

Linear algebra

UFC/DC SA (CK0191) 2018.1

vectors

Matrices and vectors

Matrices and Square matrices

UFC/DC

2018.1

Matrices and

Diagonal

• All off-diagonal elements are zero

Block-diagonal

• All elements are zero except for some square blocks along the diagonal

Lower- (upper-) triangular

• All elements above (below) the diagonal are zero

Lower- (upper-) block-triangular

• All elements above (below) the diagonal are zero except for some square blocks along the diagonal

Identity matrix

• A diagonal matrix whose diagonal elements are equal to one, \mathbf{I} or \mathbf{I}_n

Matrices and vectors (cont.) Linear algebra SA (CK0191) Matrix $\tilde{\mathbf{A}}$ is block-diagonal

~	$ ilde{\mathbf{A}}_1$	0	0]	$\begin{bmatrix} 0\\2 \end{bmatrix}$	$\frac{2}{1}$	0 0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
$\mathbf{A} =$	00	A ₂ 0	$\begin{bmatrix} 0 \\ \tilde{\mathbf{A}}_3 \end{bmatrix}$		0 0	2 0	$\begin{bmatrix} 0\\4 \end{bmatrix}$

Three blocks, $\tilde{\mathbf{A}}_1$, $\tilde{\mathbf{B}}_2$ and $\tilde{\mathbf{B}}_3$, one of order 2 and 2 of order 1

Matrices and vectors (cont.) Linear algebra UFC/DC SA (CK0191) 2018.1Matrices and vectors Consider the order 4 square matrices $\mathbf{A} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 4 & 0 & 0 \\ 2 & 3 & 0 \\ 6 & 0 & 4 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 4 & 2 & 6 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ $\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ \rightsquigarrow Matrix **A** is diagonal \rightsquigarrow Matrix **B** is lower-triangular \rightsquigarrow Matrix **C** is upper-triangular \rightsquigarrow Matrix I is an identity of order 3 Matrices and vectors (cont.) Linear algebra UFC/DC SA (CK0191) 2018.1Matrices and Matrix $\tilde{\mathbf{A}}$ is upper-block-triangular $\tilde{\mathbf{A}} = \begin{bmatrix} \tilde{\mathbf{B}}_1 & \tilde{\mathbf{B}}_3 \\ \mathbf{0} & \tilde{\mathbf{B}}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 3 & 0 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 3 & 4 \end{bmatrix}$ Two diagonal blocks, $\tilde{\mathbf{B}}_1$ and $\tilde{\mathbf{B}}_2$, both of order 2

	Bank and kernel		Bank and kernel (cont.)
Linear algebra		Linear algebra	
UFC/DC SA (CK0191) 2018.1	9	UFC/DC SA (CK0191) 2018.1	
Matrices and vectors		Matrices and vectors	
Matrix operators	N Y	Matrix operators	
Transposition Sum and difference	Definition	Transposition Sum and difference	
Matrix-scalar product	Matrix rank	Matrix-scalar product	Proposition
Matrix-matrix product Matrix powers Matrix exponential	The rank of a $(m \times n)$ matrix A is equal to the number of columns (or rows, equivalently) of the matrix that are linearly independent	Matrix-matrix product Matrix powers Matrix exponential	Define the minors of matrix A any matrix obtained from A by deleting an arbitrary number of rows and columns
Determinant		Determinant	$\rightsquigarrow \ \textit{rank}(\mathbf{A})$ equals the order of the largest non-singular square minor
Rank and kernel	$\rightsquigarrow rank(\mathbf{A})$	Rank and kernel	
Systems of equations		Systems of equations	
Inverse		Inverse	
Eigenvalues and eigenvectors		Eigenvalues and eigenvectors	
	Y		
Linear algebra	Rank and kernel (cont.)	Linear algebra	Rank and kernel (cont.)
Linear algebra UFC/DC	Rank and kernel (cont.)	Linear algebra UFC/DC	Rank and kernel (cont.)
Linear algebra UFC/DC SA (CK0191) 2018.1	Rank and kernel (cont.)	Linear algebra UFC/DC SA (CK0191) 2018.1	Rank and kernel (cont.)
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and	Rank and kernel (cont.)	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and	Rank and kernel (cont.)
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors	Rank and kernel (cont.)	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors	Rank and kernel (cont.)
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition	Rank and kernel (cont.) Definition Matrix kernel or null space	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition	Rank and kernel (cont.)
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sun and difference Matrix-scalar	Rank and kernel (cont.) Definition Matrix kernel or null space Consider a (m × n) matrix A	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar	Rank and kernel (cont.) The null vector always belong to ker(A)
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-matrix product	Rank and kernel (cont.) Definition Matrix kernel or null space Consider a (m × n) matrix A We define the null space or kernel	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-matrix	Rank and kernel (cont.) The null vector always belong to ker(A) If the null vector is also the only element of ker(A), then null(A) = 0
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix powers Matrix powers	Rank and kernel (cont.) Definition Matrix kernel or null space Consider $a (m \times n)$ matrix A We define the null space or kernel $\rightsquigarrow ker(\mathbf{A}) = \{\mathbf{x} \in \mathcal{R}^n \mathbf{A}\mathbf{x} = 0\}$	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-cealar product Matrix-matrix product Matrix powers Matrix prongential	Rank and kernel (cont.) The null vector always belong to ker(A) If the null vector is also the only element of ker(A), then null(A) = 0
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and differace Matrix-scalar product Matrix-scalar product Matrix powers Matrix exponential Determinant	Rank and kernel (cont.) Definition Matrix kernel or null space Consider $a (m \times n)$ matrix \mathbf{A} We define the null space or kernel $\rightsquigarrow ker(\mathbf{A}) = \{\mathbf{x} \in \mathcal{R}^n \mathbf{A}\mathbf{x} = 0\}$	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-matrix product Matrix powers Matrix powers Matrix powers Matrix exponential Determinant	Rank and kernel (cont.) The null vector always belong to ker(A) If the null vector is also the only element of ker(A), then null(A) = 0 For a matrix A with n columns we have
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-matrix product Matrix-matrix product Matrix powers Matrix exponential Determinant Rank and kernel	Rank and kernel (cont.) Definition Matrix kernel or null space Consider $a (m \times n)$ matrix \mathbf{A} We define the null space or kernel $\rightsquigarrow ker(\mathbf{A}) = \{\mathbf{x} \in \mathcal{R}^n \mathbf{A}\mathbf{x} = 0\}$ It is all vectors $\mathbf{x} \in \mathcal{R}^n$ that left-multiplied by \mathbf{A} produce the null vector	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix powers Matrix powers Matrix powers Matrix powers Matrix exponential Determinant Rank and kernel	Rank and kernel (cont.) The null vector always belong to ker(\mathbf{A}) If the null vector is also the only element of ker(\mathbf{A}), then null(\mathbf{A}) = 0 For a matrix \mathbf{A} with <i>n</i> columns we have $\rightarrow \operatorname{rank}(\mathbf{A}) + \operatorname{null}(\mathbf{A})$
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-natrix product Matrix-scalar product Sugar Matrix-scalar product Rank and kernel Systems of cquations	Rank and kernel (cont.)DefinitionMatrix kernel or null spaceConsider $a (m \times n)$ matrix A We define the null space or kernel $\rightsquigarrow ker(A) = \{x \in \mathcal{R}^n Ax = 0\}$ It is all vectors $x \in \mathcal{R}^n$ that left-multiplied by A produce the null vector	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-comparison Sum and difference Matrix-matrix product Matrix powers Matrix exponential Determinant Rank and kernel Systems of equations	Rank and kernel (cont.) The null vector always belong to ker(\mathbf{A}) If the null vector is also the only element of ker(\mathbf{A}), then null(\mathbf{A}) = 0 For a matrix \mathbf{A} with <i>n</i> columns we have $\rightarrow \operatorname{rank}(\mathbf{A}) + \operatorname{null}(\mathbf{A})$
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-scalar product Matrix powers Matrix exponential Determinant Rank and kernel Systems of equations Inverse	Rank and kernel (cont.)DefinitionMatrix kernel or null spaceConsider a $(m \times n)$ matrix AWe define the null space or kernel $\rightsquigarrow ker(A) = \{x \in \mathbb{R}^n Ax = 0\}$ It is all vectors $x \in \mathbb{R}^n$ that left-multiplied by A produce the null vectorThe set is a vector space, its dimension is called the nullity of matrix A	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-scalar product Matrix powers Matrix powers Matrix exponential Determinant Rank and kernel Systems of equations Inverse	Rank and kernel (cont.) The null vector always belong to ker(\mathbf{A}) If the null vector is also the only element of ker(\mathbf{A}), then null(\mathbf{A}) = 0 For a matrix \mathbf{A} with n columns we have $\rightarrow \operatorname{rank}(\mathbf{A}) + \operatorname{null}(\mathbf{A})$
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-matrix product Matrix opores Matrix exponential Determinant Rank and kernel Systems of equations Inverse Eigenvalues and	Rank and kernel (cont.) Definition Matrix kernel or null space Consider a $(m \times n)$ matrix A We define the null space or kernel $\approx ker(A) = \{x \in \mathbb{R}^n Ax = 0\}$ It is all vectors $x \in \mathbb{R}^n$ that left-multiplied by A produce the null vector The set is a vector space, its dimension is called the nullity of matrix A $\approx null(A)$	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-nealar product Matrix powers Matrix powers Matrix powers Matrix powers Matrix powers Matrix powers Matrix powers Matrix powers Matrix powers Matrix operators Inverse Eigenvalues and eigenvalues and	Rank and kernel (cont.) The null vector always belong to ker(\mathbf{A}) If the null vector is also the only element of ker(\mathbf{A}), then null(\mathbf{A}) = 0 For a matrix \mathbf{A} with n columns we have $\rightarrow \operatorname{rank}(\mathbf{A}) + \operatorname{null}(\mathbf{A})$
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-matrix product Matrix powers Matrix powers Matrix powers Matrix exponential Determinant Rank and kernel Systems of equations Inverse Eigenvalues and eigenvectors	Rank and kernel (cont.)DefinitionMatrix kernel or null spaceConsider a $(m \times n)$ matrix AWe define the null space or kernel $\rightsquigarrow ker(A) = \{x \in \mathcal{R}^n Ax = 0\}$ It is all vectors $x \in \mathcal{R}^n$ that left-multiplied by A produce the null vectorThe set is a vector space, its dimension is called the nullity of matrix A $\rightsquigarrow null(A)$	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix operators Transposition Sum and difference Matrix powers Matrix powers Matrix exponential Determinant Rank and kernel Systems of equations Inverse Eigenvalues and eigenvectors	Rank and kernel (cont.) The null vector always belong to ker(\mathbf{A}) If the null vector is also the only element of ker(\mathbf{A}), then null(\mathbf{A}) = 0 For a matrix \mathbf{A} with n columns we have $\rightarrow \operatorname{rank}(\mathbf{A}) + \operatorname{null}(\mathbf{A})$
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-matrix product Matrix-matrix product Matrix-matrix Determinant Rank and kernel Systems of equations Inverse Eigenvalues and eigenvectors	Rank and kernel (cont.)DefinitionMatrix kernel or null spaceConsider $a (m \times n)$ matrix AWe define the null space or kernel $\lambda = \{x \in \mathcal{R}^n Ax = 0\}$ It is all vectors $x \in \mathcal{R}^n$ that left-multiplied by A produce the null vectorThe set is a vector space, its dimension is called the nullity of matrix A $\lambda = null(A)$	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-scalar product Matrix-scalar product Matrix-scalar product Matrix-scalar product Matrix exponential Determinant Rank and kernel Systems of equations Inverse Eigenvalues and eigenvectors	Rank and kernel (cont.) The null vector always belong to ker(\mathbf{A}) If the null vector is also the only element of ker(\mathbf{A}), then null(\mathbf{A}) = 0 For a matrix \mathbf{A} with n columns we have $\rightarrow \operatorname{rank}(\mathbf{A}) + \operatorname{null}(\mathbf{A})$
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-scalar product Matrix-matrix product Matrix powers Matrix powers Inverse Eigenvalues and eigenvectors	Rank and kernel (cont.)DefinitionMatrix kernel or null spaceConsider a $(m \times n)$ matrix AWe define the null space or kernel $\sim ker(A) = \{x \in \mathcal{R}^n Ax = 0\}$ It is all vectors $x \in \mathcal{R}^n$ that left-multiplied by A produce the null vectorThe set is a vector space, its dimension is called the nullity of matrix A $\sim null(A)$	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-nealar product Matrix-nealar product Matrix powers Matrix powers Matrix exponential Determinant Rank and kernel Systems of equations Inverse Eigenvalues and eigenvectors	Rank and kernel (cont.) The null vector always belong to ker(\mathbf{A}) If the null vector is also the only element of ker(\mathbf{A}), then null(\mathbf{A}) = 0 For a matrix \mathbf{A} with n columns we have $\sim \operatorname{rank}(\mathbf{A}) + \operatorname{null}(\mathbf{A})$
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and differace Matrix-scalar product Matrix-matrix product Matrix exponential Determinant Rank and kernel Systems of equations Inverse Eigenvalues and eigenvectors	Rank and kernel (cont.)DefinitionMatrix kernel or null spaceConsider a $(m \times n)$ matrix AWe define the null space or kernel $\rightsquigarrow ker(A) = \{x \in \mathcal{R}^n Ax = 0\}$ It is all vectors $x \in \mathcal{R}^n$ that left-multiplied by A produce the null vectorThe set is a vector space, its dimension is called the nullity of matrix A $\rightsquigarrow null(A)$	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-mealar product Matrix exponential Determinant Rank and kernel Systems of equations Inverse Eigenvalues and eigenvectors	Rank and kernel (cont.) The null vector always belong to ker(\mathbf{A}) If the null vector is also the only element of ker(\mathbf{A}), then null(\mathbf{A}) = 0 For a matrix \mathbf{A} with n columns we have $\Rightarrow \operatorname{rank}(\mathbf{A}) + \operatorname{null}(\mathbf{A})$
Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix-matrix product Matrix calar product Matrix powers Matrix powers Matrix powers Matrix exponential Determinant Rank and kernel Systems of equations Inverse Eigenvalues and eigenvectors	PerformanceDefinitionMatrix kernel or null spaceConsider a $(m \times n)$ matrix AWe define the null space or kernel $\sim ker(A) = \{x \in \mathcal{R}^n Ax = 0\}$ It is all vectors $x \in \mathcal{R}^n$ that left-multiplied by A produce the null vectorThe set is a vector space, its dimension is called the nullity of matrix A $\sim null(A)$	Linear algebra UFC/DC SA (CK0191) 2018.1 Matrices and vectors Matrix operators Transposition Sum and difference Matrix operators Transposition Sum and difference Matrix exponential Determinant Rank and kernel Systems of equations Inverse Eigenvalues and eigenvectors	Rank and kernel (cont.) The null vector always belong to ker(\mathbf{A}) If the null vector is also the only element of ker(\mathbf{A}), then null(\mathbf{A}) = 0 For a matrix \mathbf{A} with n columns we have $\sim \operatorname{rank}(\mathbf{A}) + \operatorname{null}(\mathbf{A})$

