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Analysis in time of linear stationary systems in state-space representation

e The analysis problem
e The state transition matrix

e Sylvester expansion

e Lagrange formula

e Similarity transformations
e Diagonalisation

e Jordan’s form

e Modes

mode modes
. .
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e Let r be the number of inputs

The state-space representation of the system

x(t)
y(t) =

Ax(t) + Bu(t) ()
Cx(t) + Du(t)

e x(t) is the state vector (n components)

e x(t) is the derivative of the state vector (n components)
e u(t) is the input vector (r components)

e y(t) is the output vector (p components)

A (nxn),B(nxr),C(pxn)and D (p x ) are matrices

e The elements are not function of time
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Representation and analysis

The analysis problem

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Determine the behaviour of state x(t) and output y(t) for t > to
e We are given the input function u(¢), for t >

e We are given the initial state x (o)

The solution
e The Lagrange formula

e We discuss it at length

We first introduce the state transition matrix
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The state transition matrix

Consider some square matrix A
Its exponential e is a matrix

A2 A3 ol Ak
AT A =Y

PTRNET = k!

At

The state transition matrix e“*' is a matrix exponential

~ Its elements are functions of time
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The state transition matrix (cont.)

The exponential function

Let z be some scalar, by definition its exponential is a scalar

22 23 > Lk

L — J— >3 cee =
ef=ltz+ 4ot

The series always converges

] !
3l il

The matrix exponential

Let A be a (n x n) matrix, by definition its exponential is a (n X n) matrix

The series always converges
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The state transition matrix (cont.)

The scalar-matrix product

s ar1
B=sA=|s5-a;1

S am,1

Let s € R and let A = {a;;} be a (m X n) matrix

S a1,

S Qi

ER

B={bjj=5"a;;}

S ai,n

S - ai’n

S am,n

The product of A and s is defined as the (m x n) matrix B = {b; ; }
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The state transition matrix (cont.)

The matrix product

Let A = {a; ; } bea (m x n) matrix and let B = {b; ; } be a (n X p) matrix

a1 e @k ot Gin
A= (7] Qg K Qg n

am,1 am k" am,n

big e biy e bip
B= b1 - bpy 0 bryp

L N

The product between A and B is defined as a (m x p) matrix C = {¢; ; }

n
C={cij = aikb;}

k=1
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The state transition matrix (cont.)

Cm,1

Cm,j

1y Cl,p

Ci,j e Cip

Cm,p

Element ¢; ; of matrix C is given by the dot product between a/ and b;

/
(3,,‘]‘ =a b]‘ = [(LiJ Qa; 2

=aij1b1; + ai2b2; +---

Qi k

n

bl,j
ba,j

uz.nl bk p

bn,j

+[L7,n bn,,j = E ay‘,?kbk?j
k=1
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The state transition matrix (cont.)

For every (m x n) matrix A, we have

I m A = A I n - A

(mxm) (mxn) (mxn) (nxn) (mxn)

Right- and left-multiplication of matrix A by an identity matrix (I, or I,,)
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The state transition matrix (cont.)

Matrix product is not necessarily commutative, AB # BA
A B =
~~
(mxmn) (nxp)  (mxp)
a1 0 ark v an | [bia oo b1y e bip
= | @i, i,k Qj,n bk,l bk,j bk,p
am,1 " am,k am,n bpa o - bn,j bn,p

The product BA is not even defined
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The state transition matrix (cont.)

For AB = BA, A and B must be both square and of the same order

e (necessary condition)

A (n x n) diagonal matrix D commutes with any (n X n) matrix A

DA = AD
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The state transition matrix (cont.)

The product of several matrices

The product of A and B is only possible when the matrixes are compatible

e Number of columns of A must equal the number of rows of B

The same applies to the product of several matrixes

M = A Az 0 Ap Ay
~ ~~ ~~ —— ~~
(mxn)  (mxmy) (maXma)  (mp_oxmy_1) (Mg—1Xn)
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The state transition matrix (cont.)

Powers of a matrix
Let A be an order-n square matrix
The k-th power of matrix A is defined as the n-order matrix A%

AF=AA.. A
N———

k times
Special cases,

— Ak::O =1
~ AR = A
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The state transition matrix

Consider the state-space model with (n x n) matriz A

%(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)

The state transition matriz is the (n X n) matriz eAt

0 Aktk,
eAt = kg:o x )

The state transition matriz is well defined for any square matriz A

o (The series always converges)
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The state transition matrix (cont.)

Not convenient to determine the state transition matrix from its definition

~~ There are more efficient procedures for the task

~» One exception, when A is (block-)diagonal
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The state transition matrix (cont.)

The matrix exponential of block-diagonal matrixes
Consider any block-diagonal matrix A, we have
Ay 0 .- 0 M0 -0
A

0 Ay - 0 0 etz ... 0
A=| . . ) . ~ e =
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Proof

For all k € N, we have

Al 0 ]
L 0 Af 0
AF = L .
‘k
0o o0 Ak
Thus,
Ak
1
Yo % 0
Aj
o) k S
AL A_: 0 > hzo %l 0
!
= k! :
Ak
q
0 0 k=0 %1
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The matrix exponential of diagonal matrixes

For any diagonal (n X n) matrix A, we have

A0 -0 eM 0 -0

0 X -+ O 0 e ... 0
A = . ) Y weAz . . .

o 0 : : w0

0o 0 - Ay 0 0 - et

The result is a special case of the previous proposition
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Consider the state-space model with (n x n) diagonal matriz A

We have,
A O 0 eMt 0 0
0 X 0 0 erz2t 0
A = > eAt =
0 0
0 0 An 0 0 ernt
Proof
We have,
At 0 - 0 eMt 0 ... 0
0 Xt --- 0 0 et ... 0
At = . . . A = .
: : .0 : : . 0
0 0 - At 0 0 - et

This matrix is diagonal, we used the result from the previous proposition
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Consider the state-space model with (2 x 2) diagonal matrix A

‘We are interested in the corresponding state transition matrix

‘We have,

At e(—l)t 0
c = 0 e(=2)t
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0.5 1 -10.5
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We present some fundamental results about the state transition matrix et

~» They are needed to derive Lagrange formula
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Derivative of the state transition matriz

Consider the state transition matriz e

We have,
d
dt

eAt _ AeAf’ _ eAf'A
Proof
To prove the first equality, we differentiate eAt = 372 - ARtk /k!

dt dt k! dt k! k!

The second equality is obtained by collecting A on the right
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By using the derivative property, we have that A commutes with e®?

~ That is, Ae®!l = eALA

A and e®! commute (this result is important)
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Composition of two state transition matrices

Consider the two state transition matrices et and eAT

We have,
eAteAT — eA(t+T)
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Proof

We expand both exponentials in their corresponding series and multiply

A2t2 A3t3 A2T2 A3T3
R +"')(I+AT+T+T+'”>
A2T2 ASTS A4T4

2! !
AStr2
+ At 4+ A%tr
A2¢2?
= + 2!

eAteAT = (I + At +

I + A7 + o
Atir3

3!
A4t2’7'2

212!
A3

|
A32t'2

T

!
A%tS
3!

+ o+ o+ o+

!
A:jit‘l
4!

+ o+ o+ o+t

A? A3
=T+ A(t+7)+ ?(ﬂ +2tr 4+ 72)2 4 ?(t:" + 3t27 + 372 + %)

A4
+ I(t4 + 4837 + 61272 + 4t 47 + -
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A%(t+T1 A3(t+7)%  AY(t+7)*
CALAT Z 1L A(E+T) + (2' )+ (3' )+ (4' )+...

2 AF(t 1)k
S = _
>

k=0

— (A7)




State-space
representation

UFC/DC
SA (CKO0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and
forced evolution

Impulse response

Transition matrix
Complex eigenvalues
Basis of generalised
eigenvectors
Generalised modal
matrix

Transition matrix

Properties (cont.)

The previous result is not trivial

In the scalar case, we always have ¢ e?™ = ¢2(1+7) or ¢atht = g(atb)t
In the matrix case, it is not necessarily true that eAteBt = ¢(A+B)t
~ Equality holds if and only if AB = BA

~ (If the matrices commute)
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Inverse of the state transition matriz
Let ¢! be a state transition matriz

) =i 4 S
Its inverse (e®') ™ is matriz e At

(At —At _ At At _

Proof

Based on the previous proposition, we have

(Ato—At _ (A(t=t) _ (A0 _ T A .04 =

A2-02 A3~03

3!
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At

A state transition matrix e“*' is always invertible (non-singular)

e Even if A were singular

The result follows from the previous proposition
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Matrix inverse

Consider a square matrix A of order n

ATTA=AA"1 =1

e When the inverse exists it is unique

We define the inverse of A the square matrix of order n, A~!

The inverse of matrix A exists if and only if A is non-singular
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Matrix minors
Consider a square matrix A of order n > 2

The minor (i,7) of matrix A is a square matrix A; ; of order (n — 1)

a1 a2 ot Gy s Glp

az1 a2 ccc 4oy - G2p
a,

9T 7 Gy
am,1 Am,2 - Qg Am,p

It is obtained from A by deleting the i-th row and the j-th column
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Properties (cont.)

Matrix determinant
Consider a square matrix A of order n
The determinant of A is a real number

det (A) = |A|

e For n =1, let A = [a1,1], we have
~ det (A) =a1,1

e For n > 2, we have

n
~ det (A) =a1,161,1 + a2,182,1 + -+ an,1dn,1 = Z @i 11
i=1
a; ; denotes the cofactor of element (7,7), it is a scalar

e It is equal to the determinant of minor A, ; multiplied by (—1)""/
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Sylvester expansion
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Sylvester expansion

We determine the analytical expression of the state transition matrix et

e (without necessarily calculating the infinite expansion)

The procedure is known as Sylvester expansion
e There are also other procedures

e (We discuss them later on)
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Sylvester expansion (cont.)

The Sylvester expansion
Let A be a (n X n) matriz
The corresponding state transition matric is e’

We have,

n—1

EAt' _ Z ﬁl(t)A[
=0
— Bo()T + Br(D)A + Ba()A2 + -+ + Bu_1 (DA™ (3)

The coefficients of the expansion [3; are appropriate functions of time

~ They can be determined by solving a set of linear equations
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Sylvester expansion (cont.)

We discuss how to determine the coefficients of the expansion

‘We individually consider several cases
~ Eigenvalues of A have multiplicity one
~ Eigenvalues of A have multiplicity larger than one

~» Matrix A has complex eigenvalues (with multiplicity one)
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Sylvester expansion (cont.)

Eigenvalues and eigenvectors

Let A € R be some scalar and let v # 0 be a (n x 1) column vector
Consider a square matrix A of order n

Suppose that the identify holds

Av = )v

The scalar A is called an eigenvalue of A

The vector v is called the associated eigenvector
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Sylvester expansion (cont.)

Consider a square matrix A of order n whose elements are real numbers

Matrix A has n (not necessarily distinct) eigenvectors A1, A2, ..., A\,

e They can be real numbers or conjugate-complex pairs

If \; # \; for i # j, we say that matrix A has multiplicity one
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Sylvester expansion (cont.)

Eigenvalues of triangular and diagonal matrices

Let matrix A = {a; ; } be triangular or diagonal

The eigenvalues of A are the n diagonal elements {a;;}, i =1,2,...,n
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Sylvester expansion (cont.)

Characteristic polynomial

The characteristic polynomial of a square matrix A of order n
e The n-order polynomial in the variable s

P(s) =det (sI — A)

Computing eigenvalues and eigenvectors

The eigenvalues of matrix A of order n solve its characteristic polynomial

~» The roots of the equation P(s) = det (sI — A) =10

Let A\ be an eigenvalue of matrix A
Each eigenvector v associated to it is a non-trivial solution to the system

(M —A)v=0

O is a (n x 1) column-vector whose elements are all zero
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Sylvester expansion (cont.)

Proof
An eigenvalue A and an eigenvector v must satisfy
Av =Av

(AI — A)v = 0 follows from this identity

The non-trivial solution v # 0 is admissible iff matrix (A\I — A) is singular

s det(\I—A) =0

Thus, A is root to the characteristic polynomial of matrix A
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Sylvester expansion (cont.)

Systems of linear equations
Consider a system of n linear equations in n unknowns
Ax=Db

~ Ais a (n x n) matrix of coefficients
~ bisa (n x 1) vector of known terms

~ xis a (n x 1) vector of unknowns

If matrix A is non-singular, the system admits one and only one solution

If A is singular, let M = [A|b] be a [n x (n + 1)] matrix
o If rank(A) = rank(M), system has infinite solutions
e If rank(A) < rank(M), system has no solutions
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Matrix rank

The rank of a (m x n) matrix A is equal to the number of columns (or
rows) of the matrix that are linearly independent

rank(A)

Define the minors of matrix A as any matrix obtained from A by deleting
an arbitrary number of rows and columns

e rank(A) equals the order of the largest non-singular square minor
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Properties (cont.)

Matrix kernel or null space
Consider a (m x n) matrix A
We define the null space or kernel
ker(A) = {x € R"|Ax =0}

It is all vectors x € R"™ that left-multiplied by A produce the null vector

The set is a vector space, its dimension is called the nullity of matrix A

null(A)
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Eigenvalues with multiplicity one

Let matrix A have distinct eigenvalues A1, A2,..., Ay
n—1
A= 3 (1A
i=0
= Bo()I + B1(t)A + Ba(t)A% + - + Br_1(t)A™ !

The n unknown functions j3;(¢) are those that solve the system

180(t) + A1B1(t) + A2B2(t) + -+ + AT Bue1(t) = eM?

180() + XaB1(t) + A3Ba(t) 4+ --- + A0 81 (t) = 2! @)

180(t) + AnB1(t) + A2 B2 (1) 4 -+ + AL 81 (t) = ent
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Sylvester expansion (cont.)

Or, equivalently,
VB =n (5)

e The vector of unknowns
~ B=[B(t) B(t) - Baa(®)]”

e The coefficients matrix®

1 X A3 Apt
~ o Vo= . . .
1 A A2 An—t

e The known vector

LA matrix in this form is known as Vandermonde matrix.
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n:[e)‘lt eX2t L exnt]T

The components of vector 7 are functions of time, e*!

At

~~ Functions e*" are the modes of matrix A

~ Mode e*! associates with eigenvalue A

At

Each element of e”*' is a linear combination of such modes
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Consider the (2 x 2) matrix A

o !

We want to determine et

Matrix A is triangular, the eigenvalues correspond to the diagonal elements

Matrix A has 2 distinct eigenvalues
~ A =-1
g = —2

To determine et

{/ﬂo(mxlm(t):em N {ﬁo(t)m(t):e—f

, we write the system

Bo(t) + X2Bi(t) = er2! Bo(t) —2B1(t) = e~ 2
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Sylvester expansion (cont.)

By simple manipulation, we get

Bo(t) =2e~t — e 2
Bi(t) =e b —e?

17 . —
€ o5 1 |
Q

0.5

Ba(t)

State-space
representation

UFC/DC
SA (CK0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and
forced evolution

Impulse response

Transition matrix

Complex eigenvalues

Basis of generalised

eigenvectors

Generalised modal
matrix

Transition matrix

Sylvester expansion (cont.)

ﬁl(t) — e—f, - e—2t

{Bo(t) =2e "t — e 2

Thus,

2

e = Bo(t)I2 + B1(1)A
ectenf e -cnfi )

( |:e_t (e=t — e_2t):|

0 e-2t

Each element of matrix e is a linear combination of the two modes
s gft
—2t

~re
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o
(V)
[ PO
(=)
oo
o
N
J e
[}
oo

0.5 - - -10.5
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Eigenvalues with multiplicity larger than one

Let matrix A have eigenvalues with multiplicity larger than one

As in the previous case, we build a system of equations

Eigenvalues A of multiplicity v associate to v equations

[Bo(t) + ABL(E) + - + A" 1B (1)]
= [Bo®) +ABL®) + -+ A B (8)]

ST B FAB) o AT ()]

Il
®

Il
o

= —e

dav—1

(6)
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That is,

1B0(t) + ABL(t) 4 -+ + N 1B _1(t) = eM
181(t) 4+ 22Ba(t) + -+ + (n — DA 28, _1(t) = te

(v 7.])!
0!

Bo—1(t) +---+ u/\”7”[37171(0 =V leM
(n—v)!

It is again possible to re-write the linear system in compact form

~ VB=n

(7
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Sylvester expansion (cont.)

VB =n

Consider the eigenvalues A with multiplicity v

e They are associated with v rows in the coefficient matrix? V

1 A A2 .. AVl
0 1 2 (v—1)Ar—2

(v—1)!

)\n,fl
(n —1)Ar—2

(n =D
(n — 1/)!)\

e They are associated with v rows in the vector of known terms n

-/ = [cAt tet

e The vector of unknowns

> B=[Bo(t) Bi(t)

tufchf} T

Br-1(t)] "

2 A matrix of this form is known as confluent Vandermonde matrix.
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Consider the (3 x 3) matrix

3 0 1
A=12 -1 15
0 0 3

We want to determine e#?

The characteristic polynomial of matrix A
P(s) = (s =3)*(s + 1)
Matrix A has two eigenvalues

~ A1 = 43 (multiplicity 2)
~ Az = —1 (multiplicity 1)
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Sylvester expansion (cont.)

‘We can write the system

Bo(t) + A1B1(t) + A2B2(t) = eM?
Bi(t) 4 201 B2(t) = tettt
Bo(t) + A2B1(t) + A3B2(t) = er2?

Bo(t) + 3B1(t) +9B2(t) = €3¢
~ Bi(t) + 6B2(t) = te3!
Bo(t) — Bi(t) + B2(t) = et

We get,
Bo(t) = 1/16(7e3t — 12te3! + 9e~t)
~ B1(t) = 1/8(3e3" — 4ted! — 3e~?)
Ba(t) = 1/16(—e3t + 4te3t + e~ t)
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Thus,

e = Bo(t)I3 + B1(t)A + B2 (t)A?

eSt 0 t€3t
= |(0.5e3* —0.5e7t) et (0.25€3* +0.5te3! — 0.25e7)
0 0 e3t
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Sylvester expansion (cont.)

Complex eigenvalues
Let matrix A have complex eigenvalues

We can still determine the coefficients 3 of the Sylvester expansion

It is convenient to modify the procedure

~ To avoid computations that involve complex numbers

‘We only discuss only the case of eigenvalues with multiplicity one
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Let matrix A have distinct eigenvalues A1, A2,..., Ay

The n unknown functions j3;(¢) are those that solve the system

Bo() +A1B1(t) + X3B2(t) + - + AT Ba_1(t) = ettt
Bo(t) + A2B1(t) + A3B2(t) + - + A5 Bn_1(t) = ezt

Bo(t) + AnBr(t) + A2Ba(t) + -+ + An " Bu_1(t) = eAnt

Suppose that two of the n eigenvalues of A are complex-conjugate
~ NN =atjw

(®)
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Sylvester expansion (cont.)

In the resulting system, there should appear the two equations

1Bo(t) + ABL(t) + A2B2(t) + -+ -+ A" 18, _1(t)

— c)\), — C(y/,c_y;u/,

9
1B0(6) + XB1(8) + (V)2Ba(®) -+ () 1Bty O
— C)‘I[' = e@le—jwi
‘We can substitute these equations with two equivalent ones
Bo(t) +Re(N)B1(t) + Re(A\2)B2(t) + -- - + Re(A* 1) Bn_1 (1)
at Q
et cos (wt) (10)

I (A)B1 () + Im(A?)B2(t) 4 - -+ + Tm(A 1) 81 (1)

e sin (wt)

~ Re(\) =«
~ Im(\) =w
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Sylvester expansion (cont.)

180() + AB1(t) + A2 Ba(t) 4+ --- + A" Bp—1(2)

c)\l at gjwt

=€

1Bo(t) + N'Ba(t) + (A)2B2(t) + -+ (N)" 1 Br1 (1)

— (’,A t — patp—jwt

The first equation, is obtained by summing the two equations above
e Then, by dividing by 2

The second one, by subtracting the second equation from the first one

e Then, by dividing by 2j

Bo(t) +Re(X)B1(t) + Re(A2)B2(t) + - - + Re(A" 1) Bn_1(t)
= et cos (wt)
T2 () + Tm(A2)B2(8) + -+ Tm(A"1) B 1 (8)

= e“!sin (wt)
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Sylvester expansion (cont.)

Sine and cosine terms on the RHS are from Euler formulse
As X\ and )\ are conjugate-complex, so are \* and (\/)*
Thus,

M (W)F=2Re(NF)

AP — (V)E= 2jIm(\F)
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Consider a state-space system with (2 x 2) matrix A

We are interested in the state transition matrix e

Matrix A has characteristic polynomial

P(s) = 5% — 2as + (a? 4+ w?)

Matrix A has distinct eigenvalues
~ M =atjw
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At

To determine the state-transition matrix e**; we write the system

Bo(t) + Re(N)B1(t) = e®t cos (wt)
Im(N\)B1(t) = et sin (wt)
t Bo(t) + aBi(t) = e®t cos (wt)
wBi(t) = et sin (wt)

We obtain,

at

Bo(t) = e cos (wt) — ==

eat

Bi(t) = Tsin (wt)

sin (wt)

Thus,
cos (wt)  sin(wt)
—sin (wt) cos (wt)

A = Bo(t)Iz + Bi(t)A = e
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‘We can now prove the solution to the analysis problem for MIMO systems

e Lagrange formula
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[ Theorew Proof

L l
agrange formula Multiply the state equation %(t) = Ax(t) + Bu(t) by e~ A?

Consider the SS representation of a stationary linear system of order n

We get,
—Ato (4 _ —At —At
X(t) = Ax(1) + Bu() L oTTRE) = T + o)
Sylvester expansion y(t) = Cx(t) + Du(t) Sylvester expansion . . .
Lo The resulting state equation can be rewritten,
agrange Lagrange
formula formula

e x(1), state vector (n components) e A% (1) — e TATAX(t) = e A'Bu(t)

LT SRR e x(t), derivative of the state vector (n components)

e u(t), input vector (r components) Then, by using the result on the derivative of the state transition matrix3,
o y(t), output vector (p components) d

Transition matrix Transition matrix —[e_Atx(t)] = e_AtBu(t)

Complex eigenvalues Complex eigenvalues dt

The solution for t > ty, for an initial state x(ty) and an input u(t|t > ty)

x(t) = eAl=t)x(1g) + [, eA=T)Bu(r)dr (11)
y(t) = CeAlt=10)x(ty) + C [} eAU=T)Bu(r)dr + Du(t) -
0 3Derivative of the state transition matrix
dr _a¢ _ —aepd d At
Sl M=) = M [ xm)] + [ |0 (12)
= e Ax(t) — e AT AX(t)

St Lagrange formula (cont.) St Lagrange formula (cont.)

representation representation
UFC/DC UFC/DC
SA (CK0191) SA (CK0191)
2018.1 2018.1
d t
—At —At
E[e x(t)] = e "'Bu(1) e Ax(t) = e Alox (1) +/ e "ATBu(t)
to

Definition Definition

, By integrating between ty and ¢, we obtain o

e Y & 8 0 ’ e The first Lagrange formula is obtained by multiplying both sides by e/t

P t

Lagrange —AT ] — —ATHB d Lagrange t
formula [e x(7) ” /to g u(r)dr formula —x(t) = Al x (1) + / AT Bu(r)dr

Force-free and Force-free and tO

for fo. blution

Impulse response Impulse response

l 1 That is, ' l . . o . .

t The second formula is obtained by substituting x(¢) in the output equation
eAlx(t) — e Alox(tg) = / e~ ATBu(t)
fo y(t) = Cx(t) + Du(t)
Transition matrix Transition matrix
Complex eigenvalues Complex eigenvalues t
Thus, ~ C [eA(t’tO)x(to) +C eA(th)Bu('r)dT] + Du(t)

t
e Alx(t) = e*AtOx(to)Jr/ ¢~ ATBu(t) 0
to
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Force-free and forced evolution

t
x(t) = eAU*Wx(to)Jr/ AT Bu(r)dr
N— ——— to

xu (t)

x7(t)

We can write the state solution (for ¢ > #o) as the sum of two terms

x(t) = xu(t) + x5 (?)

~» The force-free evolution of the state, x,(t)

~» The forced evolution of the state, x(t)

I'ransition and Transition and
mode modes
State-space Force-freee and forced evolution (cont.) State-space Force-free and forced evolution (cont.)
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x(t) = e —t0)x (49)
— to

force-free evolution x, (%)
forced evolution x;(t)

The force-free evolution of the state, from the initial condition x(tp)
o oxg(t) = AT x (1) (13)

~ eAlt=10) indicates the transition from x(ty) to x(t)

~ In the absence of contribution from the input

The forced evolution of the state

t t—tg
> xf(t):/ eA<f*T>Bu(T)dT=/O eA'Bu(t — 7)dr (14)
b7

0

~» The contribution of u(r) to state x(t)

~ Thru a weighting function, ¢A(!~")B
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t
y(t) = Cerl)x(4) +c/ A= Bu(r)dr + Du(t)
—— —/—

to

force-free evolution y (t)
forced evolution yy (t)

We can write the output solution (for ¢ > ty) as the sum of two terms

y(t) =yi(t) +ys(t)

~ The force-free evolution of the output, y(t)

~» The forced evolution of the output, y(¢)
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t
y(t) = Celrlt-0x(tg) +C [ At~ Bu(r)dr + Du(t)
—— to

free evolution y, (t)
forced evolution yy(t)

The force-free evolution of the output, from initial condition y (#y) = Cx(to)

~  yu(t) = CeA(tftO)X(to) = Cxy(t) (15)

The forced-evolution of the output

~ yp(t)=C LeA<t*T>Bu(T)dT+Du(t):CXf(t)+Du(t) (16)

to
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Free and forced evolution (cont.)

Note that for tp = 0, we have

o Ix(®) =eAx(0) + [§ AU Bu(r)dr
y(t) = CeA'x(0) + C jof eAl=T)Bu(r)dr 4 Du(t)
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Consider a system with the SS representation,
0
u(t
1] (2)

z1(t) -1 0 z1(t)

[@(t)} N [0 2} LQ(t)] *
x1(t)

o =[2 ]|

7

We want to determine the state and the output evolution for ¢ > 0
We consider the input signal u(t)

u(t) = 26_1(t)

We consider the initial state x(0)

-]
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Free and forced evolution (cont.)

The state transition matrix for this SS representation,

At et (e7t—e?)
e N 0 e—2t

‘We computed it earlier
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Free and forced evolution (cont.)

The force-free evolution of the state, for ¢ > 0

sy Xu(t) = eAtX(O) = e

e (1)

82 (1)

Qe—2t

-

|
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Free and forced evolution (cont.)

The force-free evolution of the output, for ¢ > 0

~ yu(t) = Cxu(t)

10

e—t — 42t
=[2 1] {(7 e

46—2t

Yu(?)

] = 14e~ ! — 4™
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Free and forced evolution (cont.)

The forced evolution of the state, for ¢ > 0

” Xf(t)=/0t eAtBu(t—T)dT:/

[ e

0

¢ |:e_" (=7 — e~27)

0 6—21'

Jar=a [l —g2ner]

f(f e 2tdr

J ]

_a [(1 —e ) —1/2(1— e—%)} _ [(1 —2e! 4+ e—2‘)]

(1—e?)

1/2(1 — e™2t)

2tV (t)

1P (1)
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Free and forced evolution (cont.)

Since D = 0, the forced evolution of the output for ¢ > 0

w oyt =Cxp(t) = [2 1] [

=3—4e 4%

yr(t)

(1 —2et e 2t
(1—e72)
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We discussed the impulse response for systems in IO representation

e The forced response due to a unit impulse

‘We complete the presentation for systems in SS representation
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Impulse response (cont.)

Impulse response

Consider the SS representation of a SISO system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

The impulse response

w(t) = Ce'B + D4(t) (18)

Proof
The impulse response is the forced response due to a unit impulse

Let u(t) = 6(t) and substitute it in the Lagrange formula

t
w(t) = c/ eAU=TB5(r)dr + Dé(t)
0
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Impulse response (cont.)

Consider a continuous function f of ¢
By the properties of the Dirac function, we have that f(t—7)d(7) = f(t)d(1)
Thus, we have

w(t) = c/ot eABS(r)dr + Do(t) = CeA'B /Ot 5(r)dr +Da(1)

1
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response (cont.)

w(t) = CeA'B + Dé(t)

If the system is strictly proper, we have that D = 0

e w(t) is a linear combination of modes

e Through matrix e

At

If the system is not strictly proper, we have D # 0

e w(t) is a linear combination of modes

e Plus, an impulse term
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Impulse response (cont.)

The forced response can calculated using Lagrange formula

It corresponds to the what derived by the Durhamel’s integral

~ o yp(t)= /Ot w(t — 7)u(r)dr = /Ot [CEAU*T)B + Dé(t — 7')] u(r)dr

¢ ¢
= / CeA=TBuy(r)dr + / Dé(r — t)u(r)dr
0 0

t
C/ AT Bu(r)dr + Du(t)
0
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The form of the state space representation depends on the choice of states

e The choice is not unique

There is an infinite number of different representations of the same system

e They are all related by a similarity transformation

We define the concept of similarity transformation
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Similarity tranformation (cont.)

The main advantage of the similarity transformation procedure is flexibility

e We can change to easier system representations

The state matrix can be set in canonical form
~» Diagonal form
~ Jordan form

There are other canonical forms
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Similarity tranformation (cont.)

Similarity transformation
Consider the SS representation of a linear stationary system of order n
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
e x(t), state vector (n components)
e u(t), input vector (r components)
e y(t), output vector (p components)
Let vector z(t) be related to x(t) by a linear transformation P
x(t) = Pz(t) (19)
P is any (n x n) non-singular matriz of constants

o Thus, the inverse of P always exists
o We have z(t) = P~ 1x(t)

Transformation/matriz P is called similarity transformation/matriz

]
St Similarity tranformation (cont.) St Similarity tranformation (cont.)
representation representation
UFC/DC UFC/DC
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Similar representation Proof

Consider the SS representation of a linear stationary system of order n Take the time-derivative of x(t) = Pz(t)
Definition Definition
Propertics x(t) = Ax(t) + Bu(t) (20) Properties We get,
¥(t) = Cx(t) + Du(t) ~ () = Pa(t) (22)
Force-free and Let P be some transformation matriz such that x(t) = Pz(t) Force-free and Substitute x(t) and x(t) into the SS representation
forced evolution forced evolutior
DL SCLIPLL Vector z(t) satisfies the new SS representation TP G We get,
Similari Similari .
trans?or:;\)/ation L (8) — Ala(t Blu(t t.mnsfor:zm.ion Pz(t) = APz(t) + Bu(t)

a(t) = A's(t) + B'u() (21) v(t) = CPa(t) + Du(1)
Tmilon mo: y(t) = C'z(t) + D'u(t) oo et
Complex eigenvalues Complex eigenvalues
—- A =P lAP Pre-multiply the state equation by P~!, to complete the proof

Basis of generalised s B/ = P7 1 B Basis of generalised .

matrix

Transition matrix

~ D'=D

Transition matrix
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z(t) = A’z(t) + B'u(t)
y(t) = C'z(t) + D’u(t)

We obtained a different SS representation of the same system
e Input u(¢) and output y(¢) are unchanged
e The new state is indicated by z(t)

There is an infinite number of non-singular matrixes P

~» An infinite number of equivalent representations
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Similarity tranformation (cont.)

Consider a system with SS representation {A,B,C,D}

A B
—_— —~
Z(t)| _ [=1 1| |z(2) 0
L'Q(t)] - {o —2} [zz(t) | u®
yi(t)| (2 1] |z1(2) 15|
L&(t)] - {0 2] |:12(t) R
——
C D

Consider the similarity transformation

] =1 o [20)
—

What is the {A’,B’, C’,D’} SS representation corresponding to state z(t)
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Similarity tranformation (cont.)

We have,
11 . o 1
P= {1 0] 2 5 uthe [1 —1}

Since z(t) = P~1x(t), we have

2018 B0 [ e

~» The first component of z(t) is the second component of x(t)
~» The second component of z(t) is the difference between the first and
the second component of x(¢)
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In addition,
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Definition Bretimition Thus, by definition
Properties The state transition matrix, Perstics
Sylvester expansion Sylvester expansion _
A pri Al PONE LU LS C T
B i B kU k!
e k=0 k=0
forced evolutior o k+k
gl s - =P (X A )P =P lAP
Similarity k=0 k!
|

Force-free and

transformation

forced evolution
e e Proof
Similarity
transformation Note that
Transition matrix A/ k A —lA —1A —IA Transition matrix
Complex eigenvalues ( ) ~ (P P) : (P P) e (P P) Complex eigenvalues
k times
Basis of generalisec Basis of generalised
=P 'AA...AP=P'A'P
Generalised modal N—_—— Generalised moda
et k times et
Transition matrix Transition matrix
St Similarity tranformation (cont.) St Similarity tranformation (cont.)
representation representation
UFC/DC UFC/DC
SA (CK0191) SA (CK0191)
2018.1 2018.1
E"'” s l"‘ Invariance of the I0 relationship by similarity
S —
B e s Consider two similar SS representations of the same LTI system
We show how two similar representations describe the same IO relation ~ {A,B,C,D} and {A’,B/,C/,D’}
Foroed evolution Ao ottt ~ P is the transformation matrizc
Impulse response Impulse response
Cranstormation e totion et e e e ewbyesied o cegne bt Ul
The two representations produce the same forced response
Transition matrix Transition matrix
Complex eigenvalues Complex eigenvalues R yf(t)
Basis of generalisec Basis of generalisec
Generalised modal (nvn( ralised moda
Transition matrix Transition matrix
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Similarity tranformation (cont.)

Proof

Consider the SS representation of the system

%(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Consider the SS representation of the system

2(t) = A'z(t) + B'u(t)
y(t) = C'z(t) + D'u(t)

~ A'=PT1AP
~ B'=P~'B
~ C'=CP

~ D'=D
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Similarity tranformation (cont.)

Consider the Lagrange formula

The forced response of the second representation due to input u(t)
t 7
yr(t) = C// e =T B'u(r)dr + Du(t)
to

t
=CP [ P 'eAU=TPP~!'Bu(r)dr + Du(t)

to

t
=C eA=TBu(r)dr 4+ Du(t)

to
This response corresponds to that of the first SS representation

¢
yi(t) = C/ AT Bu(r)dr + Du(t)
to
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Similarity tranformation (cont.)

Invariance of the eigenvalues under similarity transformations

Matriz A and P~'AP have the same characteristic polynomial

Proof
The characteristic polynomial of matrix A’
det A\ — A’) = det A\l — P7'AP) = det A\P~!P —P~1AP)
——
I
=det [P71(AI — A)P] = det (P~ 1) det (AL — A) det (P)
=det (AL — A)

The last equality is obtained from det(P~1)det(P) = 1

A and A’ share the same characteristic polynomial

~» Thus, also the eigenvalues are the same
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Similarity tranformation (cont.)

Two similar SS representations have the same modes

e The modes characterise the dynamics

The modes are independent of the representation

~~ This is important
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Similarity tranformation (cont.)

Example |
Consider two similar SS representations of the same LTI system

A=lo

sl
The similarity transformation matrix

<[t

We are interested in the eigenvalues and modes of the system
Matrix A and A have two eigenvectors

e \i=—1land Ao = -2

t t

The system modes are e~* and e ™2
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Diagonalisation

We consider a special similarity transformation P
e We seek for a diagonal matrix A’
~ A =P~ 1AP

A SS representation with diagonal state matrix

e Diagonal canonical form
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Diagonalisation (cont.)

Consider a SISO LTT system characterised by the following state equation
.”'Cl(L) A1 0 0 T,1(/,) b1
2 (t) 0 Az oo 0| |22(2) by
=|. ~ o : S I 0]

Tn (f) 0 0 An Tn (f) bn

The evolution of the i-th component of the state vector

~ oz () = Nz (t) + biu(t)

State derivatives are not related to other components
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Diagonalisation (cont.)

We think of a system with diagonal matrix A as a collection of sub-systems

~ Each sub-system is described by a single state component
~~ FEach state component evolves independently
~+ The representation is decoupled

~ n first-order subsystems

The characteristic polynomial of the system for the i-th component
~3 P,‘(S)Z(S*)\i)

This subsystem has mode e~ *it
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Diagonalisation (cont.)

A special similarity transformation to get a representation in diagonal form

e A special similarity matrix
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Modal matrix

Consider a system in state space representation with (n X n) matriz A
o Letvi,va,..., vy be a set of the eigenvectors of matrix A

o Suppose that they correspond to eigenvalues A1, A2, ..., \n

Suppose that eigenvectors in this set are linearly independent
We define the modal matriz of A as the (n x n) matriz V

V = [vl\vg\-~~|vn}
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Diagonalisation (cont.)

Consider the state-space representation of a system with matrix A
2 1
A-[i
We are interested in the modal matrix V of A

The eigenvalues and eigenvectors of A
w A=landvi=[1 -1]"
~ Ag=5andva=[1 3]"

The modal matrix V,

V = [vi|va] = {,11 ;,]
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Diagonalisation (cont.)

The eigenvectors are determined up to a scaling constant

o (Plus, the ordering of the eigenvalues is arbitrary)

It is clear that there can be more than one modal matrix
These two modal matrices of matrix A are equivalent
2 3
7 _
V' = [vz|v1] = {_2 9}

v/ = [2V1|3V2} = |:; jl:|
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Diagonalisation (cont.)

If a matrix A has n distinct eigenvalues, then its modal matrix exists

e As its n eigenvectors are linearly independent

Distinct eigenvalues
Let A be a n-order matrix whose n eigenvalues A1, \a, ..., A, are distinct

Then, there is a set of n linearly independent eigenvectors

e Vectors vi,va,...,v, form a basis for R"
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Diagonalisation (cont.)

Consider a matrix A whose eigenvalues have multiplicity larger than one

e The modal matrix exists if and only if to each eigenvalue A\ with mul-
tiplicity v is possible to associate v linearly independent eigenvectors

V1,V2,...,Vy

This is not always possible
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Diagonalisation (cont.)

Consider the state space representation of a system with matrix A
2 0
A-[p
Its eigenvalue A = 2 has multiplicity v = 2

Its eigenvectors are obtained by solving the system [)\I - A]v =0

0 Of|a 0 0=0
PI*A}V_{O 0] M_H W{0=0
‘We can choose any two linearly independent eigenvectors for A

e As the equation is satisfied for any value of a and b

The modal matrix by choosing the eigenvectors from the canonical basis

- V== [y ]
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Diagonalisation (cont.)

Consider the state space representation of a system with matrix A

Its eigenvalue A = 2 has multiplicity v = 2

Its eigenvectors are obtained by solving the system [)\I — A]v =0

mene= [0 SI[-[] - {585

As b = 0, we can choose only one linearly independent eigenvector for A

ol

Matrix A does not admit a modal matrix
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But, ...

If a matrix admits a modal matrix, then it can be diagonalised

e (This is what matters to us)
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Diagonalisation (cont.)

Diagonalisation
Consider the state space representation of a system with matriz A
Let M1, Ao, ..., A, be its eigenvalues

Let V = [vl [va] - - \vﬂ,} be one of its modal matrices

Matriz A from this similarity transformation is diagonal

~ A=V AV
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Diagonalisation (cont.)

Proof

V= [v1|vz| |vn]

Note that the modal matrix is non-singular and can be inverted

e Its columns are linearly independent, by definition

By the definition of eigenvalue and eigenvector, we have

Aiv; =Av;, fori=1,...,n

By combining these expressions, we have

~ o [Arvildeval - [Anva] = [Avi|Ava]- - |Avy]
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We can rewrite this identity,

A1 0 cee 07

0 A2 0
[v1|vz|~--|vn] : : . : :A[vl\vz|~~|vn]
L O 0 An
That is,

A1 0 07

0 Ao 0
Vv . = AV
LO 0 An,

By left-multiplying both sides by V~1, we have

A 0 -0
0 X - 0

~ A= L .| =viAv
0 0 An
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Consider a system with SS representation {A,B,C,D}

#@(t)|  |[-1 1 z1(t) 0 u
o] e e R
m(t)| |2 1| |z(t) 1.5 "
o) =l 3 6]+ [7]

We are interested in a diagonal representation by similarity

The eigenvalues and eigenvectors of A

e \{=—1and vi = [1]

. Ag:—Zandvg:[l}
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Diagonalisation (cont.)

The modal matrix and its inverse

o<f 2]
wef

Thus,
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State transition matrix by diagonalisation

An alternative to Sylvester expansion to compute the state transition matrix

We consider a SS representation whose matrix A can be diagonalised
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Transition matrix by diagonalisation (cont.)

State transition matriz by diagonalisation
Consider a (n x n) matriz A and let A1, 2, ..., \, be the eigenvalues
Suppose that A admits the modal matriz V

We have, the state transition matriz

ett 0o .- 0
0 er2t ... 0
eAt=veAtv-l=v | | . ) vt (23)
0 (e
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State transition matrix by diagonalisation (cont.)

Proof
We have shown (similarity and state transition matrices*)

At 1Aty

To complete, multiply both sides by V on the left and by V—! on the right
|

4Given A/ = PflAP, we have eA,i =P leAlp,
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State transition matrix by diagonalisation (cont.)

Consider a system with SS representation {A,B,C,D}

#(t)|  |-1 1 z1(t) 0 u
sl =[] ][
n(t)| |2 1| |z(t) 1.5 "
o) =l 3 [560]+[7]

We are interested in the state transition matrix e®?




State-space
representation

UFC/DC
SA (CKO0191)
2018.1

Representation
and analysi

State transition
matrix

Definition
Properties
Sylvester expansion
Lagrange
formula

Force-free and
forced evolution

Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalues
Jordan form

s of generalised

Generalised modal
matrix

Transition matrix

['ransition and

mode

State transition matrix by diagonalisation (cont.)

We already computed the modal matrix and its inverse

b )

411
viel 2

\%

Thus, we have

e—2t
1 1] [et et ] _femt (e7t—e2)
0 -1/ 0 —e2]7 |0 et

This is the same expression we determined by using the Sylvester expansion
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Complex eigenvalues

The diagonalisation procedure applies to matrices with complex eigenvalues

~~ The corresponding eigenvectors are conjugate-complex

~~ The modal matrix and the state matrix are complex

We prefer to choose a similarity matrix that differs from the modal matrix
e The objective is a real canonical form
e With some desirable properties

To each pair of conjugate-complex eigenvalues associates a order 2 real block
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Complex eigenvalues (cont.)

Consider a system with state space representation with matrix A

Suppose that A has a pair of complex conjugate eigenvalues
~ M =atjw

Suppose that the remaining eigenvalues are real and distinct
~ A1, A2, , AR

The eigenvectors v and v’ associated to A and )\’

v=Re(v) +jIm(v) = u + jw
v'=Re(v') +jIm(v') = u — jw

They are also conjugate complex
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Complex eigenvalues (cont.)

We want to show that u and w are linearly independent

e They are also linearly independent of other eigenvectors

e Those associated to the other eigenvalues

By the definition of eigenvalue/eigenvector, we have

Av= v

A(u +jw)= (@ + jw)(u + jw)

We consider the real and the imaginary part individually

We have,

Au= (au — ww)
Aw= (wu + aw)
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Complex eigenvalues (cont.)

Choose a particular similarity matrix V

Columns associated to real eigenvalues are the corresponding eigenvectors

e (as with the modal matrix)
We associate columns u and v to the pair of conjugate complex eigenvalues

[/\1v1|)\2vz| - Apve|on — ww|wua + aw]

= [Avi|Avs|- - |[Avp|Au|Aw]
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Complex eigenvalues (cont.)

‘We can re-write this equation,
A1 0
0 Ao

o [vilvel-- - v lulw]

o
o

That is,

o
(=)

AR

o o

«

---‘V[{|u
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Complex eigenvalues (cont.)

We associated to the pair of eigenvalues A\, \’ = a 4 jw to a block

The block represents the eigenvalues in matrix form
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Complex eigenvalues (cont.)

Consider a matrix A that has R distinct real roots (A\;, ¢ =1,..., R) and S
pairs of distinct conjugate complex roots (A, N, i =R+ 1,..., R+ S)

Matrix A can be written in a canonical quasi-diagonal form using matrix V

A=V-lAV
M 0 - 0 0 0o - 0
0 X -+ 0 0 0o - 0
o o i 0 ) 0
|10 0 0 Hpyy 0 0 (24)
0 o 0 0  Hp 0
L0 o .- 0 0 0 <o+ Hpyg]

State-space
representation

UFC/DC
SA (CK0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and
forced evolution

Impulse response

Transition matrix

Complex eigenvalues

Generalised modal

matrix

Transition matrix
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To pairs of conjugate complex roots A\, \’ = « & jw associates a real block

The block that represents the pair in matrix form

State-space
representation

UFC/DC
SA (CKO0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and
forced evolution

Impulse response

Transition matrix

Complex eigenvalues

Basis of generalised

eigenvectors

Generalised modal
matrix

Transition matrix

Complex eigenvalues (cont.)

Consider a system in state-space representation with matrix A

-1 2 0
A=(-2 -1 0
-3 -2 —4

We are interested in a (quasi-) diagonal representation

The characteristic polynomial of matrix A

P(s) = s34+ 652 + 135 + 20

The eigenvalues and the eigenvectors

0
~ A =—4and vi = |0
1

1 0

~ Ao, Ay =1=+j2and vo,vh =ustjwe=| 0 | £5 |1
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Complex eigenvalues (cont.)

Consider the matrix V = [v1 us wz}

We have,
_ A ~ —4 0 0
A=V7AV=|0 -1 2
0 -2 =2
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Complex eigenvalues (cont.)

A1 0 0 0 0 0
0 X 0 0 0 0
A_|0 0 A O 0 0
1o o 0 Hp., 0 0
0 0 0 0 Hpgio 0
l0 0 - 0O 0 0 - Hp,g]

Computing the matrix exponential of a matrix in this form is straightforward

e (We derived a proposition)

e A is a block-matrix
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At 0 0 0 0 0
0 eret 0 0 0 0
JAt_ |0 0 - etr! 0 0 0
0 o .- 0 eHrt1t 0 0
0 0 0 0 eHry2t .. 0
Lo 0 0 0 0 eHrtst ]
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Complex eigenvalues (cont.)

Let A\j, A\, = aj £ jw; be a pair of complex-conjugate roots

For each, there is a canonical block

QU W
Hl — 3 3
Wi oy

H, represents the pair A\, \’ in matrix form

The matrix exponential for this specific matrix

s eHit — gagt | €08 (wit)  sin(w;t)
—sin (w;t)  cos (w;t)

The state transition matrix for matrix A,

RV, VR 0 VS|
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Complex eigenvalues (cont.)

Consider a system with SS representation with matrix A

-1 2 0
A=|-2 -1 0
-3 -2 —4

We are interested in its matrix exponential et = Ve tv—1

e From its (quasi-) diagonal form V

Matrix A can be written in quasi-diagonal form

7 ) -4 0 0
A=V 'IAV=|0 -1 2
0 -2 =2
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Complex eigenvalues (cont.)

Thus, we obtain

0
et cos (2t)
—e~tsin (2t)

et cos (2t)
—e~tsin (2t)

e~ — e~tcos (2t)

0
e~ !sin (2t)
e~ cos (2t)

e~ tsin (2t)
e~ cos (2t)
—e~tsin (2t)

0
0

et
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Jordan form

Consider a state-space representation of a system with (n x n) matrix A

Let its eigenvalues have multiplicity larger than one

The existence of n linearly independent eigenvectors cannot be guaranteed

~ Needed for the construction of the modal matrix

We cannot necessarily go to a diagonal form by similarity transformation
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Jordan form (cont.)

‘We can still find a set of n linearly independent generalised eigenvectors

e We need to extend the concept of eigenvector

Generalised eigenvectors are used to build a generalised modal matrix
~ By similarity, we obtain J = V-1AV
~~ A block-diagonal canonical form

~ A Jordan form
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Jordan block of order p
Let A € C be a complex number and let p > 1 be a integer number

The (p X p) matriz is a order p Jordan block associated to A

A1 0 --- 0 O
o x 1 -~ 0 O
o 0 x --- 0 O
0 0 O A1
0 0 O 0 A

Diagonal entries equal )\, entries of the first upper band equal 1

e (All the other entries are zero)

A is an eigenvalue (multiplicity p) of this Jordan block
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Jordan form

Matriz J is said to be in Jordan form if it is in block-diagonal form

J 0 - 0
0 J, -~ O
J =
o o - J,

FEach block J; along the diagonal is a Jordan block
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More than one Jordan block can be associated to the same eigenvalue

The Jordan form generalises the conventional diagonal form

e (With order 1 blocks along the diagonal)
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Matrix J1, J2 and J2 are all in Jordan form

2 1 0 0 0 O
02 1 0 0 0
J1:002000
00 0 2 0 0
00 0 0 3 1
0 0 0 0 0 3
[2 0 0
Jo=10 2 O
0 0 3
2 1 0
J3=[0 2 0
0 0 0
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Eigenvalues A1 = 2 (multiplicity 4) and A2 = 3 (multiplicity 2)

2 1 0 0 0 0
02 1 0 0 0
g |00 200 0
=10 o 0 2 0 0
0 0 0 0 3 1

0 0 0 0 0 3

A1 = 2 associates with two Jordan blocks (order 3 and 1)

A2 = 3 associates with a single Jordan block (order 2)

Shetemres Jordan form (cont.)

representation

UFC/DC
SA (CK0191)
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Eigenvalues A1 = 2 (multiplicity 2) and A2 = 3 (multiplicity 1)
2 0 0
Jo=10 2 0
0O 0 3

A1 = 2 associates with two Jordan blocks (order 1)

A2 = 3 associates with a single Jordan block (order 1)
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Eigenvalues A\ = 2 (multiplicity 2) and A2 = 0 (multiplicity 1)

2 1 0
Js=1{0 2 0
0 0 O

A1 = 2 associates with a single Jordan blocks (order 2)

A2 = 0 associates with a single Jordan block (order 1)

St Jordan form (cont.)

representation

UFC/DC
SA (CK0191)
2018.1 N
Jordan form
A square matriz A can always be written in a Jordan canonical form J

e This can be done by using a similarity transformation

The resulting form is unique, up to block permutations

Jordan form

Let \ be an eigenvalue with multiplicity v for A
o Let 1 be its geometric multiplicity®
o Let p; be the order of i-th block

We have,

5The number of linearly independent eigenvectors associated to it (1 < pu < v).
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Multiplicity
Consider a square matrix A or order n
Suppose that A has r» < n distinct eigenvalues

A],AQ,--.,)\,-
~ A # Nj, for i £ j

The characteristic polynomial can be written in the form

-
P(s)= (s =AD" (s — 22)"2 -+ (s = M), S wi=n
=
~ v; € NT (algebraic multiplicity)
Define the geometric multiplicity of the eigenvalue \;

e Number v; of linearly independent eigenvectors associated to it
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Jordan form (cont.)

FEigenvalue index
Let A be a matriz that can be written in Jordan form J
Let \ be an eigenvalue with multiplicity v

Let 7 be the order of the Jordan block in J associated with eigenvalue A

~ T is the eigenvalue index of A

1<n<v

State-space
representation

UFC/DC
SA (CKO0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and

forced evolution

Impulse response

Transition matrix

Complex eigenvalues

Jordan form

Generalised modal
matrix

Transition matrix

Jordan form (cont.)

Knowledge of eigenvalues and their algebraic and geometric multiplicity
e It is sufficient to determine the Jordan form

e (And, thus the index of the eigenvalues)
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Jordan form (cont.)

Consider the 3-order matrix A

3 1 2
A=|-1 1 —2
-2 =2 0

We are interested in its Jordan form
The characteristic polynomial

P(s) = s® — 4s% + 45 = s(s — 2)?
Its eigenvalues and eigenvectors

~ A1 = 0, multiplicity v1 =1
~ Ag = 2, multiplicity vo = 2
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Jordan form (cont.)

Eigenvalue with multiplicity one has unit geometric multiplicity and index
~ (A1, with v; = 1)
g = 1

~omp =1

A1 associates with a single 1-order block
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Jordan form (cont.)

As for the geometric multiplicity of the second eigenvalue, we have

null(A2I — A) = n —rank(A2I — A)

-1 -1 =2
37rank( 1 1 2 )
2 2 2

2

=3-2=1

A2 associates with a single 2-order block

~ Ty = 2
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Jordan form (cont.)

The resulting Jordan form,

Equivalently, by block-permutation

2 1 0
J=10

[N}
(=)
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Jordan form (cont.)

There are cases eigenvalues and their algebraic and geometric multiplicity is
not sufficient to characterise neither the Jordan form nor eigenvalues’ index
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representation representation
UFC/DC UFC/DC
SA (CK0191) SA (CK0191)
2018.1 2018.1
Consider some (5 X 5) matrix A p =4
- Tt Ay el g e e chemmE e - The eigenvalue associates with as many Jordan blocks as its multiplicity
PR A T - PR e Each of which has order 1
Silvorecr Casrerism ~ A1, multiplicity 1 =4 Eiilrcotor cvonrien
o i, e Rt v = 1 The index of eigenvalue is 1 =1
, =
Force-free and Force-free and The resulting diagonasable form
Bzl ouefimiton ‘We are interested in its Jordan form forced evolution
Impulse response Impulse response
' ' ' ' M 0 0 0 O
Let eigenvalue Ao associate to a Jordan block of order 1 0 A 0 0 0
Ji=10 0 XN O 0
o i To eigenvalue A1 can be associated one or more blocks o 0 0 0 X 0
Crmplee: AT e Depending on its geometric multiplicity Gl Gl 0 0 0 0 A
Jordan form Jordan form
Basis of generalised ® p1 S v1 =4
e We can consider four possible cases e
Transition matrix Transition matrix
Strte-apeee Jordan form (cont.) State-space Jordan form (cont.)
representation representation
UFC/DC UFC/DC .
SA (CK0191) SA (CK0191) pu1 =2
2018.1 2018.1
The eigenvalue associates with two Jordan blocks
n1 =3 e The order of the blocks is p1, p2
o (As =1 =4
The eigenvalue associates with three Jordan blocks (As pr+p2 ! )
Definition . Definition
E— o The order of the blocks is p1 = 2,p2 =1,p3 =1 Ea— Two resulting Jordan structures are possible
Sl ° (Aspitp2t+ps=rv1=4) B e The index of eigenvalue is w1 = 2
The index of eigenvalue is 1 = 2
Force-free and Force-free and A1 1 0 0 07
Bzl ouefimiton The resulting form freed evolunon 0 A 0 0 0
Impulse response Impulse response J3 _ 0 0 N 1 0
A1 0 0 0 0 0 0 X O
0 X O 0 0 LO 0 0 0 Aol
Transition matrix J2 = 0 O )\l 0 0 Transition matrix
R 0 0 0O XN O P e The index of eigenvalue is m1 = 3
ordan form 0 0 0 0 A2 ordan form
.]f54v~(11~ of ‘fj“”( ralised JH,\~\1~ of 'f‘-( neralised -)\J‘ l (] 0 0 ]
s " 0 N\ 1 0 0
e e Jg= |0 0 X\ 0 0
Transition matrix Transition matrix 0 0 0 A1 0
LO 0 0 0 Aol
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Jordan form (cont.)

p =1
The eigenvalue associates with a single Jordan block of order 4
The index of eigenvalue is 71 = 4

The resulting (non-derogatory) form

A1
0

coo
>
S oooco
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Jordan form (cont.)

The general way to determine the Jordan form J of a matrix A
e We must compute the generalised modal matrix

e It generates the Jordan form, by similarity

We describe this procedure (not a fundamental read)
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Basis of generalised eigenvectors

We have introduced informally the concept of generalised eigenvector

e We provide a formal definition

We determine a set of n linearly independent generalised eigenvectors
e A set that is a basis for R
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Generalised eigenvector
Consider a (n X n) matric A
Let v be vector in R"

Suppose that the following holds true

M- A)fv=0
=AY, (25)
(AI—=A)"~lv#0
v is a generalised eigenvector of order k associated to eigenvalue \
|
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Basis of generalised eigenvectors (cont.)

An eigenvector is thus a special generalised eigenvector
— k=1

That is,

(M—Ajv=0
v#0

The equations are satisfied by v and A
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Basis of generalised eigenvectors (cont.)

Consider the matrix A

5 0 0 4
1 3 0 1
A= -1 0 3 =2
-1 0 0 1

We are interested in the existence of a generalised eigenvector

The characteristic polynomial

P(s) =det (sT — A) = (s — 3)*

One single eigenvalue A = 3

e Multiplicity v = 4
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Basis of generalised eigenvectors (cont.)

We have,
-2 0 0 —4
-1 0 0 -1
(BI-A)= 1 0 0 2
1 0 0 2
Moreover,
0 0 0 0
2 |1 0 0 2
GBI~ A% 0 0 0 0|’
0 0 0 0
00 0 0
3 |00 00
(31— A)" = 0 0 0 O
00 0 0
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Basis of generalised eigenvectors (cont.)

Let v = [a b ¢ d] T be a generalised eigenvector

We must have

0
(BI-APv= 0| =0
0
[0
(BI-APv=["F2 20
0

~~ The first system is satisfied for any a, b, ¢, d
~~ The second system is satisfied by a + 2d # 0
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Basis of generalised eigenvectors (cont.)

a+2d#0
Let a =1 and d = 0, we have

vs=[1 0 0 0"

Let a =0 and d = 1, we have

vi=[0 o o 1]7
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Basis of generalised eigenvectors (cont.)

Chain of generalised eigenvectors

Consider a square matriz A

Let v, be a k-order generalised eigenvector associated to eigenvalue A
Forj=1,...,k—1, the j-order generalised eigenvector

vi=—(QAI=A)vj11 = (A= ADv; (26)

The k-long chain of generalised eigenvectors

Vg —> Vg1 —> " — V]
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Basis of generalised eigenvectors (cont.)

Proof
‘We need to show that each vector in the chain is a generalised eigenvector
If vi = (A= M)vjqq, for j =1,...,k — 1, then we have

v = (A= AD)Vr-ivy

If v is a k-order generalised eigenvector, then we have

(A= XDFv, =0 A= A)v; =0
(A= ADF1v, #£0 (A - 2I)"1v; #0

Vector vy, is thus a j-order generalised eigenvector
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Basis of generalised eigenvectors (cont.)

Consider the matrix A

5 0 0 4
1 3 0 1
A= -1 0 3 -2
-1 0 0 1

The characteristic polynomial

P(s) = det (sT — A) = (s — 3)*

One eigenvalue A = 3, multiplicity v = 4
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Basis of generalised eigenvectors (cont.)

vs=[1 0 0 0"

is a generalised eigenvector of order 3

‘We can construct the chain of length 3

V3 = ~>V2=(A—>\I)V3: ~>V1:(A7AI)V2:

-1
—1

SO O
oo O

‘We have that v is an eigenvector of A
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Basis of generalised eigenvectors (cont.)

vh = [0 0 0 1] Tisa generalised eigenvector of order 3
We can construct the chain of length 3

4

—vh = (A= A)v = 32 —=vi= (A=)} =
—2

S O N O

We have that v/ is an eigenvector of A
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Basis of generalised eigenvectors (cont.)

v3 and v} are linearly independent, v2 and v/ (and vi and v}) are not

e They differ by a multiplicative constant
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Basis of generalised eigenvectors (cont.)

The structure of generalised eigenvectors
Consider a (n X n) matric A
Let \ be an eigenvalue with multiplicity v and geometric multiplicity p

It is possible to assign to such an eigenvalue \ a structure of v linearly
independent eigenvectors consisting of j chains

viD oo v 5D chain 1
(2) (2) (2)

Vp, == Vy o — vy, chain 2

(1) (1) 3
Vp, o= Ve — vy, chainp

Let p; be the length of the generic chain i

We have,
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Basis of generalised eigenvectors (cont.)

Proof

The theorem can be proved in a constructive way
e An algorithm to determine the structure

o (For a specific eigenvalue)
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Basis of generalised eigenvectors (cont.)

Start by noticing that each chain terminates with an eigenvector

(1) (1) (1)

vy, == vy’ — vy, chainl
2 2 2 .
v§;2>—>~~—>vé)—>v<l), chain 2

véﬁ) — = vé“) — v(lm7 chain p

The number of chains of an eigenvalue equals the geometric multiplicity p

e The number of linearly independent eigenvectors associated to it
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Basis of generalised eigenvectors (cont.)

Consider the structure of generalised eigenvectors from some eigenvalue
It corresponds to the Jordan block structure from that eigenvalue

In the Jordan form there are ;. blocks (one per chain)
~» The length of the longest chain associated with A
~ It equals the index of that eigenvalue

~ = max (p1, P2, -, Pu)
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Basis of generalised eigenvectors (cont.)

Consider some (n X n) matrix A

Let A\ be one of its eigenvalues

e Multiplicity v
Consider the matrix (A\I — A) and its nullity

~ a1 =null(A\I - A) = n — rank(AI — A)

This is the dimensionality of the vector subspace

~  ker(A\I—A)={x e R"|(\ - A)x =0}

Number of linearly independent vectors x such that (\I — A)x =0
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Basis of generalised eigenvectors (cont.)

Parameter o1 corresponds to the geometric multiplicity . of eigenvalue A

The geometric multiplicity has two important meanings
e Number of linearly independent generalised eigenvectors of A from A\
e As each chain of generalised eigenvectors ends with an eigenvector

~~ (Number of chains that can be associated with \)
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Basis of generalised eigenvectors (cont.)

Consider matrix (AI — A) and its nullity

~ ag =n —rank(AL — A)?

This is the dimensionality of the vector subspace

~»  ker(AI— A)? = {x € R"|(A\I - A)’x =0}

The number of linearly independent vectors x such that (A\I — A)?x = 0
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Basis of generalised eigenvectors (cont.)

If x = ker(sI — A), then x € ker(sI — A)

e We have, a1 < a2

ag equals the number of linearly independent generalised eigenvectors of
order 2 that can be chosen linearly independent of the «; eigenvectors
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Basis of generalised eigenvectors (cont.)

By the same token, consider matrix (A\I — A)" and its nullity

~ o =n—rank(A\ — A)" =

In this case, we have a1 < an < -+ < ay,

Thus, there are v generalised eigenvectors of A that are linearly independent

~~ Their order is smaller or equal to h

Moreover, 3, = aj, — ayj,—1 of them are of order h
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Basis of generalised eigenvectors (cont.)

Consider the case in which 8,41 (¢ =1,2,...,h —1)

The number of eigenvectors of order ¢ is such that 5; > 5,11

e For each generalised eigenvector of order ¢ + 1, it is possible to deter-
mine a generalised eigenvector of order

e (We proved a proposition about this fact)

The difference v; = 3;0i41 indicates the number of new chains of order 7

e They originate from a generalised eigenvector of order
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Basis of generalised eigenvectors (cont.)

Computing a set of linearly independent generalised eigenvalues

Given a (n x n) matrix A and one of its eigenvalues A with multiplicity v
® Compute a; = nrank(AI — A)’ for i = 1,...,h until aj, = v
® Build the table

i 2 ] h—1 | h
a; al az Qp—1 Qh
Bi a1 az —aiq Qp—1—Qp—2 | ap —Qp—1

Yi | BL—PB2 | B2—P3 Bh—1— Br Bh

o; is the nullity of (AT — A)"

Bi is the number of linearly independent generalised eigenvectors of
order 7 of matrix A (81 = a1, and 8, = a; — a1 for i =2,--- | h

~~ ~; is the number of chains of generalised eigenvectors of length ¢ of
matrix A (v, =8, — Bi—1, for i =1,--- ,h — 1 and v, = )

$3

® If 7, > 0, determine ~; linearly independent generalised eigenvectors
of order 7 and compute for each of them the chain of length

The algorithm determines Zib:l 7; = «1 chains, a number that equals the
geometric multiplicity of A\, an total of Zf;l iy; = v generalised eigenvectors
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Basis of generalised eigenvectors (cont.)

Consider the matrix A

5 0 0 4
1 3 0 1
A= -1 0 3 -2
-1 0 0 1

One eigenvalue A = 3, multiplicity v = 4

‘We have,

ar =n—rank(BI—A)=4—-2=2
as=n—rank(3l—A)2=4-1=3

az=n—rank(3A— A3 =4-0=4

As a3 =4 =v, we have h = 3
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Basis of generalised eigenvectors (cont.)

cowoo
|
N

0
3
-1 0
0

We can build the table
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Basis of generalised eigenvectors (cont.)

As v3 = 1, we must choose a generalised eigenvector of order 3
e It will generate a chain of length 3

We denote by (1) at the exponent all vectors belonging to such a chain

Choose the generalised eigenvector of order 3, vgl) = [1 0 0 0] T

‘We get,
2
1

-1

Vél) = — Vél) = — vgl) =

[eNeNei
o o= O
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Basis of generalised eigenvectors (cont.)

As v2 = 0, we do not determine other generalised eigenvectors of order 2
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Basis of generalised eigenvectors (cont.)

As v1 = 1, we must choose a generalised eigenvector of order 1
e A conventional eigenvector

This is the fourth vector we get

We denote by (2) at exponent vectors belonging to such a chain of length 1

Choose the eigenvector v = [a b ¢ d] T #0

We get,
—2a —4d
—a—d
BI-A)v = at2d =0
a+d

‘We can have that a = d =0

‘We could choose b=1and c=0orb=0and c=1
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1
Suppose that we choose b = 1 and ¢ = 0, we get vg )

Suppose that we choose b =0 and ¢ = 1, we get
0

2 0
v = |
0
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Basis of generalised eigenvectors (cont.)

It is possible to associate to an eigenvalue A and multiplicity v a structure

e v linearly independent generalised eigenvectors

This extends to generalised eigenvectors a classical theorem

A matrix with n distinct eigenvalues has 7 linearly independent eigenvectors
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Basis of generalised eigenvectors (cont.)

The generalised eigenvectors associated to distinct eigenvalues are linearly
independent

Consider a (n x n) matric A

A possesses n linearly independent generalised eigenvectors
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Suppose we have determined n linearly independent generalised eigenvectors

We can use them to build a non-singular matrix

State-space
representation

UFC/DC
SA (CK0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and
forced evolutior

Impulse response

Transition matrix

Complex eigenvalues

Basis of generalised

eigenvectors

Generalised modal
matrix

Transition matrix

Generalised modal matrix (cont.)

Generalised modal matrix
Consider a (n X n) matric A
Consider a set of linearly independent generalised eigenvectors of A

Suppose that to eigenvalue \ correspond | chains of generalised eigenvectors

~> Lengths p1,p2,...,pu

We can sort the generalised eigenvectors of A and build a matriz 'V )
1 1 1 )& 2
VOO D] [P 2]

chain 1 chain 2 chain p

[vgu) ‘Vé,u)l o ‘V;)ﬁ)

Suppose that matriz A has r distinct eigenvalues \; (i =1,...,7)

We define the (n X n) generalised modal matriz of A

V= [Vau[Vagl - [V, ]
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Generalised modal matrix (cont.)

Consider the definition of generalised modal matrix V
e The ordering of the chain is not essential

e The choice is arbitrary
It is important however that the columns that are associated to the gener-
alised eigenvectors belonging to the same chain are positioned side-by-side

e Moreover, they must ordered

e From the eigenvector to the generalised eigenvector of maximum order
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Generalised modal matrix (cont.)

Consider the (4 x 4) matrix A

5
1
=1l
=1l

=

A=

S O wo
S w oo

The characteristic polynomial P(s) = det (sI — A) = (s — 4)%
e Higenvalue A = 3, multiplicity v = 4

To this eigenvalue correspond two chains of generalised eigenvalues
e Lengths 3 and 1
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Generalised modal matrix (cont.)

There is a single distinct eigenvalue

Hence, the modal matrix

0O -2 1 0

_ 1 1 1 »]_ |1 =2 0 0
vl =l
0 1 0 0

By swapping the order of the chains, we obtain a different modal matrix

0o 0 -2 1

[ 1 2 n]_ |1 1 -1 0
V‘["(1> vt v "é)]_ 00 1 0
0 0 1 0
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Generalised modal matrix (cont.)

‘We thus have,

J="tAvV =

O OO w
OO W
S WO
w o= o

The index of eigenvalue A =3 is m = 3
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Generalised modal matrix (cont.)

Consider a square matriz A and let 'V be its generalised modal matrix
Matriz J from similarity transformation J = ~' AV is in Jordan form

There are p chains of generalised eigenvectors correspond to eigenvalue \
s Lengths P1,P2,--+Pu
Thus, v Jordan blocks of order p1,pa,...,pu
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Generalised modal matrix (cont.)

Proof

The columns of the generalised modal matrix are linearly independent

e The generalised modal matrix is non-singular
e It can be inverted
Consider the j-th chain of length p associated to A

By definition, ‘ »
)\ng) = Avy)

For the i-th (generalised eigen-) vector (of order 7 > 1) vgj)

vgj_)l Z (A — )\I)vgj) s /\vgj) + vgj)

i—

1

AvY
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By combining equations, let the j-th chain contributes the first p columns
[/\vy)‘)\v;j) +v§j)‘ cee ‘)\v;,j) + vgzl‘ Q ]

_ [Avgj)‘Avéi)‘,,,‘Avgj)‘...]

That is,
A1 0 0
0 A 0 0
R e I
0 0 -+ 0 A

;A[Vij)‘;éﬂ‘.\‘Vgll‘vz(f) ]
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Generalised modal matrix (cont.)

A1 0 0
0 A 0 0
T=10 o A1
0 0 0 A
That is, we have
VJ=AV

The chain of length p associates to a block of order p in J

To complete the proof, left-multiply this equation by V1

State-space
representation

UFC/DC
SA (CKO0191)
2018.1

Definition
Properties

Sylvester expansion

Impulse response

Transition matrix

Generalised modal
matrix

Generalised modal matrix (cont.)

Consider the (4 x 4) matrix A

5 0 0 4
1 3 0 1
A= -1 0 3 -1
-1 0 0 1

The characteristic polynomial P(s) = det (sI — A) = (s — 4)*
e Eigenvalue A = 3, multiplicity v =4

To this eigenvalue correspond two chains of generalised eigenvalues
e Lengths 3 and 1

The matrix can be written in Jordan form by similarity

e To blocks, order 3 and 1, to eigenvalue A = 3
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Generalised modal matrix (cont.)

‘We can choose a generalised modal matrix V

0O -2 1 0

1 1 1 2 1 -2 0 0
M R e TR
0 1 0 0

Its inverse

0o 1 0 1

;|00 0 -1

P = 1 0 0 2

0o 0 1 -1

‘We have,

3 1 0 0
-1 |10 3 1 0
J=V7 AV = 00 3 0
0 0 0 3

The index of the eigenvalue A =3 ism =3




State-space
representation

UFC/DC
SA (CKO0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and
forced evolution

Impulse response

Transition matrix

Complex eigenvalues

Basis of generalised

Generalised modal
matrix

Transition matrix

Transition matrix by Jordan

Jordan form

State-space
representation

UFC/DC
SA (CK0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and
forced evolution

Impulse response

Transition matrix

Complex eigenvalues

Basis of generalised

eigenvectors

Generalised modal
matrix

Transition matrix

Transition matrix by Jordan

A formula for computing the matrix exponential of a matrix in Jordan form
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Transition matrix by Jordan (cont.)

Consider a matriz in Jordan form

Its matrix exponential

et 0 .0
0 eJ2t ... 0
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Transition matrix by Jordan (cont.)
Let J; be the generic block of order p

A1 0 --- 0 0 O
o x 1 -~ 0
0 0 x O O 0 O

o
o

0o 0 0 - A

(e}

(e}

(e}
(=

Its matrix exponential

- t2
POV VAP VA At

0 eM  ger ... At et e
(» —4)! (p —3)! (p —2)!

it oot oo (-3

2

e’ teMt —e
0 eM teMt
0 e)\f,

At
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SA (CK0191) Proof SA (CK0191)
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Matrix J is in block-diagonal form, hence the form of its exponential

. . J . .
For the second result, determine the k-th power of block J; The generic element of matrix e’i* is on the upper-diagonal

e )\ is the associated eigenvalue e Starting from element 1,5+ 1, for j =0,...,p—1

Pr We have, © k=0/k b el tk i ti, X th—d i
R (k)Ak (k))\k—l (k))\k—Q ( k ))\k—p+2 ( k ))\k—p+1 - kzzo ?(1))\ '= kZ:] WA ;= J_'(k; WA J>
5 0 1k k % k—1 ki%“ k—p+2 pzl k—p+2 5 ; J o, Xtk J
‘; 0 (O)A (l)kA o (k7£+3))\ (p;Q A . :(‘ H‘r“"l’{”}‘\ 3 L( Z tf>\k) = LeAt
In gt 0 0 LT RN DU S RN P S — A 5!
i = )
(.) 0 0 - (k).)\k (k L This is because we have o
Transition matrix 0 lk k} Transition o J’Lf _ Z iJk
o 0 o 0 () =D
We used the definition of binomial coefficient m
k! dal

. (k = forj<k
Transition matrix J ]!(k — ])! Transition matrix

)= 0, forj > k

St Transition matrix by Jordan (cont.) St Transition matrix by Jordan (cont.)

representation representation

UFC/DC UFC/DC
2018.1 2018.1

Consider the matrix A

5 0 0 4
1 3 0 1
Propositon. A=l 5 3 —
: . . -1 0 0 1
. Consider a matriz A of order n and eigenvalues A1, A2, ..., \p ;
Let 'V be a generalised modal matriz to get a Jordan form Consider the generalised modal matrix V
Forc and
J=V AV E hutior 0 -2 1 0
1 -1 0 0
VvV = [v(l) v D V(Q)] =
We have, ! 2 3 ! 0 1 01
6A/, :VeJl,V—l (27) 0 1 0 0
|
We can write A in Jordan form
3 1 0 0
Transition matrix Transition matrix _ 0 3 1 0
A= 0 0 3 0
0 0 0 3
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Transition matrix by Jordan (cont.)

We have,
2

3t tGSt _6315 0

2
0 e3t te3t 0
0 0 e3t 0
0 0 0 edt

We thus have,

e3t 4 23 0 0 4te3t
te3t +0.5t2e3t 3¢ 0 te3t 4 t2e3t
—te3? 0 edt —2te3t
—te3? 0 0 e3t — 2te3t

oAl yViy-l
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Transition matrix by Jordan (cont.)

Consider a matrix A with conjugate complex eigenvalues

~ Its Jordan form is not real

‘We can modify the diagonalisation procedure
e A modified modal matrix

We get a real canonical quasi Jordan form
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Transition matrix and modes

The modes are function that characterise the dynamical behaviour

e We studied them for IO representations

We establish a similar concept also for SS representations
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Minimum polynomial and modes

Consider a matrix J in Jordan canonical form

e Let 7' be the state transition matrix

Consider a given block of order p associated to eigenvalue A\

A1 0 -+ 0 0 0

0 X1 - 0 0 O

00X -~ 0 0 O
J;, = : :

0 0 O A1 0

0 0 O 0 A 1

0 0 0 0 0 X

State-space
representation

UFC/DC
SA (CK0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and
forced evolution

Impulse response

Transition matrix

Complex eigenvalues

Basis of generalisec

eigenvectors

Generalised modal
matrix

Transition matrix

Transition and
modes

Minimum polynomial and modes (cont.)

In the block of the matrix exponential, we will have the functions

R U S P

Functions of time to be multiplied by appropriate coefficients
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Minimum polynomial and modes (cont.)

Minimum polynomial

Consider a matriz A with r distinct eigenvalues \;

o Let m; be the indexes of the eigenvalues

We define the minimum polynomial

r

Pmul,(s) = H (S o A,/)Trl

=1

Consider the roots \; of the minimum polynomial of multiplicity m;
o To them we can associate the 7; functions of time

o We call them modes

eNit gehit | gmimThit

Each element of state transition matriz is a linear combination of modes

v oAt
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Minimum polynomial and modes (cont.)

Minimum and characteristic polynomial coincide in nonderogatory matrices

~ (Special case of eigenvalues with multiplicity one)
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Consider a system with SS representation

il(t) _ —1 0 Il(t) 0 u

|:i2(t):| N [0 =% |:Ig(t) th ®)
_ Il(t)

o= [

The state matrix A has two eigenvalues, both with multiplicity one
~ A =—1
~ A= -2

The index is unitary, too

The minimum polynomial of A and the characteristic polynomial match

Prin(s) = P(s) = (s + 1)(s +2)
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Minimum polynomial and modes (cont.)

The modes are e~* and e~ 2t

‘We have,

At et (e7t—e72)
€ =lo e—2t

Each element is a linear combination of the modes
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Minimum polynomial and modes (cont.)

Consider the matrix A

5 0 0 4
1 3 0 1
A= -1 0 3 -2
-1 0 0 1

One eigenvalue A = 3, multiplicity v = 4, index m = 3
The characteristic and the minimum polynomial
P(s) = (s — A" = (s — 3)*
Prin(s) = (s = A\)" = (s = 3)°

The modes
3t 3t 123t
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Minimum polynomial and modes (cont.)

The generalised modal matrix V

0o -2 1

_J.a 1 1 2] _ |1 -1 0
S R
0 1 0

The Jordan form of matrix A

O OO w
OO W
S WO
w o oo

[l NN}
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Minimum polynomial and modes (cont.)

Each element of matrix e®! is a linear combination of the modes

e3t +2¢3 0 0 4te3t
3t 2,3t 3t 3t 2,3t
At _ Jtxr—1 _ |te’t +0.5t%e e 0 te’t +t%e
e =VellVi = —te3? 0 €3t —2te3t
—te3? 0 0 e3t — 2tedt

There is no mode in the form ¥~ 1e? = 33t

e Though there is a A = 3, with v =4
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On the eigenvectors

Consider the state-space representation of a system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

We give an interpretation to the real eigenvectors of A

We start with a general result, valid for all eigenvectors

e Both real and complex eigenvectors
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On the eigenvectors (cont.)

Let v be an eigenvector of matriz A

e )\ is the associated eigenvalue

We have,

That is, v is an eigenvector of matriz e’

~ e M s the associated eigenvalue
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On the eigenvectors (cont.)

Proof

Let v be an eigenvector of matrix A

e ) is the associated eigenvalue

We thus have,
Av =)v

By pre-multiplying both sides by A, we get

A%y = AAv = v

The operation can be repeated, we get

Afv =Xy, for ke N

‘We obtain,

A o k o th A
t,Z A ,Z _ At
(5] = k;' v = k'_
k=0 k=0




State-space
representation

UFC/DC
SA (CKO0191)
2018.1

Representation

and analysi
State transition
matrix

Definition
Properties
Sylvester expansion
Lagrange
formula

Force-free and
forced evolution

Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalues
Jordan form

generalised

Generalised modal

matrix
Transition matrix

Transition and
modes

On the eigenvectors (cont.)

Consider a linear system with SS representation

x(t)
y(t)

Ax(t) + Bu(t)
Cx(t) + Du(t)

‘We are interested in its time evolution, from different initial conditions

Consider the initial state x(f) at time ¢y, we have
e x,(t) defines a parameterised curve
e The curve lies in the state space

e Time ¢ is the parameter of x,,(t)

The curve is called state evolution

The set of points along the curve defines the trajectory of the evolution
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On the eigenvectors (cont.)

‘We can embed a physical interpretation to the real eigenvectors of A
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On the eigenvectors (cont.)

Suppose that xo corresponds to an eigenvector of matrix A

e () is the associated eigenvalue)

A

By using Lagrange formula and e®'v = e*'v, we have

Af,xO

~ xu(t)=etlxp=ce
The state vector x,(t¢) keeps in time the direction of xg

~ Its magnitude changes according to the mode e*!

o (It goes with the associated eigenvalue)
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On the eigenvectors (cont.)

Suppose that the system has a state matrix A of order n
Suppose that A has n linearly independent eigenvectors
V1,V2,...,Vnp

e (The associated eigenvalues are A1, \2,...,\p)
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On the eigenvectors (cont.)

Suppose that xo does not coincide with v;

We can always write,

n
~ X0 = a1Vl tagvey + s Fap vy = 2 Vi
i=1
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On the eigenvectors (cont.)

The initial condition is a linear combination of the basis of eigenvectors

e Through appropriate coefficients «;

‘We have,

n n
Xy (t) = eBlxg = E ajeBlv, = E aetity;
i=1 i=1

Time evolution is a linear combination of evolutions, along eigenvectors

e Through the same coefficients «;
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On the eigenvectors (cont.)

Consider a system with state-space representation {A, B, C,D}

21 (t) _ =2 1 z1(t) 0 u(t)

22 (1) 0 —2| |m(t) 1
yi(t)| |2 1] [m(2) L5
w(t)] |0 2] [=2(2) o | @

The state matrix A has the eigenvalues and eigenvectors

~ A and v = [(1)]

~ A2 and vg = [_11}
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On the eigenvectors (cont.)

The force-free evolution on the (z1, z2)-plane for different cases

Each trajectory corresponds to a different initial condition

e ¢ increases according to the arrow

0.5

(=3

Y
N

Two initial conditions are placed along the eigenvector v

~ Xy (t) keeps the same direction

~ Its modulo decreases, e~

t is stable




State-space
representation

UFC/DC
SA (CKO0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and
forced evolution

Impulse response

Transition matrix

Complex eigenvalues

Basis of generalised

eigenvectors

Generalised modal

matrix

Transition matrix

Transition and
modes

On the eigenvectors (cont.)

Two initial conditions are placed along the eigenvector va

~ Xy (t) keeps the same direction

~ Its modulo decreases, e~ 2t is stable
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On the eigenvectors (cont.)

N

Two initial conditions are placed along a combination of eigenvectors

~» Xy (t) keeps a curved direction, tend to zero
~ Components evolve along different modes

~ e~2t is (extinguishes) faster
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On the eigenvectors (cont.)

Consider the SS representation of a system with state matrix A

a=3 I

The eigenvalues
~ M =atjw=—-1+32
We have,

At —¢ | cos(2t)  sin(2t)
¢ |—sin(2t) cos(2t)

We want to study the force-free evolution

e From initial condition xg = [(1)]
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On the eigenvectors (cont.)

‘We have,
x(t) = z1(t)] _ Aty = | ¢
z2(t)
The solution determines a vector in the (z1, z2)
e The vector rotates clockwise

e The angular speed w = 2

The magnitude decreases according to mode e~

e A spiral

o]

plane

t
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