases,

" Ak=0 = I

" Ak=1 = A

!
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Matrix powers (cont.)

Example

Consider the matrix A =

[
1 2
0 1

]

We have,

A0 =

[
1 0
0 1

]

A1 =

[
1 2
0 1

]

A2 =

[
1 4
0 1

]

A3 =

[
1 6
0 1

]

· · · = · · ·

!
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The matrix exponential

Definition

The matrix exponential

Let z be some scalar, by definition its exponential is a scalar

" ez = 1 + z +
z2

2!
+

z3

3!
+ · · · =

∞∑

k=0

zk

k !

The series always converges

Let A be a (n × n) matrix, by definition its exponential is a (n × n) matrix

" eA = I+A+
A2

2!
+

A3

3!
+ · · · =

∞∑

k=0

Ak

k !

The series always converges

!
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The matrix exponential (cont.)

Proposition

The matrix exponential of block-diagonal matrices

Consider a block-diagonal matrix A

A =

⎡

⎢
⎢
⎢
⎣

A1 0 · · · 0
0 A2 · · · 0

...
...

. . .
...

0 0 · · · Aq

⎤

⎥
⎥
⎥
⎦

We have,

" eA =

⎡

⎢
⎢
⎢
⎣

eA1 0 · · · 0

0 eA2 · · · 0
...

...
. . .

...
0 0 · · · eAq

⎤

⎥
⎥
⎥
⎦
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The matrix exponential (cont.)

Proof

For all k ∈ N , we have

Ak =

⎡

⎢
⎢
⎢
⎣

Ak
1 0 · · · 0

0 Ak
2 · · · 0

...
...

. . .
...

0 0 · · · Ak
q

⎤

⎥
⎥
⎥
⎦

Thus,

eA =
∞∑

k=0

Ak

k !
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑∞
k=0

Ak
1

k !
0 · · · 0

0
∑∞

k=0

Ak
2

k !
· · · 0

...
...

. . .
...

0 0 · · ·
∑∞

k=0

Ak
q

k !

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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The matrix exponential (cont.)

Proposition

The matrix exponential of diagonal matrixes

Consider a diagonal (n × n) matrix A

A =

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn

⎤

⎥
⎥
⎥
⎦

We have,

" eA =

⎡

⎢
⎢
⎢
⎣

eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
. . . 0

0 0 · · · eλn

⎤

⎥
⎥
⎥
⎦

!

The result is a special case of the previous proposition
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The matrix exponential (cont.)

Example

Consider the (3 × 3) matrix A

A =

⎡

⎣

−2 0 0
0 0 0
0 0 0.5

⎤

⎦

We are interested in its matrix exponential

We have,

eA =

⎡

⎣

e−2 0 0
0 1 0
0 0 e0.5

⎤

⎦

!
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Definition

Matrix minors

Consider a square matrix A of order n ≥ 2

The minor (i , j ) of matrix A is a square matrix Ai,j of order (n − 1)

" From A by deleting the i-th row and the j -th column

Ai,j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 a1,2 · · · ✟✟a1,j · · · a1,p
a2,1 a2,2 · · · ✟✟a2,j · · · a2,p
...

...
. . . ✆

✆...
. . .

...

✟✟ai,1 ✟✟ai,2 ✚✚· · · ✟✟ai,j ✚✚· · · ✟✟ai,p
...

...
. . . ✆

✆...
. . .

...
am,1 am,2 · · · ✘✘am,j · · · am,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

!
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Determinant (cont.)

Example

Consider the (3 × 3) matrix A

A =

⎡

⎣

1 2 3
4 5 6
7 8 9

⎤

⎦

The minors of order 2

A1,1 =

[
5 6
8 9

]

, A1,2 =

[
4 6
7 9

]

A2,1 =

[
2 3
8 9

]

, A2,2 =

[
1 3
7 9

]
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Determinant (cont.)

Definition

Matrix determinant

Consider a square matrix A of order n

The determinant of A is a real number

" det (A) = |A|

• For n = 1, let A = [a1,1], we have

" det (A) = a1,1

• For n ≥ 2, we have

" det (A) = a1,1 â1,1 + a2,1â2,1 + · · ·+ an,1ân,1 =
n∑

i=1

ai,1âi,1

âi,j , the cofactor of element (i , j ), is a scalar

• It is the determinant of minor Ai,j , multiplied by (−1)i+j

!
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Determinant (cont.)

If det (A) = 0, then matrix A is said to be singular

• It is otherwise said to be non-singular

This definition of determinant allows for a recursive computation

• The determinant of a matrix of order n is a function

• The determinants of matrices of order (n − 1)

• The determinants of matrices of order (n − 2)

• · · · , n = 1
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Determinant (cont.)

Example

Consider a matrix A of order n = 2

A =

[
a1,1 a1,2
a2,1 a2,2

]

We are interested in computing its determinant

We have,

A1,1 =
[
a2,2

]

, " â1,1 = a2,2

A2,1 =
[
a1,2

]
, " â2,1 = −a1,2

The determinant

det (A) =

∣
∣
∣
∣

a1,1 a1,2
a2,1 a2,2

∣
∣
∣
∣
= a1,1a2,2 − a2,1a1,2

For A =

[
2 1
6 4

]

, we obtain det (A) = 2 · 4− 6 · 1 = 2

!
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Example

Consider a matrix A of order n = 3

A =

⎡

⎣

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎤

⎦

We are interested in computing its determinant

The cofactors of the elements along the first column

â1,1 =

∣
∣
∣
∣

a2,2 a2,3
a3,2 a3,3

∣
∣
∣
∣
= a2,2a3,3 − a2,3a3,2

â2,1 = (−1)

∣
∣
∣
∣

a1,2 a1,3
a3,2 a3,3

∣
∣
∣
∣
= −(a1,2a3,3 − a1,3a3,2)

â3,1 =

∣
∣
∣
∣

a1,2 a1,3
a2,2 a2,3

∣
∣
∣
∣
= a1,2a2,3 − a1,3a2,2 A
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Sum the product of each element ai,1 along the first column by cofactor âi,1

" det (A) = a1,1(a2,2a3,3 − a2,3a3,2)

− a2,1(a1,2a3,3 − a1,3a3,2)

+ a3,1(a1,2a2,3 − a1,3a2,2)
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Determinant (cont.)

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 a1,2 · · · a1,j · · · a1,n
a2,1 a2,2 · · · a2,j · · · a2,n
...

...
. . .

...
. . .

...
ai,1 ai,2 · · · ai,j · · · ai,n
...

...
. . .

...
. . .

...
an,1 an,2 · · · an,j · · · an,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Computation of det (A) develops along the elements of A’s first column

det (A) = a1,1 â1,1 + a2,1â2,1 + · · ·+ an,1ân,1 =
n∑

i=1

ai,1âi,1
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Determinant (cont.)

Analogous formulas develop along the elements of any column

For column j , we have

det (A) = a1,j â1,j + a2,j â2,j + · · ·+ an,j ân,j =
n∑

i=1

ai,j âi,j

Similarly, formulas develop along the elements of any row

For row i , we have

det (A) = ai,1 âi,1 + ai,2âi,2 + · · ·+ ai,n âi,n =
n∑

j=1

ai,j âi,j
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Some relationships

The determinant of a diagonal or triangular matrixA is equal to the product
of the elements along the diagonal

" det (A) = a1,1a2,2 · · · an,n

The determinant of a block-diagonal or block-triangular matrix A is equal
to the product of the determinants of the blocks along the diagonal

" det (A) =
q
∏

i=1

det (Ãi )

The determinant of the product of square matrices C = AB is equal to the
product of the determinants

" det (C) = det (A) det (B) A
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Definition

Matrix rank

The rank of a (m × n) matrix A is equal to the number of columns (or
rows, equivalently) of the matrix that are linearly independent

" rank(A)
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Rank and kernel (cont.)

Proposition

Define the minors of matrix A any matrix obtained from A by deleting an
arbitrary number of rows and columns

" rank(A) equals the order of the largest non-singular square minor
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Rank and kernel (cont.)

Definition

Matrix kernel or null space

Consider a (m × n) matrix A

We define the null space or kernel

" ker(A) =
{
x ∈ Rn |Ax = 0

}

It is all vectors x ∈ Rn that left-multiplied by A produce the null vector

The set is a vector space, its dimension is called the nullity of matrix A

" null(A)
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The null vector always belong to ker(A)

If the null vector is also the only element of ker(A), then null(A) = 0

For a matrix A with n columns we have

" rank(A) + null(A)
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Systems of equations

Proposition

Consider a system of n linear equations in n unknowns

Ax = b

" A is a (n × n) matrix of coefficients

" b is a (n × 1) vector of known terms

" x is a (n × 1) vector of unknowns

If matrix A is non-singular, the system admits one and only one solution

If A is singular, let M = [A|b] be a [n × (n + 1)] matrix

• If rank(A) = rank(M), system has infinite solutions

• If rank(A) < rank(M), system has no solutions
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Systems of equations (cont.)

Example

Consider a system of two equations and two unknowns

{

4 = 2x1 + x2
14 = 6x1 + 4x2

In matrix form, Ab = x

A =

[
2 1
6 4

]

b =

[
4
14

]

x =

[
x1
x2

]

The determinant of matrix A, det (A) = 2

" One and only one solution

A
P
R
02
,
20
18

–
FC

–

Linear algebra

UFC/DC
SA (CK0191)

2018.1

Matrices and
vectors

Matrix operators

Transposition

Sum and difference

Matrix-scalar
product

Matrix-matrix
product

Matrix powers

Matrix exponential

Determinant

Rank and kernel

Systems of
equations

Inverse

Eigenvalues and
eigenvectors

Systems of equations (cont.)

The system can be solved by substitution

{

x1 = 2− 1/2x2
6x1 + 4x2 = 14

"

{

x1 = 2− 1/2x2
x2 = 2

"

{

x1 = 1

x2 = 2

The solution in matrix form, x =

[
1
2

]

!
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Systems of equations (cont.)

Example

Consider a system of two equations and two unknowns

{

x1 + 2x2 = 1

2x1 + 4x2 = 3
"

[
1 2
2 4

]

︸ ︷︷ ︸

A

[
x1
x2

]

︸ ︷︷ ︸

x

=

[
1
3

]

︸︷︷︸

b

This system of equations has not got any solution, as rank([A|b]) > rank(A)

" Matrix A is singular and rank 1

" Matrix [A|b] is rank 2
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Systems of equations (cont.)

Example

Consider the linear system of two equation and two unknowns

{

1 = x1 + 2x2
2 = 2x1 + 4x2

"

[
1
2

]

︸︷︷︸

b

=

[
1 2
2 4

]

︸ ︷︷ ︸

A

[
x1
x2

]

︸ ︷︷ ︸

x

This system of equations has infinite solutions, as rank([A|b]) = rank(A)

" Matrix A is singular and rank 1

" Matrix [A|b] is rank 1
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Definition

Matrix inverse

Consider a square matrix A of order n

Define inverse of A as the square matrix A−1 of order n

" A−1A = AA−1 = I

The inverse of A exists if and only if A is non-singular
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Inverse (cont.)

Definition

Cofactor and adjunct matrix

Consider a square matrix A of order n ≥ 2

The cofactor matrix of A is a square matrix of order n whose element
(i , j ) is the cofactor âi,j of A

" Â =
{
âi,j

}

The adjunct matrix of A is a a square matrix of order n obtained by
transposition of the cofactors

" adj(A) =
{

αi,j = âj ,i
}
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Inverse (cont.)

Proposition

Consider a non-singular square matrix A of order n

• If n = 1, let A = [a1,1], we have

A−1 = [a−1
1,1 ]

• If n ≥ 2, we have

A−1 =
1

detA
adj(A)
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Systems of equations (cont.)

Proposition

Consider a system of n linear equations in n unknowns Ax = b

Suppose that matrix A is non-singular

We have,
" x = A−1b

Proof

Left-multiply both sides of b = Ax by A−1

b = Ax " A−1b = A−1Ax " Ix = A−1b " x = A−1b
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Systems of equations (cont.)

Consider a non-singular diagonal matrix A

A =

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn

⎤

⎥
⎥
⎥
⎦
" A−1 =

⎡

⎢
⎢
⎢
⎢
⎣

λ−1
1 0 · · · 0
0 λ−1

2 · · · 0
...

...
. . . 0

0 0 · · · λ−1
n

⎤

⎥
⎥
⎥
⎥
⎦

Its inverse A−1 is obtained by inverting the diagonal elements
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Systems of equations (cont.)

Consider a non-singular blockdiagonal matrix A

A =

⎡

⎢
⎢
⎢
⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . . 0

0 0 · · · An

⎤

⎥
⎥
⎥
⎦
" A−1 =

⎡

⎢
⎢
⎢
⎢
⎣

A−1
1 0 · · · 0
0 A−1

2 · · · 0
...

...
. . . 0

0 0 · · · A−1
n

⎤

⎥
⎥
⎥
⎥
⎦

Its inverse A−1 is obtained by inverting the diagonal blocks
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Systems of equations (cont.)

Consider two non-singular matrices A and B of order n

We have,
(AB)−1 = B−1A−1

Consider a non-singular matrix A of order n

We have,

det (A−1) =
1

det (A)
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Eigenvalues and eigenvectors

Definition

Eigenvalues and eigenvectors

Let λ ∈ R be some scalar and let v ≠ 0 be a (n × 1) column vector

Consider a square matrix A of order n

We have,
" Av = λv

• The scalar λ is called an eigenvalue of A

• The vector v is the associated eigenvector

!
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Eigenvalues and eigenvectors (cont.)

Proposition

Eigenvalues/eigenvectors of triangular/diagonal matrices

Let A = {ai,j } be a triangular or a diagonal matrix

The eigenvalues of A are the n diagonal elements {ai,i}, i = 1, . . . ,n
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Eigenvalues and eigenvectors (cont.)

Example

Consider the matrices

A1 =

⎡

⎣

1 0 0
0 1 0
0 0 2

⎤

⎦ , A2 =

⎡

⎣

1 1 2
0 2 2
0 0 3

⎤

⎦ , A3 =

⎡

⎣

1 0 0
2 3 0
3 0 −2

⎤

⎦

We are interested in their eigenvalues

The three matrices are triangular or diagonal

We have,

" Matrix A1 has eigenvalues λ1 = λ2 = 1 and λ3 = 3

" Matrix A2 has eigenvalues λ1 = 1, λ2 = 2 and λ3 = 3

" Matrix A3 has eigenvalues λ1 = λ2 = 3 and λ3 = −2
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Eigenvalues and eigenvectors (cont.)

Definition

Characteristic polynomial

The characteristic polynomial of a square matrix A of order n

The n-order polynomial in the variable s

" P(s) = det (sI −A)
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Eigenvalues and eigenvectors (cont.)

Example

Consider the matrix

A =

[
2 1
3 4

]

We are interested in its characteristic polynomial

We first calculate the matrix (sI −A)

(sI −A) = s

[
1 0
0 1

]

−
[
2 1
3 4

]

=

[
s 0
0 s

]

−
[
2 1
3 4

]

=

[
s − 2 −1
−3 s − 4

]

" The elements are function of s

The determinant of the matrix

" det (sI −A) = (s − 2)(s − 4)− 3 = s2 − 6s + 5

This is also the characteristic polynomial P(s)
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Eigenvalues and eigenvectors (cont.)

Proposition

Eigenvalues as roots of the characteristic polynomial

The eigenvalues of a matrix A of order n are the roots of its characteristic
polynomial, that is the solutions to the equation P(s) = det (sI −A) = 0

Let λ be an eigenvalue of matrix A

Each eigenvector v associated to it is a non-trivial solution to the system

(λI−A)v = 0

0 is a (n × 1) column-vector whose elements are all zero
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Eigenvalues and eigenvectors (cont.)

Proof

An eigenvalue λ and an eigenvector v must satisfy

Av = λv

(λI−A)v = 0 follows from this

The non-trivial solution v ≠ 0 is admissible iff matrix (λI−A) is singular

" det (λI−A) = 0

Thus, λ is root to the characteristic polynomial of matrix A
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Eigenvalues and eigenvectors (cont.)

Example

Consider the matrix

A =

[
2 1
3 4

]

Its eigenvalues

λ1|2 =
6±

√
36 − 20

2
=

6± 4

2
"

{

λ1 = 1

λ2 = 5

We are interested in its eigenvectors
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Eigenvalues and eigenvectors (cont.)

Consider the eigenvector

v1 =

[
a
b

]

Eigenvector v1 corresponds to eigenvalue λ1 = 1

• It must satisfy (λ1I−A)v1 = 0

(λI−A)v1 =

[
−1 −1
−3 −3

] [
a
b

]

=

[
0
0

]

"

{

0 = −a − b

0 = −3a − 3b

If the first equation is satisfied then also the second one will be

" The two equations are linearly dependent

• Always with (λI−A)v = 0
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Eigenvalues and eigenvectors (cont.)

We limit ourselves and consider only one equation

• Say, b = −a

The choice of the first component is arbitrary, then b = −a

Let a = 1, then we have

" v1 =

[
1
−1

]
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Eigenvalues and eigenvectors (cont.)

Consider the eigenvector

v2 =

[
c
d

]

Eigenvector v2 corresponds to eigenvalue λ2 = 5

• It must satisfy (λ2I−A)v2 = 0

(λI−A)v2 =

[
3 −1
−3 −3

] [
c
d

]

=

[
0
0

]

"

{

0 = 3c − d

0 = −3c + d

If the first equation is satisfied then also the second one will be

• Again, the two equations are linearly dependent
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Eigenvalues and eigenvectors (cont.)

By considering only the first equation, we have d = 3c

As the choice of the first component is arbitrary, we set c = 1

" v2 =

[
1
3

]

!
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Eigenvalues and eigenvectors (cont.)

We have shown that the system (λI−A)v has an infinite number of solutions

• Eigenvectors are determined up to a multiplicative constant

" We always select the non-trivial (non-null) solution

Let v be the eigenvector associated to eigenvalue λ

" Then, also y = rv is eigenvector for λ (r ≠ 0)

Ay = A(rv) = r(Av) = r(λv) = λ(rv) = λy
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Eigenvalues and eigenvectors (cont.)

Proposition

Let v1,v2, . . . ,vk be the eigenvectors of matrix A

Suppose that the corresponding eigenvalues λ1,λ2, . . . ,λk are distinct

It can be shown that v1,v2, . . . ,vk are linearly independent

!
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Eigenvalues and eigenvectors (cont.)

Proposition

Let A be a matrix of order n with n distinct eigenvalues

It can be shown that there exists a set of n linearly independent eigenvectors

The eigenvectors are a base for Rn

!
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Eigenvalues and eigenvectors (cont.)

Definition

Multiplicity

Consider a square matrix A or order n

Suppose that A has r ≤ n distinct eigenvalues

λ1, λ2, . . . ,λr

" λi ≠ λj , for i ≠ j

The characteristic polynomial can be written in the form

P(s) = (s − λ1)
ν1 (s − λ2)

ν2 · · · (s − λr )νr ,
r∑

i=1

νi = n

" νi ∈ N+ (algebraic multiplicity)

Define the geometric multiplicity of the eigenvalue λi

• Number νi of linearly independent eigenvectors associated to it A
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Eigenvalues and eigenvectors (cont.)

Proposition

Consider a square matrix A

Let λ be an eigenvalue with algebraic multiplicity ν

The geometric multiplicity µ of the eigenvalue

" µ = null(λI −A) ≤ ν

Proof

For each eigenvector v associated to λ, we have that (λI −A)v = 0

" v belongs to the null space of (λI −A)

" Dimension of (λI −A) is null(λI −A)

!
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Eigenvalues and eigenvectors (cont.)

Example

Consider the matrix of order n = 4
⎡

⎢
⎢
⎣

2 1 0 0
0 2 0 0
0 0 3 0
0 0 0 3

⎤

⎥
⎥
⎦

The characteristic polynomial

P(s) = (s − 2)2(s − 3)3

The roots

" λ1 = 2, algebraic multiplicity ν1 = 2

" λ2 = 3, algebraic multiplicity ν2 = 2

We are interested in the geometric multiplicities A
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Eigenvalues and eigenvectors (cont.)

The geometric multiplicity of the first eigenvalue

µ1 = null(λ1I−A) = n − rank(λ1I−A)

= 4− rank

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0 −1 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

= 4− 3 = 1 < ν1

Each eigenvector associated to λ1 is a linear combination of a single vector

[
1 0 0 0

]T
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Eigenvalues and eigenvectors (cont.)

The geometric multiplicity of the second eigenvalue

µ2 = null(λ2I−A) = n − rank(λ2I−A)

= 4− rank

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

= 2− 2 = 2 = ν2

Each eigenvector associated to λ2 is a linear combination of two vectors

v1 =
[
0 0 1 0

]T

v2 =
[
0 0 0 1

]T

!


