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We introduce basic probability through the frequency interpretation1

• The treatment is non-measure theoretic

Foundation to this interpretation is some kind of experiment

• The experiment can be repeatedly performed

• The conditions are seemingly identical

As a result we have a series of outcomes

1Note that it is here irrelevant whether prior probabilities are assigned from relative
frequency, by counting equilikely alternatives or by subjectively quantifying belief.
Our focus is to deduce rules for doing operations on probabilities starting from axioms.
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Probability and probability laws (cont.)

Each trial of the experiment may have any number of specific outcomes

• Say, 1, 2, 3, · · ·, i , · · ·
Each outcome i either occurs or does not occur (on each trial)

Other legitimate outcomes

• i , ‘NOT i ’ (the non-occurrence of i)

• i ∧ j , ‘i AND j ’ (occurrence of both i and j )

• i ∨ j , ‘i OR j ’ (occurrence of either i or j or both)

Compounding of outcomes can be extended

i ∧ (j ∧ k) = (j ∧ i) ∧ k = · · · = i ∧ j ∧ k

i ∨ (j ∨ k) = (j ∨ i) ∨ k = · · · = i ∨ j ∨ k

We can also mix ∧ and ∨, though those cases are complex
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Probability and probability laws (cont.)

Consider n trials (repetitions) of some experiment

Let mn(i) the number of occurrences of outcome i

We define

p(i) = lim
n→∞

mn(i)

n
(1)

If the limit exists, it is called the probability of outcome i

• (With respect to that experiment)

‘The probability that outcome i will occur’2

2We can of course replace i with any compound outcome.
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Probability and probability laws (cont.)

Suppose that, in the series of n trials, two outcomes i and j occur together

! mn(i ∧ j ) times

We have,

p(j |i) = lim
n→∞

mn (i ∧ j )

mn (i)
(2)

If the limit exists, it is called then conditional probability of outcome j
given (|, or conditioned on) outcome i

‘The probability that outcome j will occur given that outcome i occurs’
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Probability and probability laws (cont.)

p(j |i) = lim
n→∞

mn (i ∧ j )

mn (i)

If i never occurs, then p(j |i) is undefined

! As mn(i) = 0, for all n
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Probability and probability laws (cont.)

The set of outcomes (say, 1, 2, 3, · · ·,N ) is said to be mutually exclusive
if and only if not more than one of them can occur on the same trial

In this case, for any number of trials n

! mn (i ∧ j ) = 0, for all 1 ≤ i ≤ j ≤ N

Thus, by using the definition p(i) = limn→∞
[

mn (i)/n
]

! p(i ∧ j ) = 0, for all 1 ≤ i ≤ j ≤ N (3)
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Laws of probability (cont.)

A set of outcomes (say, 1, 2, 3, · · ·,N ) is said to be collectively exhaustive
if and only if at least one of them occurs at every trial

In this case, for any number of trials n

! mn(1 ∨ 2 ∨ · · · ∨ N ) = n

Again, by using the definition p(i) = limn→∞
[

mn (i)/n
]

! p(1 ∨ 2 ∨ · · · ∨N ) = 1 (4)
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Probability and probability laws (cont.)

A set of outcomes maybe both mutually exclusive and collectively exhaustive

• At each trial some, but only those, outcomes occur

• (i and i is a set of such outcomes)
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Laws of probability (cont.)

The given definitions allow to deduce the three laws or rules of probability

! Interval law

! Addition law

! Multiplication law
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Probability and probability laws (cont.)

Interval law

The probability p(i) of any outcome i is a real number in [0, 1]

! 0 ≤ p(i) ≤ 1, for all i (5)

! p(i) = 0 corresponds to the case in which i never occurs

! p(i) = 1 corresponds to the case in which i always occurs

Since 0 ≤ mn(i) ≤ n , from 0 ≤ mn (i)/n ≤ 1 and p(i) = limn→∞
[
mn(i)/n

]

! Outcome i is impossible IFF mn(i) = 0, for all n

! Outcome i is certain IFF mn (i) = n , for all n

"
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Probability and probability laws (cont.)

Addition law

Consider N mutually exclusive outcomes 1, 2, · · ·,N

! p(1 ∨ 2 ∨ · · · ∨ N ) = p(1) + p(2) + · · ·+ p(N ) (6)

Mutually exclusive, no more than one of the outcomes can occur in one trial

So, we have

mn (1 ∨ 2 ∨ · · · ∨ N ) = mn(1) +mn(2) + · · ·+mn (N ), for all n

Divide by n and take the limit n → ∞ with the definition of p(i)

"
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Probability and probability laws (cont.)

Multiplication law

Consider any two outcomes i and j

We have,
! p(i ∧ j ) = p(i)p(j |i) = p(j )p(i |j ) (7)

Use the definition p(j |i) = limn→∞
[
mn(i ∧ j )/mn (i)

]
and divide both nu-

merator and denominator by n, then take the limit n → ∞

p(j |i) = lim
n→∞

mn(i ∧ j )

mn(i)
= lim

n→∞

mn (i ∧ j )/n

mn (i)/n
=

p(i ∧ j )

p(i)

"
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Probability and probability laws (cont.)

Consider the definition of probability and conditional probability

p(i) = lim
n→∞

mn (i)

n

p(j |i) = lim
n→∞

mn (i ∧ j )

mn (i)

Consider the three laws of probability

0 ≤ p(i) ≤ 1

p(1 ∨ 2 ∨ · · · ∨N ) = p(1) + p(2) + · · ·+ p(N )

p(i ∧ j ) = p(i)p(j |i) = p(j )p(i |j )

They remain valid if all probabilities therein are conditioned on outcome o M
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Probability and probability laws (cont.)

Events 1, 2, · · ·,N are assumed mutually exclusive when o occurs

0 ≤ p(i |o) ≤ 1

p(1 ∨ 2 ∨ · · · ∨N |o) = p(1|o) + p(2|o) + · · ·+ p(N |o)

Similarly, also the third equation can be generalised

p(i ∧ j |o) = p(i |o)p(j |i ∧ o) = p(j |o)p(i |j ∧ o)
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Probability and probability laws (cont.)

Consider the definition of probability and conditional probability

p(i) = lim
n→∞

mn (i)

n

p(j |i) = lim
n→∞

mn (i ∧ j )

mn (i)

Consider the three laws of probability

0 ≤ p(i) ≤ 1

p(1 ∨ 2 ∨ · · · ∨N ) = p(1) + p(2) + · · ·+ p(N )

p(i ∧ j ) = p(i)p(j |i) = p(j )p(i |j )

We can combine the definition of mutual exclusivity mn (i ∧ j ) = 0 (for all
1 ≤ i ≤ j ≤ N ) with the multiplication law p(i ∧ j ) = p(i)p(j |i) = p(j )p(i |j )

• We assume that neither p(i) nor p(j ) vanishes

Then, we deduce

p(i ∧ j ) = 0 ! p(i |j ) = 0 ! p(j |i) = 0

p(j |i) = 0 ! p(i |j ) = 0 ! p(i ∧ j ) = 0
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Probability and probability laws (cont.)

The addition law deals merely with outcomes that are mutually exclusive

• The multiplicative laws does not

The addition law can be generalised to the case of non-mutual-exclusiveness
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Probability and probability laws (cont.)

Consider the simple case of N = 2 outcomes

Outcome 1 is equivalent to either outcome 1 ∧ 2 or outcome 1 ∧ 2

• These outcomes are mutually exclusive

! p(1) =
[

p(1 ∧ 2) ∨ (1 ∧ 2)
]

= p(1 ∧ 2) + p(1 ∧ 2)

Similarly,
! p(2) = p(1 ∧ 2) + p(1 ∧ 2)

Outcome 1 ∨ 2 is equivalent to either outcome 1 ∧ 2 or 1 ∧ 2 or 1 ∧ 2

• They are mutually exclusive

p(1 ∨ 2) = p(1 ∧ 2) + p(1 ∧ 2) + p(1 ∧ 2)

= p(1) + p(2) − p(1 ∧ 2)
(8)
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Probability and probability laws (cont.)

Consider three outcomes 1, 2 and 3 (not necessarily mutually exclusive)

We list all the connections of the multiplication law

! Pairwise relationships, valid for (i , j ) any pair of (1, 2, 3)

p(i ∧ j ) = p(i)p(j |i) = p(j )p(i |j )

! Tertiary relationships, valid for (i , j , k) any permutation of (1, 2, 3)

p(1 ∧ 2 ∧ 3) = p(i ∧ j )p(k |i ∧ j ) (9a)

p(1 ∧ 2 ∧ 3) = p(i)p(j ∧ k |i) (9b)

! A combination of the first and second relationships

p(1 ∧ 2 ∧ 3) = p(i ∧ j )p(k |i ∧ j )

! p(i)p(j |i)p(k |i ∧ j ) = p(j )p(i |j )p(k |i ∧ j ) (10)
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Probability and probability laws (cont.)

Statistical independence of outcomes (1)

A set of N outcomes is called statistically independent if and only if the
probability of any outcome i , conditioned on any other outcome [p(i |j )] or
any ‘AND-ed’ combination of other outcomes [p(i |j ∧ k ∧ · · · )], is p(i)

"
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Probability and probability laws (cont.)

Consider a set of three outcomes 1, 2 and 3, we have

! p(i) = p(i |j ) = p(i |j ∧ k) (11)

This is for (i , j , k) all permutations of (1, 2, 3)

‘Outcomes 1, 2 and 3 are statistically independent’
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Probability and probability laws (cont.)

Statistical independence of outcomes (2)

A set of N outcomes is statistically independent if and only if the prob-
ability of every ‘AND-ed’ combination of these outcomes is equal to the
product of their separate probabilities p(i)

"
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Random variables

A variable is an entity that always has a value

! We can measure or sample the value

We shall consider only variables that are real

! Its possible values are real numbers

The value of a variable depends on the context in which it is sampled
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Random variables (cont.)

Let variable X be the position at time t of an harmonic oscillator

• Suppose that the intrinsic frequency is ν

• Suppose that the initial position was A

• Suppose that the initial velocity was 0

The value of X will always be found at A cos (2πνt)

For variable X the sampling context uniquely determines its value

• We call variable X a sure variable

• (Your usual variable, that is)
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Random variables (cont.)

Suppose that the sampling context does not permit a unique determination

• We (are tempted to) call variable X a random variable
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General concepts

We say that X is a (real) random variable if and only if there is a function
P of a (real) variable x such that P(x)∆x equals (to the first-order in ∆x)
the probability of finding the value of X in the interval [x , x +∆x)

That is,
! Prob{X ∈ [x +∆x)} = P(x)∆x + o(∆x) (12)

o(∆x) denotes terms such that o(∆x)/∆x → 0 as ∆x → 0
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General concepts (cont.)

Prob{X ∈ [x +∆x)} = P(x)∆x + o(∆x)

Divide through by ∆x , let ∆x tend to some infinitesimal positive value dx

! P(x) = Prob{X ∈ [x , x + dx)}/dx (13)

Or, equivalently

! P(x)dx = Prob{X ∈ (x , x + dx ]} (14)

‘P(x) is the density of probability of the random variable X at value x ’

We call P the density function of X
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General concepts (cont.)

Prob{X ∈ [x +∆x)} = P(x)∆x + o(∆x)

P(x) = Prob{X ∈ [x , x + dx)}/dx
P(x)dx = Prob{X ∈ [x , x + dx)}

The three equations are equivalent definitions of P

‘The RV X is randomly distributed according to the density function P’
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General concepts (cont.)

The functional form of P fully defines the random variable X

• The vice versa is also true

Let two RVs X and Y have the same density function P

! X = Y

This does not mean that X and Y have identical values
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General concepts (cont.)

Calculate the probability that a sample of X will be in a finite interval [a, b)

Imagine the interval to be divided into a set of non-overlapping subintervals

! [x , x + dx)

! The intervals are infinitesimal

The outcome X ∈ [a, b) can be realised IFF X is inside one such subinterval

• As non-overlapping, X cannot be found in more than one subinterval

By addition law, compute Prob{X ∈ [a, b)} by summing over subintervals

! Prob{X ∈ [a, b)} =

∫ b

a

P(x)dx (15)
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General concepts (cont.)

Any sample value of X will always lie somewhere in (−∞,∞)

We thus have,

!

∫ ∞

−∞
P(x)dx = 1 (16)

We call this equation the normalisation or closure condition

dx is intrinsically positive and P(x)dx is a probability (in [0, 1])

Thus, by the range law

! P(x) ≥ 0, for all x (17)
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General concepts (cont.)

∫ ∞

−∞
P(x)dx = 1

P(x) ≥ 0, for all x

Any such function P can be regarded as a density function

! As such, it will define some random variable X
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General concepts (cont.)

We cannot tell for sure what value a RV X will have on a individual sampling

Yet, in the limit of infinitely many samplings, we have

P(x)dx = Prob{X ∈ (x , x + dx ]}

Thus, a fraction P(x)dx will yield values in [x , x + dx)

A normalised histogram of the sample values of X will approach curve P(x)

• (As the number of samples approaches infinity)
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General concepts (cont.)

Consider the Dirac delta function δ(x − x0)

Consider the following definition, for any function f (x)

∫ ∞

−∞
f (x)δ(x − x0)dx = f (x0) (18)

Consider the following definition, as pair of equations

δ(x − x0)= 0, if x ̸= x0 (19a)
∫ ∞

−∞
δ(x − x0)dx= 1 (19b)

Compare function δ(x − x0) with the definition of a density function P(x)

∫ ∞

−∞
P(x)dx= 1

P(x)≥ 0, for all x

Function δ(x − x0) satisfies all the requirements

! δ(x − x0) defines a random variable X
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General concepts (cont.)

Take into account the closure condition, we have for random variable X

Prob{X ∈ [a, b)} =

∫ b

a

δ(x − x0)
︸ ︷︷ ︸

P(x)

dx =

{

1, x0 ∈ (a, b]

0, x0 /∈ (a, b]

The probability of finding the value of X inside any interval is either 0 or 1

• It depends on whether that interval does or does not contain x0

! Thus, the value of X must be exactly x0

‘Random variable X with density function δ(x − x0) is the sure variable x0’
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General concepts (cont.)

The reverse implication

‘The sure variable x0 has density function δ(x − x0)

The Dirac delta function δ(x − x0) is the only function of x whose integral
from x = a to x = b is unity if x0 ∈ [a, b) and zero otherwise
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General concepts (cont.)

The Dirac delta function δ(x1 − x2)

We define the Dirac delta function as the function δ(x1 − x2)

δ(x1 − x2) = 0, if x1 ̸= x2
∫ ∞

−∞
dx1δ(x1 − x2) = 1

x1 and x2 are any real variables

The two equations imply δ(x2 − x1) = δ(x1 − x2)

Moreover, the value of δ(0) is somehow undefined

• δ(0)dx = 1, thus δ(0) = 1/dx
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General concepts (cont.)

The distribution function is also a function of a random variable X

• It is closely related to the density function of RV X

The definition
F (x) ≡ Prob{X < x} (20)

The probability that a sample value of X will be less than x

By combining the definition with Prob{X ∈ [a, b)} =
∫ b
a
P(x)dx , we get

! F (x) =

∫ x

−∞
P(x ′)dx ′ (21)

By differentiation with respect to x , we get

! P(x) = F ′(x) (22) M
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General concepts (cont.)

The integral-differential relationship between function F and function P

The probability that a sample value of X will be in [x , x + dx)

! Prob{X ∈ [x , x + dx)} = P(x)dx

! dF (x) = F ′(x)dx = P(x)dx
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General concepts (cont.)

F (x) =

∫ x

−∞
P(x ′)dx ′

∫ ∞

−∞
P(x)dx = 1

P(x) ≥ 0, for all x

Function F (x) increases monotonically, from 0 at x = −∞ to 1 at x = ∞

Any function with this property can be regarded as distribution function F

! Function F defines a random variable X

As P(x) = F ′(x), if we know P , we can calculate F and vice versa

! Either one defines the random variable M
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Moments

Let h be any univariate function

We define the average of function h

! With respect to the RV X

⟨h(X )⟩ = lim
N→∞

1

N

N∑

i=1

h
[

x (i)] (23)

x (1), x (2), . . ., x (N) are values assumed by X in N independent samplings

Consider the usual definitions

P(x)dx = Prob{X ∈ [x , x + dx)}
p(i) = lim

N→∞

[
mN (i)/N

]

P(x)dx is the approximate fraction of any N samples of X in [x , x + dx)

! (The approximation becomes exact as N → ∞)

NP(x)dx ×h(x) is the contribution to the sum from X values in [x , x + dx) M
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Moments (cont.)

⟨h(X )⟩ = lim
N→∞

1

N

N∑

i=1

h
[

x (i)]

We can approximate the sum

!

N∑

i=1

h
[
x (i)] ≈

∫ ∞

x=−∞

[
NP(x)dx × h(x)

]
= N

∫ ∞

−∞

[
P(x)dx × h(x)

]

Divide by N and take the limit N → ∞ (so to get an equality)

! ⟨h(X )⟩ =
∫ ∞

−∞
h(x)P(x)dx (24)

The formula gives ⟨h(X )⟩ in terms of function h and density P

• This form is analytically more convenient
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Moments (cont.)

Some useful averages

⟨X n ⟩ =
∫ ∞

−∞
xnP(x)dx , (n = 1, 2, . . . ) (25)

⟨X n ⟩ is called the n-th moment of X

Remember the closure condition?

! ⟨X 0⟩ =
∫ ∞

−∞
P(x)dx = 1 (26)

Higher order moments may or may not exist (usually some exist, at least)

• The zero-th (n = 0) order moment always exist!
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Moments (cont.)

Suppose that all moments of X exist, they determine the average of any h

• (Any function h, as in analytical function, infinitely differentiable)

! ⟨h(X )⟩ =
∫ ∞

−∞

[ ∞∑

n=0

h(n)(0)

n!
xn

︸ ︷︷ ︸

h(x)

]

P(x)dx =
∞∑

n=0

h(n)(0)

n!
⟨X n ⟩

h(n)(0) is the n-th derivative of function h evaluated at x = 0

! (We used a Taylor’s series to represent function h)
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Moments (cont.)

⟨X n ⟩ =
∫ ∞

−∞
xnP(x)dx , (n = 1, 2, . . . )

Consider a RV X that is not identically zero

• (Its P(x) is not δ(x − x0))

The integral is strictly positive when n is even

We thus have,

X ̸≡ 0 ! ⟨X 2n ⟩ > 0, (n = 1, 2, . . . ) (27)
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Moments (cont.)

Mean of X

The mean of X is defined to be the first (n = 1) moment of X

mean{X} = ⟨X ⟩ =
∫ ∞

−∞
xP(x)dx (28)
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Moments (cont.)

Variance of X

The definition of the variance of X

var{X} = ⟨(X − ⟨X ⟩)2⟩ =
∫ ∞

−∞
(x − ⟨X ⟩)2P(x)dx (29)

The integral on the RHS

∫ ∞

−∞
(x2 − 2⟨X ⟩x + ⟨X ⟩2)P(x)dx

= ⟨X 2⟩ − 2⟨X ⟩⟨X ⟩ + ⟨X ⟩2

= ⟨X 2⟩ − ⟨X ⟩2

The variance of X in terms of the first and the second order moments of X

! var{X} = ⟨X 2⟩ − ⟨X ⟩2 (30)
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Moments (cont.)

var{X} = ⟨X 2⟩ − ⟨X ⟩2

Note the non-negativity of the integrand in var{X} =
∫∞
−∞ (x − ⟨X ⟩)2P(x)dx

We have that var{X} ≥ 0

! ⟨X 2⟩ ≥ ⟨X ⟩2 (31)

The equality holds if and only if var{X} = ⟨(X − ⟨X ⟩)2⟩ = 0

! This happens if and only if X is the sure variable ⟨X ⟩
• (Sure variables have zero variance)

‘If var{X} = 0, then X is the sure variable X = ⟨X ⟩’
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Moments (cont.)

We can observe that (X − ⟨X ⟩)2 is strictly positive everywhere

• The only exception being x = ⟨X ⟩ (where it is zero)

Suppose that var{X} =
∫∞
−∞ (x − ⟨X ⟩)2P(x)dx = 0

• P(x) is never negative

Thus, we find the only possibility for the integral be equal zero

• P(x) must be zero everywhere except possibly at x = ⟨X ⟩

Because of normalisation, we must have P(x) = δ(x − ⟨X ⟩)
• This implies that X is the sure variable ⟨X ⟩
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Moments (cont.)

The reverse implication

‘The sure variable X = ⟨X ⟩ has var{X} = 0’

We can observe that for the sure variable ⟨X ⟩ we have P(x) = δ(x − ⟨X ⟩)

We substitute into var{X} =
∫∞
−∞ (x − ⟨X ⟩)2

︸ ︷︷ ︸

f (x)

δ(x − ⟨X ⟩)
︸ ︷︷ ︸

P(x)

dx = f (⟨X ⟩) = 0

! var{X} = 0

We used
∫∞
−∞ f (x)δ(x − x0)dx = f (x0) with x0 = ⟨X ⟩

M
A
Y
11
,
20
18

–
FC

–

Probability

and random

variable theory

UFC/DC
SA (CK0191)

2018.1

Probability and
probability laws

Random
variables

General concepts

Moments

Named variables

Discrete variables

Joint variables

Moments (cont.)

Standard deviation of X

The square root for the variance of X is called the standard deviation

The definition

sdev{X} ≡ (var{X})1/2 ≡ ⟨(X − ⟨X ⟩)2⟩1/2

=
[
⟨X 2⟩ − ⟨X ⟩2

]1/2
(32)

sdev{X} is the square root of the average squared difference between X and
its mean ⟨X ⟩, thus it measures the size of expected difference between the
sample values of X and the mean of X

• The size of the expected ‘dispersion of’ or ‘fluctuation in’ X about ⟨X ⟩
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Moments (cont.)

Complete knowledge of RV X requires knowledge of its density function P

Partial knowledge provided by ⟨X ⟩ and sdev{X} often suffices, in practice

! ⟨X ⟩ is the best possible ‘sure number approximation’ of RV X

! sdev{X} measures how (in-) accurate that approximation is

(The characterisation is neither unique nor complete, though)



M
A
Y
11
,
20
18

–
FC

–

Probability

and random

variable theory

UFC/DC
SA (CK0191)

2018.1

Probability and
probability laws

Random
variables

General concepts

Moments

Named variables

Discrete variables

Joint variables

Named random variables
Random variables

M
A
Y
11
,
20
18

–
FC

–

Probability

and random

variable theory

UFC/DC
SA (CK0191)

2018.1

Probability and
probability laws

Random
variables

General concepts

Moments

Named variables

Discrete variables

Joint variables

Named random variables

! The exponential random variable

! The uniform random variable

! The normal random variable

! · · ·
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The uniform RV

The uniform random variable

The uniform random variable is defined by the density function P(x)

P(x) =

{

1/(b − a), a ≤ x < b

0, elsewhere
(33)

a and b are two real numbers such that −∞ < a < b < ∞

Function P satisfies the closure and the non-negativity condition

∫ ∞

−∞
P(x)dx = 1

P(x) ≥ 0, for all x

‘The RV X defined by density function P is uniformly distributed in [a, b)’

X ∼ U(a, b) M
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The uniform RV (cont.)

P(x) =

{

1/(b − a), a ≤ x < b

0, elsewhere

We can substitute the density function into the moment definition

⟨X n ⟩ =
∫ ∞

−∞
xnP(x)dx , (n = 1, 2, . . . )

For X ∼ U(a, b), we obtain3

! ⟨X n ⟩ =
1

(b − a)

bn+1 − an+1

(n + 1)
=

1

(n + 1)

n∑

j=0

aj bn−j (34)

3We used the integral identity, for n = 0, 1, . . .

∫ b

a
dxxn =

bn+1 − an+1

(n + 1)
=

b − a

(n + 1)

n
∑

j=0

a
j
b
n−j .
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The uniform RV (cont.)

⟨X n ⟩ =
bn+1 − an+1

(n + 1)(b − a)
=

1

(n + 1)

n∑

j=0

aj bn−j

For X ∼ U(a, b), let n = 1 and n = 2, we get

! mean{X} =
a + b

2
(35a)

! sdev{X} =
b − a

2
√
3

(35b)

We used

mean{X} = ⟨X ⟩

sdev{X} = (⟨X 2⟩ − ⟨X ⟩2)1/2 M
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The uniform RV (cont.)

mean{X} =
a + b

2

sdev{X} =
b − a

2
√
3

Let parameter b approach a from above, we get

mean{X} → a

sdev{X} → 0

We conclude,
lim
b→a

U(a, b) = a (36)
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The exponential RV

The exponential random variable

The exponential random variable is defined by the density function P(x)

P(x) =

{

ae(−ax), x ≥ 0

0, elsewhere
(37)

a is a real numbers such that a > 0

Function P satisfies the closure and the non-negativity condition

∫ ∞

−∞
P(x)dx = 1

P(x) ≥ 0, for all x

‘RV X defined by density function P is exponentially distributed, decay a’

X ∼ E(a) M
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The exponential RV (cont.)

P(x) =

{

ae(−ax), x ≥ 0

0, elsewhere

We can substitute the density function into the moment definition

⟨X n ⟩ =
∫ ∞

−∞
xnP(x)dx , (n = 1, 2, . . . )

For X ∼ E(a), we obtain4

! ⟨X n ⟩ =
n!

an
(38)

4We used the integral identity, for a > 0 and for n = 0, 1, . . .
∫

∞

0
dxxn exp (−ax) =

n!

an+1
.
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The exponential RV (cont.)

⟨X n ⟩ =
n!

an

For X ∼ E(a), let n = 0, we get the closure condition

⟨X 0⟩ = 1

For X ∼ E(a), let n = 1 and n = 2, we get

! mean{X} = 1/a (39a)

! sdev{X} = 1/a (39b)

We used

mean{X} = ⟨X ⟩

sdev{X} = (⟨X 2⟩ − ⟨X ⟩2)1/2 M
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The exponential RV (cont.)

mean{X} = 1/a

sdev{X} = 1/a

Let parameter a approach infinity, we get

mean{X} → 0

sdev{X} → 0

We conclude,
lim

a→∞
E(a) = 0 (40)
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The normal RV

The normal random variable

The normal random variable is defined by the density function P(x)

P(x) =
1

(2πa2)1/2
exp

[

−
(x −m)2

2a2

]

(41)

a and m are real numbers such that 0 < a < ∞ and −∞ < m < ∞

Function P satisfies the closure and the non-negativity condition

∫ ∞

−∞
P(x)dx = 1

P(x) ≥ 0, for all x

‘RV X defined by density function P is normally distributed, mean m and
variance a2’

X ∼ N (m, a2) M
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The normal RV (cont.)

P(x) =
1

(2πa2)1/2
exp

[

−
(x −m)2

2a2

]

We can substitute the density function into the moment definition

⟨X n ⟩ =
∫ ∞

−∞
xnP(x)dx , (n = 1, 2, . . . )

For X ∼ N (m, a2), we obtain5

! ⟨X n ⟩ = n!
n∑

k=0
(even)

mn−k (a2)k/2

(n − k)!(k/2)!2k/2
(42)

5We changed the integration variable from x to z = (x − m)/a
√
2, and we used the

binomial formula

(x + y)n =
n

∑

k=0

n!

k!(n − k)!
x
n−k

y
k .

We then used the integral identity

∫

∞

−∞

dxxn exp (−a
2
x
2) =

⎧

⎪

⎨

⎪

⎩

n!

(n/2)!(2a)n

π1/2

|a|
, n = 0, 2, 4, . . .

0, n = 1, 3, 5, . . .

.
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The normal RV (cont.)

⟨X n ⟩ = n!
n∑

k=0
(even)

mn−k (a2)k/2

(n − k)!(k/2)!2k/2

For X ∼ N (m, a2), let n = 0, we get the closure condition

⟨X 0⟩ = 1

For X ∼ N (m, a2), let n = 1 and n = 2, we get

! mean{X} = m (43a)

! sdev{X} = a (43b)

We used

mean{X} = ⟨X ⟩

sdev{X} = (⟨X 2⟩ − ⟨X ⟩2)1/2 M
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The normal RV (cont.)

mean{X} = m

sdev{X} = a

Let parameter a approach to zero, we get

mean{X} → m

sdev{X} → 0

We conclude,
lim
a→0

N (m, a2) = m (44)
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Discrete variables

It is convenient to define RVs that can only take on discrete/integer values

A RV X is said to be a discrete random variable if and only if there exists
a function P of an integer value n such that P(n) equals the probability of
finding the value of X to be precisely n

P(n) ≡ Prob{X = n} (45)

We again call P the density function of X
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Discrete variables (cont.)

Calculate the probability of finding a value of X between n1 and n2, [n1,n2]

The outcome can be realised IFF X is one such integer number

By the addition law of probability,

! Prob{X ∈ [n1, n2]} =
n2∑

n=n1

P(n) (46)

We summed over the integers between n1 and n2
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Discrete variables (cont.)

Any sample value of X will surely take on some integer value in (−∞,∞)

Thus, we have,

!

∞∑

n=−∞
P(n) = 1 (47)

We call this equation the normalisation or closure condition

P(n) is a probability (in [0, 1]), thus by the range law

! 0 ≥ P(n) ≥ 1, for all n (48)
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Discrete variables (cont.)

∞∑

n=−∞
P(n) = 1

P(n) ∈ [0, 1], for all n

Any such function P can be regarded as a density function

• It will define some discrete random variable X

M
A
Y
11
,
20
18

–
FC

–

Probability

and random

variable theory

UFC/DC
SA (CK0191)

2018.1

Probability and
probability laws

Random
variables

General concepts

Moments

Named variables

Discrete variables

Joint variables

Discrete variables (cont.)

The Kronecker delta function δ(n1,n2)

We define the Kronecker delta function as the function δ(n1, n2)

δ(n1,n2) =

{

0, n1 ̸= n2

1, n1 = n2

n1 and n2 are any integer variables
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Discrete variables (cont.)

Consider the Kronecker delta function δ(n, n0)

Suppose that the density function P(n) is δ(n, n0)

P(n) = δ(n, n0) ≡
{

1, n = n0

0, n ̸= n0
(49)

From the definition of a density function, we have

∞∑

n=−∞
P(n) = 1

P(n) ∈ [0, 1], for all n

We have that function δ(n, n0) satisfies all the requirements

! Function δ(n, n0) defines a discrete random variable X

! RV X will always be found at value n0 M
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Discrete variables (cont.)

Take into account the closure condition, we have for the discrete RV X

! Prob{X = n0} =
n0∑

n=n0

δ(n, n0) =

{

1, n = n0 (always)

0, n ̸= n0 (never)

The probability of finding the value of X to be n0 is either 0 or 1

• To be one, the value of n must be n0

‘Random variable X with density function δ(n, n0) is the sure variable n0’
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Discrete variables (cont.)

We define the distribution function F of a discrete random variable X

F (n) ≡ Prob{X ≤ n} (50)

Combining the definition with Prob{X ∈ [n1,n2]} =
∑n2

n=n1
P(n), we get

! F (n) =
n∑

n′=−∞

P(n′) (51)

This implies
! P(n) = F (n) − F (n − 1) (52)

M
A
Y
11
,
20
18

–
FC

–

Probability

and random

variable theory

UFC/DC
SA (CK0191)

2018.1

Probability and
probability laws

Random
variables

General concepts

Moments

Named variables

Discrete variables

Joint variables

Discrete variables (cont.)

F (n) =
∞∑

n′=−∞

P(n′)

Function F (n) increases monotonically from 0 at n = −∞ to 1 at n = ∞

If we know P(n), we can calculate F (n) and vice versa

• Either one define the discrete random variable

∞∑

n=−∞
P(n) = 1

P(n) ∈ [0, 1], for all n
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Discrete variables (cont.)

Integer numbers are a subset of the real numbers

• Are discrete RVs a special case of real RVs?
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Discrete variables (cont.)

Consider as real random variable Y with given density function Q(Y )

Q(y) =
∞∑

n=−∞
P(n)δ(y − n) (53)

! P(n) is the density function of the integer random variable X

P(n) ≡ Prob{X = n}

! δ(y − n) is the Dirac delta function of real variable y

From Prob{Y ∈ [a, b)} =
∫ b
a P(x)dx , we obtain

! Prob{Y ∈ [a, b)} =

∫ b

a

Q(y)dy =
∞∑

−∞
P(n)

∫ b

a

δ(y − n)dy
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Discrete variables (cont.)

Prob{Y ∈ [a, b)} =

∫ b

a

Q(y)dy =
∞∑

−∞
P(n)

∫ b

a

δ(y − n)dy

• The probability of finding Y inside any interval that does not contain
at least one integer is zero

• The probability of finding Y inside any interval that contains one
integer n′ is P(n′)

This implies that the real random variable Y with density Q is identical to
the discrete random variable X with density P
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Discrete variables (cont.)

The theory of discrete RVs is not very different from the theory of real RVs

! Basic relations are obtained by replacing integration with summation

! (And, Dirac delta function with Kronecker delta functions)
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Discrete variables (cont.)

Consider the definition of average of function h with respect to real RV Y

⟨h(Y )⟩ =
∫ ∞

−∞
h(y)Q(y)dx

We want to adapt the definition of average to the discrete RV case

Let Y be the real RV with density function Q

Q(y) =
∞∑

n=−∞
P(n)δ(y − n)

The integer RV X with density P is identical
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Discrete variables (cont.)

For the average of h with respect to RV Y , we have

⟨h(Y )⟩ =
∫ ∞

−∞
h(y)Q(y)dy

=
∞∑

−∞

∫ ∞

−∞
h(y)P(n)δ(y − n)dy

=
∞∑

n=−∞
h(n)P(n) ! ⟨h(X )⟩

(As random variables Y and X are identical)

! ⟨h(X )⟩ =
∞∑

n=−∞
h(n)P(n) (54)
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Discrete variables (cont.)

We define the k-th moment of the discrete RV X

⟨X k ⟩ =
∞∑

n=−∞
nkP(n) (55)

We can use this expression to calculate mean and variance of X

• Again, the vanishing var{X} is a necessary and sufficient
condition for X to be the sure variable ⟨X ⟩
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Discrete variables (cont.)

The discrete uniform variable

The discrete uniform variable is defined by the density function P(n)

P(n) =

{

(n2 − n1 + 1)−1, n1 ≤ n ≤ n2

0, n < n1 or n > n2
(56)

n1 and n2 are any two integers such that n1 ≤ n2

For this RV integer values between n1 and n2 inclusively are equally probable
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Discrete variables (cont.)

P(n) =

{

(n2 − n1 + 1)−1, n1 ≤ n ≤ n2

0, n < n1 or n > n2

We can substitute the density function P into the moment definition

⟨X k ⟩ =
∞∑

n=−∞
nkP(n)

The results6, for k = 1 and k = 2

! ⟨X ⟩ = (n1 + n2)/2 (57a)

! var{X} = (n2 − n1)(n2 − n1 + 2)/12 (57b)

For n2 = n1, we have ⟨X ⟩ = n1 and var{X} = 0 (X is the sure variable n1)

"

6We used two algebraic identities,

N
∑

n=1

n = N(N + 1)/2

N
∑

n=1

n
2 = N(N + 1)(2N + 1)/6

.
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Discrete variables (cont.)

The binomial variable

The binomial variable is defined by the density function P(n)

P(n) =

⎧

⎪⎨

⎪⎩

N !

n!(N − n)!
pn (1 − p)N−n , 0 ≥ n ≥ N

0, n < 0 or n > N

(58)

N is any positive number and p is any real number such that 0 ≤ p ≤ 1
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Discrete variables (cont.)

P(n) =

⎧

⎪⎨

⎪⎩

N !

n!(N − n)!
pn (1 − p)N−n , 0 ≥ n ≥ N

0, n < 0 or n > N

We can substitute the density function into the moment definition

⟨X k ⟩ =
∞∑

n=−∞
nkP(n)

The results7 for k = 1 and k = 2

! ⟨X ⟩ = Np (59a)

! var{X} = Np(1 − p) (59b)

! For p = 0, X is the sure variable 0

! For p = 1, X is the sure variable N

"

7We used the algebraic identity,

1 = [p + (1 − p)]n =
N
∑

n=0

N !

n!(N − n)!
p
n (1 − p)N−n .
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Discrete variables (cont.)

The Poisson variable

The Poisson variable is defined by the density function P(n)

P(n) =

⎧

⎨

⎩

e−aan

n!
, n ≥ 0

0, n < 0
(60)

a is any positive real number
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Discrete variables (cont.)

P(n) =

⎧

⎨

⎩

e−aan

n!
, n ≥ 0

0, n < 0

We can substitute the density function into the moment definition

⟨X k ⟩ =
∞∑

n=−∞
nkP(n)

The results8 for k = 1 and k = 2

! ⟨X ⟩ = a (61a)

! var{X} = a (61b)

For p → 0, the Poisson RV approaches the sure variable 0

8We used the algebraic identity,

e
a =

∞
∑

n=0

an

n!
.
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Discrete variables (cont.)

The Poisson RV can be understood as a special case of the binomial RV

• For N very large and p very small (Rare events)

P(n) =

⎧

⎨

⎩

e−aan

n!
, n ≥ 0

0, n < 0

Let N be large and approximate the density function of the binomial RV

P(n) =

⎧

⎪⎨

⎪⎩

N !

n!(N − n)!
pn (1 − p)N−n , 0 ≥ n ≥ N

0, n < 0 or n > N

We have,

N !

(N − n)!
pn = N (N − 1) · · · (N − n + 1)pn ≈ N npn = (Np)n

(1 − p)N−n ≈ (1− p)N =
(

1−
Np

N

)N
≈ e−Np
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Discrete variables (cont.)

N !

(N − n)!
pn = N (N − 1) · · · (N − n + 1)pn ≈ N npn = (Np)n

(1 − p)N−n ≈ (1− p)N =
(

1−
Np

N

)N
≈ e−Np

As a result,

N !

(N − n)!
pn (1− p)N−n

!

N→∞
p = a/N !

e−aan

n!
(62)

For N → ∞ and p → 0 with Np constant, the binomial RV with parameters
N and p becomes the Poisson random variable with mean and variance Np
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Discrete variables (cont.)

Consider the Poisson RV with density function P(n)

P(n) =

⎧

⎨

⎩

e−aan

n!
, n ≥ 0

0, n < 0

For a >> 1, P(n) is appreciably larger than zero only for n ≈ a

Consider the Stirling’s approximation of n! (?!)

n! ≈ (2πn)1/2nne−n , for n >> 1

Moreover, we establish

ln
[e−aan

n!
(2πa)1/2

]

≈ (n − a) − nln(n/a), for n >> 1
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Discrete variables (cont.)

The logarithm approximation

ln(1 + ε) ≈ ε− ε2/2, for |ε| << 1

ε = (n − a)/a , so when n ≈ a, the RHS is approximately equal to

−aε2/2 = −(n − a)2/(2a)

We conclude

e−aan

n!
≈

1

(2πa)1/2
exp

[

−
(n − a)2

2a

]

, (a >> 1) (63)

When a is sufficiently large, the Poisson RV with mean and variance a
approaches (at integer values) the normal RV with mean and variance a
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Discrete variables (cont.)

We may further elaborate

N !

n!(N − n)!
pn (a − p)N−n

!

N→∞
p = a/N , a >> 1

!
1

(2πa)1/2
exp

[

−
(n − a)2

2a

]

(64)

If N → ∞ and p → 0 withNp a sufficiently large constant, then the binomial
RV with parameters N and p approaches (at integer values) the normal RV
with mean and variance Np

"
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Joint random variables

Consider a set of n variables X1,X2, . . .,Xn

The set is called a set of joint random variables if and only if

1 all n variables can be sampled simultaneously

2 there is a n-variate function P such that P(x1, x2, . . . , xn)dx1dx2 · · ·dxn
equals the probability that such a sampling finds Xi inside [xi , xi + dxi )
for all i = 1, 2, · · · ,n
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Joint random variables (cont.)

Consider for simplicity the case n = 3 random variables X1, X2 and X3

For any sampling, we have

P(x1, x2, x3)dx1dx2dx3 = Prob{Xi ∈ [xi , xi + dxi ), for i = 1, 2, 3} (65)

Again, the equation is considered valid only to the first-order

• In each of the positive infinitesimals dx1, dx2 and dx3

Function P is called joint density function of X1 ,X2 and X3

! The expression above is regarded as its definition

‘X1, X2 and X3 are distributed according to the joint density function P’
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Joint random variables (cont.)

Individually sampling any one variable X1, X2 or X3 is equivalent to sam-
pling them all simultaneously and then ignoring the values of the other two

• This is implicit in the main working hypothesis

• (X1, X2 or X3 can be sampled simultaneously)
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Joint random variables (cont.)

Because of the addition law of probability, we have

!

∫ b1

a1

dx1

∫ b2

a2

dx2

∫ b3

a3

dx3P(x1, x2, x3)

= Prob{Xi ∈ [ai , bi ), for i = 1, 2, 3} (66)

Moreover, as each RV Xi is certain to be found in (−∞,∞)

!

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

∞
dx3P(x1, x2, x3) = 1 (67)

The expression is again called the normalisation or closure condition

The infinitesimals dxi are intrinsically positive

! P(x1, x2, x3) ≥ 0 (68) M
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Joint random variables (cont.)

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

∞
dx3P(x1, x2, x3) = 1

P(x1, x2, x3) ≥ 0

Any such three-variable function P can be regarded as joint density function

! It defines the joint random variables X1, X2 and X3
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Joint random variables (cont.)

Consider the analogy with the distribution function F (x) ≡ Prob{X < x}

We can define the joint distribution function of RVs X1, X2 and X3

The definition

F (x1, x2, x3) ≡ Prob{Xi < xi , for i = 1, 2, 3} (69a)

=

∫ x1

−∞
dx ′

1

∫ x2

−∞
dx ′

2

∫ x ′

3

−∞
dx ′

3P(x ′
1, x

′
2, x

′
3) (69b)

We used
∫ b1
a1

dx1
∫ b2
a2

dx2
∫ b3
a3

dx3P(x1, x2, x3) = Prob{Xi ∈ [ai , bi), ∀i}
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Joint random variables (cont.)

The joint density function P produces a number of density functions

• They are important

These density functions can be grouped into two main classes

! Marginal density functions

! Conditional density functions
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Joint random variables (cont.)

Let (i , j , k) denote any permutation of (1, 2, 3)

We define the marginal density functions

Pi (xi )dxi ≡ Prob{Xi ∈ [xi , xi + dxi ),

regardless of Xj and Xk} (70)

Pi,j (xi , xj )dxidxj ≡ Prob{Xi ∈ [xi , xi + dxi) and Xj ∈ [xj , xj + dxj ),

regardless of Xk} (71)
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Joint random variables (cont.)

Let (i , j , k) denote any permutation of (1, 2, 3)

We define the conditional density functions

P
(j)
i (xi |xj )dxi ≡ Prob{Xi ∈ [xi , xi + dxi ),

given Xj = xj and regardless of Xk} (72)

P
(j ,k)
i (xi |xj , xk )dxi ≡ Prob{Xi ∈ [xi , xi + dxi),

given Xj = xj and Xk = xk} (73)

P
(k)
i,j (xi , xj |xk )dxidxj ≡ Prob{Xi ∈ [xi , xi + dxi) and Xj ∈ [xj , xj + dxj ),

given Xk = xk} (74)
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Joint random variables (cont.)

We can analyse the definition of marginal and conditional density function

! They must be non-negative and normalised

The normalisation/closure conditions

∫ ∞

−∞
dxiPi (xi ) =

∫ ∞

−∞
dxiP

(j)
i (xi |xj ) =

∫ ∞

−∞
dxiP

(j ,k)
i (xi |xj , xk )

= 1 (75)

∫ ∞

−∞
dxi

∫ ∞

−∞
dxjPi,j (xi , xj ) =

∫ ∞

−∞
dxi

∫ ∞

−∞
dxjP

(k)
i,j (xi , xj |xk )

= 1 (76)
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Joint random variables (cont.)

The joint, the marginal and the conditional density functions are interrelated

Consider the probability relations between three outcomes 1, 2 and 3

For (i , j , k) any permutation of (1, 2, 3), we have

p(i ∧ j ) = p(i)p(j |i)
p(1 ∧ 2 ∧ 3) = p(i ∧ j )p(k |i ∧ j )

p(1 ∧ 2 ∧ 3) = p(i)p(j ∧ k |i)

Now, identify outcome i with ‘Xi ∈ [xi , xi + dxi )’
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Joint random variables (cont.)

p(i ∧ j ) = p(i)p(j |i)
p(1 ∧ 2 ∧ 3) = p(i ∧ j )p(k |i ∧ j )

p(1 ∧ 2 ∧ 3) = p(i)p(j ∧ k |i)

From the definitions of marginal and conditional probabilities, we have

Pi,j (xi , xj )dxidxj = Pi (xi )dxi × P
(i)
j (xj |xi)dxj

P(x1, x2, x3)dx1dx2dx3 = Pi,j (xi , xj )dxidxj × P
(i,j)
k (xk |xi , xj )dxk

P(x1, x2, x3)dx1dx2dx3 = Pi (xi )dxi × P
(i)
j ,k (xj , xk |xi )dxjdxk
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Joint random variables (cont.)

By eliminating the differentials, we get the equations

Pi,j (xi , xj ) = Pi (xi )P
(i)
j (xj |xi) (77a)

P(x1, x2, x3) = Pi,j (xi , xj )P
(i,j)
k (xk |xi , xj ) (77b)

P(x1, x2, x3) = Pi (xi )P
(i)
j ,k (xj , xk |xi) (77c)

They are valid for (i , j , k) any permutation of (1, 2, 3)

The equations can be complemented by a forth equation9

P
(k)
i,j (xi , xj |xk ) = P

(k)
i (xi |xk )P

(i,k)
j (xj |xi , xk ) (78)

9From subjecting the arguments of the first equation to condition Xk = xk .
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Joint random variables (cont.)

Pi,j (xi , xj ) = Pi (xi )P
(i)
j (xj |xi)

P
(k)
i,j (xi , xj |xk ) = P

(k)
i (xi |xk )P

(i,k)
j (xj |xi , xk )

P(x1, x2, x3) = Pi,j (xi , xj )P
(i,j)
k (xk |xi , xj )

P(x1, x2, x3) = Pi (xi )P
(i)
j ,k (xj , xk |xi)

These equations embed all connections between joint, marginal and condi-
tional density functions for the case of three RVs X1, X2 and X3
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Joint random variables (cont.)

We can derive all descending density functions from the joint density

Integrate P(x1, x2, x3) = Pi (xi )P
(i)
j ,k (xj , xk |xi) over xj and xk

! Pi (xi ) =

∫ ∞

−∞
dxj

∫ ∞

−∞
dxkP(x1, x2, x3)

=

∫ ∞

−∞
dxj

∫ ∞

−∞
dxkPi (xi )P

(i)
j ,k (xj , xk |xi ) (79)

Integrate P(x1, x2, x3) = Pi,j (xi , xj )P
(i,j)
k (xk |xi , xj ) over xk

! Pi,j (xi , xj ) =

∫ ∞

−∞
dxkP(x1, x2, x3)

=

∫ ∞

−∞
dxkPi,j (xi , xj )P

(i,j)
k (xk |xi , xj ) (80)
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Joint random variables (cont.)

Marginal density functions

They can be obtained by integrating the joint density function

• Over all ignored variables
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Joint random variables (cont.)

Divide Pi,j (xi , xj ) = Pi (xi )P
(i)
j (xj |xi) by Pi (xi )

! P
(i)
j (xj |xi) =

Pi,j (xi , xj )

Pi (xi )

Then, use Pi (xi ) and Pi,j (xi , xj )

! P
(i)
j (xj |xi) =

∫ ∞

−∞
dxkP(x1, x2, x3)

︸ ︷︷ ︸

Pi,j (xi ,xj )
∫ ∞

−∞
dxj

∫ ∞

∞
dxkP(x1, x2, x3)

︸ ︷︷ ︸

Pi (xi )

(81)
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Joint random variables (cont.)

Divide P(x1, x2, x3) = Pi,j (xi , xj )P
(i,j)
k (xk |xi , xj ) by Pi,j (xi , xj )

! P
(i,j)
k (xk |xi , xj ) =

P(x1, x2, x3)

Pi,j (xi , xj )

Then, use Pi,j (xi , xj )

! P
(i,j)
k (xk |xi , xj ) =

P(x1, x2, x3)
∫ ∞

−∞
dxkP(x1, x2, x3)

︸ ︷︷ ︸

Pi,j (xi ,xj )

(82)
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Joint random variables (cont.)

Divide P(x1, x2, x3) = Pi (xi )P
(i)
j ,k (xj , xk |xi) by Pi (xi )

! P
(i)
j ,k (xj , xk |xi) =

P(x1, x2, x3)

Pi (xi )

Then, use Pi (xi )

! p
(i)
j ,k (xj , xk |xi) =

P(x1, x2, x3)
∫ ∞

−∞
dxj

∫ −∞

−∞
dxkP(x1, x2, x3)

︸ ︷︷ ︸

Pi (xi )

(83)
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Joint random variables (cont.)

Conditional density functions

They are obtained by taking the ratio of two integrals of the joint density

• At the numerator, it is over all ignored variables

• At the denominator, it is over all variables, except conditioning ones
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Joint random variables (cont.)

The joint density function determines all marginal and conditional densities

Only some subsets of marginal and conditional densities determine the joint

P(x1, x2, x3) = Pi,j (xi , xj )P
(i,j)
k (xk |xi , xj )

P(x1, x2, x3) = Pi (xi )P
(i)
j ,k (xj , xk |xi)

! They are a partial conditioning of P

Pi,j (xi , xj ) = Pi (xi )P
(i)
j (xj |xi) into P(x1, x2, x3) = Pi,j (xi , xj )P

(i,j)
k (xk |xi , xj )

! P(x1, x2, x3) = Pi (xi )P
(i)
j (xj |xi )P

(i,j)
k (xk |xi , xj ) (84)

It holds for (i , j , k) denoting any permutation of (1, 2, 3)

! It is a full conditioning of P
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Joint random variables (cont.)

We can express each density function as an integral of another densities
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Joint random variables (cont.)

Integrate P
(k)
i,j (xi , xj |xk ) = P

(k)
i (xi |xk )P

(i,k)
j (xj |xi , xk ) over xj

! P
(k)
i (xi |xk ) =

∫ ∞

−∞
dxjP

(k)
i (xi |xk )P

(i,k)
j (xj |xi , xk )

= P
(k)
i (xi |xk )

∫ ∞

−∞
dxjP

(i,k)
j (xj |xi , xk ) (85)

We used normalisation10

10Use
∫

∞

−∞
dxiPi(xi ) =

∫

∞

−∞
dxiP

(j)
i (xi |xj ) =

∫

∞

−∞
dxiP

(j ,k)
i (xi |xj , xk ) = 1.
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Joint random variables (cont.)

We can permute indexes in P
(k)
i,j (xi , xj |xk ) = P

(k)
i (xi |xk )P

(i,k)
j (xj |xi , xk ),

! P
(k)
i,j (xi , xj |xk ) = Pi (xi )P

(i)
j (xj |xi) = Pj (xj )P

(j)
i (xi |xj )

Integrate P
(k)
i,j (xi , xj |xk ) = Pi (xi )P

(i)
j (xj |xi ) over xj

! Pi (xi ) =

∫ ∞

−∞
dxjPj (xj )P

(j)
i (xi |xj )

= Pi (xi )

∫ ∞

−∞
dxjP

(i)
j (xj |xi ) (86)

We used normalisation11

11Use
∫

∞

−∞
dxiPi(xi ) =

∫

∞

−∞
dxiP

(j)
i (xi |xj ) =

∫

∞

−∞
dxiP

(j ,k)
i (xi |xj , xk ) = 1.
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Joint random variables (cont.)

Integrate P(x1, x2, x3) = Pi,j (xi , xj )P
(i,j)
k (xk |xi , xj ) over xi and xj

Then, use Pi (xi ) =
∫∞
−∞ dxj

∫∞
−∞ dxk (x1, x2, x3)

! Pk (xk ) =

∫ ∞

−∞
dxi

∫ ∞

−∞
dxjPi,j (xi , xj )P

(i,j)
k (xk |xi , xj ) (87)
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Joint random variables (cont.)

Integrate P(x1, x2, x3) = Pi (xi )P
(k)
j (xj |xi)P(i,k)

k (xk |xi , xj ) over xi

Then, use Pi,j (xi , xj ) =
∫∞
−∞ dxkP(x1, x2, x3)

! Pi,j (xi , xj ) =

∫ ∞

−∞
dxiPi (xi )P

(i)
j (xj |xi)P(i,j)

k (xk |xi , xk ) (88)

M
A
Y
11
,
20
18

–
FC

–

Probability

and random

variable theory

UFC/DC
SA (CK0191)

2018.1

Probability and
probability laws

Random
variables

General concepts

Moments

Named variables

Discrete variables

Joint variables

Joint random variables (cont.)

Statistical independence of random variables

We define12 statistical independence of RVs

For (i , j , k) any permutation of (1, 2, 3), we have

Pi (xi ) = P
(j)
i (xi |xj ) = P

(j ,k)
i (xi |xj , xk ) (89)

A necessary and sufficient condition for X1, X2 and X3 to be statistically
independent is that their joint density function P(x1, x2, x3) be equal to the
product of their marginal density functions

! P(x1, x2, x3) = Pi (xi )Pj (xj )Pk (xk ) (90)

"

12In analogy with the definition of statistical independence of outcomes.
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Joint random variables (cont.)

Consider full conditioning P(x1, x2, x3) = Pi (xi )P
(k)
j (xj |xi)P(i,k)

k (xk |xi , xj )

Pi (xi ) = P
(j)
i (xi |xj ) = P

(j ,k)
i (xi |xj , xk )

! P(x1, x2, x3) = Pi (xi )Pj (xj )Pk (xk )
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Joint random variables (cont.)

Substitute Pi (xi ) = P
(j)
i (xi |xj ) = P

(j ,k)
i (xi |xj , xk ) into the densities

! P
(i)
j (xj |xi ) =

∫ ∞

−∞
dxkP(x1, x2, x3)

︸ ︷︷ ︸

Pi,j (xi ,xj )
∫ ∞

−∞
dxj

∫ ∞

∞
dxkP(x1, x2, x3)

︸ ︷︷ ︸

Pi(xi )

! P
(i,j)
k (xk |xi , xj ) =

P(x1, x2, x3)
∫ ∞

−∞
dxkP(x1, x2, x3)

︸ ︷︷ ︸

Pi,j (xi ,xj )

Normalise P(i) to get

P(x1, x2, x3) = Pi (xi )Pj (xj )Pk (xk )

! Pi (xi ) = P
(j)
i (xi |xj ) = P

(j ,k)
i (xi |xj , xk )
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Joint random variables (cont.)

Average

We define average of any three-variate function h

! With respect to the set of RVs X1, X2 and X3

⟨h(X1,X2,X3)⟩ ≡ lim
N→∞

1

N

N∑

n=1

h
[
x
(n)
1 , x (n)

2 , x (n)
3

]
(91)

x
(n)
j is the value found for Xj in the n-th simultaneous sampling of the RVs

We can derive an analytically more convenient form

! ⟨h(X1,X2,X3)⟩

=

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−∞
dx3h(x1, x2, x3)P(x1, x2, x3) (92)
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Joint random variables (cont.)

⟨h(X1,X2,X3)⟩ =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−∞
dx3h(x1, x2, x3)P(x1, x2, x3)

Consider the case in which function h is independent of X3

We have,

! ⟨h(X1,X2)⟩ =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2h(x1, x2)

[ ∫ ∞

−∞
dx3P(x1, x2, x3)

︸ ︷︷ ︸

P1,2(x1,x2)

]
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Joint random variables (cont.)

For (i , j ) any permutation of (1, 2, 3), we have the general forms

! ⟨h(Xi ,Xj )⟩ =
∫ ∞

−∞
dxi

∫ ∞

−∞
dxj h(xi , xj )Pi,j (xi , xj ) (93a)

! ⟨h(Xi )⟩ =
∫ ∞

−∞
dxih(xi )Pi (xi ) (93b)

Note that ⟨h(Xi )⟩ =
∫∞
−∞ dxih(xi )Pi (xi ) has form ⟨h(X )⟩ =

∫∞
−∞ h(x)P(x)dx

! ⟨X n
i ⟩, mean{Xi}, var{Xi} and sdev{Xi} can be defined

! (Replace X with Xi )
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Joint random variables (cont.)

Covariance

We define the family of covariances of RVs Xi and Xj

cov{Xi ,Xj } = ⟨(Xi − ⟨Xi ⟩)(Xj − ⟨Xj ⟩)⟩ (94a)

= ⟨XiXj ⟩ − ⟨Xi ⟩⟨Xj ⟩ (94b)

The equivalence is based on the expression of ⟨h(Xi ,Xj )⟩ and ⟨h(Xi )⟩

Compare cov{Xi ,Xj } = ⟨XiXj ⟩ − ⟨Xi ⟩⟨Xj ⟩ and var{X} = ⟨X 2⟩ − ⟨X ⟩2

We have,
cov{Xi ,Xi} = var{Xi} (95)

Covariances are useful quantities regarding sets of joint RVs

"
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Joint random variables (cont.)

Conditioned averages

We define the family of conditioned averages of h

1 With respect to the RVs Xi and Xj

2 Given that Xj = xj

⟨h(Xi ,Xj |Xj = xj )⟩ ≡
∫ ∞

−∞
dxih(xi , xj )P

(j)
i (xi |xj ) (96)

Conditioned averages are seen as calculated by ignoring all samples in which
the value of Xj is not found to be equal (or close, infinitesimally) to xj

• (From the view point of sampling)

⟨h(X1,X2,X3)⟩ ≡ lim
N→∞

1

N

N∑

n=1

h
[

x
(n)
1 , x

(n)
2 , x

(n)
3

]

Conditioned means, conditioned variances, conditioned covariances all follow

"


