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Stochastic processes and Markov chains

We shall describe the behaviour of a system by describing all the different
states the system may occupy and by indicating how it moves among them

• The number of states is possibly infinite

We assume that the system occupies one and only one state at any time

We also assume that the system’s evolution is represented by transitions

• Transitions occur from state to state

• Transitions occur instantaneously
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Stochastic processes and Markov chains (cont.)

If the future evolution of the system depends only on its current state and not
on its history, then the system may be represented by a Markov process

Possible even when the system does not possess this property explicitly

• We can construct a corresponding implicit representation

A Markov process is a special case of a stochastic process
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Stochastic processes and Markov chains (cont.)

We define a stochastic process as a family of random variables {X (t), t ∈ T}

• Each X (t) is a random variable (on some probability space)

• Parameter t can be understood as time

Thus, x(t) is the value assumed by the random variable X (t) at time t

T is called the index or parameter set

• It is a subset of (−∞,+∞)
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Stochastic processes and Markov chains (cont.)

Continuous-time parameter stochastic process

! Index set is continuous

T = {t |0 ≤ t < +∞}

Discrete-time parameter stochastic process

! Index set is discrete

T = {0, 1, 2, . . . }
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Stochastic processes and Markov chains (cont.)

The values assumed by the random variables X (t) are called states

• The space of all possible states is called state-space

When the state-space is discrete, the process is often called a chain

• To denote states, we use a subset of natural numbers

! {0, 1, 2, . . . }
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Stochastic processes and Markov chains (cont.)

Two important features of a stochastic process

! Discrete/continuous time-evolution

! Discrete/continuous states
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Stochastic processes and Markov chains (cont.)

A process whose evolution depends on the time it is initiated

! Non-stationary

A process whose evolution is invariant under arbitrary shifts

! Stationary



M
A
Y
14
,
20
18

–
FC

–

Discrete-time

Markov chains

UFC/DC
SA (CK0191)

2018.1

Generalities

Chapman-
Kolmogorov

Classification of
states

Irreducibility

Stochastic processes and Markov chains (cont.)

Stationary random process

A random process is said to be a stationary random process if its joint
distribution function is invariant to time shifts

For any constant α, we have

! Prob{X (t1) ≤ x1,X (t2) ≤ x2, · · · ,X (tn ) ≤ xn}

= Prob{X (t1 + α) ≤ x1,X (t2 + α) ≤ x2, · · · ,X (tn + α) ≤ xn},

for all n and all ti and xi with i = 1, 2, . . . ,n
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Stochastic processes and Markov chains (cont.)

Stationarity is not that transitions probabilities cannot depend on time

• Transition may depend on the amount of elapsed time

• The process is said to be non-homogeneous

Whether homogeneous or not the process can/cannot be stationary

• If it is stationary, its evolution may change over time

• This evolution is the same, irrespective of initial

• (stationary and non-homogeneous)
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Stochastic processes and Markov chains (cont.)

We are interested in some statistical characteristics of the dynamical system

• They may depend on time t at which the system is initiated

A process whose evolution depends on the time in which is is started

• Non-stationary random process

A process that is invariant under an arbitrary shift of the time origin

• Stationary random process
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Stochastic processes and Markov chains (cont.)

A Markov process is a stochastic process with a conditional probability
distribution function that satisfies the Markov or memoryless property

We focus on discrete-state processes in both discrete and continuous time
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Discrete-time Markov chains
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Generalities

We shall consider a discrete-time Markov chain (discrete-state)

! We observe its state at a discrete, but infinite, set of times

We assume that state transitions either can or cannot occur

• Transitions take place only at those abstract time instants

• (We can take time instants to be one time-unit apart)
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Generalities (cont.)

We consider the discrete time index set T to be the set of natural numbers

! T = {0, 1, · · · ,n, · · · }

Successive observations define the random variables X0,X1, · · · ,Xn , · · ·

A discrete-time Markov chain {Xn ,n = 0, 1, 2, · · · } is a Markov process

As such, it satisfies the Markov property

Prob{Xn+1 = xn+1|Xn = xn ,Xn−1 = xn−1, · · · ,X0 = x0}

! = Prob{Xn+1 = xn+1|Xn = xn} (1)

The state at time step n + 1 will depend only on the state at time step n
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Generalities (cont.)

Markov property

For all natural numbers n and for all states xn ,

Prob{Xn+1 = xn+1|Xn = xn ,Xn−1 = xn−1, · · ·,X0 = x0}

= Prob{Xn+1 = xn+1|Xn = xn}
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Generalities (cont.)

Prob{Xn+1 = xn+1|Xn = xn ,Xn−1 = xn−1, · · ·,X0 = x0}

= Prob{Xn+1 = xn+1|Xn = xn} (2)

The future evolution of the system depends only on its current state

It is irrelevant whether the system is in state X0 = x0 at time step 0, in
state X1 = x1 at time 1, and so on up to state Xn−1 = xn−1 at time n − 1

State xn the sum total of all the information concerning the history

• This is all is relevant to the future evolution
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Generalities (cont.)

To simplify notation, we shall not use xi , xj and xk to denote states

! We shall use i , j and k , ...

So, we write the conditional probabilities

Prob{Xn+1 = xn+1|Xn = xn} ! Prob{Xn+1 = j |Xn = i} ! pij (n)

The conditional probability pij (n) of performing a transition from state
xn = i to state xn+1 = j when the time parameter changes from n to n + 1

! Single-step transition probabilities

! (Transition probabilities)
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Generalities (cont.)

Single-step transition probabilities

They are conditional probabilities of making a transition from state xn = i
to state xn+1 = j , when the time parameter is increased from n to n + 1

! pij (n) = Prob{Xn+1 = j |Xn = i} (3)
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Generalities (cont.)

Transition probability matrix or chain matrix

Let P(n) be a matrix with pij (n) in row i and column j , for all i and j

P(n) =

0
1
2
...
i
...

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00(n) p01(n) p02(n) · · · p0j (n) · · ·
p10(n) p11(n) p12(n) · · · p1j (n) · · ·
p20(n) p21(n) p22(n) · · · p2j (n) · · ·

...
...

...
...

...
...

pi0(n) pi1(n) pi2(n) · · · pij (n) · · ·
...

...
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The elements of matrix P(n) satisfy two properties

! 0 ≤ pij (n) ≤ 1

!

∑

all j

pij (n)

A matrix that satisfies this properties is a Markov or stochastic matrix
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Generalities (cont.)

(Time-) homogeneous Markov chain

A Markov chain is time-homogeneous, if for all states i and j , we have

! Prob{Xn+1 = j |Xn = i} = Prob{Xn+m+1 = j |Xn+m = i}

• For all n = 0, 1, 2, . . .

• For any m ≥ 0
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Generalities (cont.)

That is, we can write the transition probabilities

pij = Prob{X1 = j |X0 = i}

= Prob{X2 = j |X1 = i}

= Prob{X3 = j |X2 = i}

= · · ·

pij (n) can be (has been) replaced by pij

! (Transitions no longer depend on n)
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Generalities (cont.)

(Time-) non-homogeneous Markov chain

A Markov chain is time-non-homogeneous, if for all states i and j ,

! pij (0) = Prob{X1 = j |X0 = i} ≠ Prob{X2 = j |X1 = i} = pij (1)
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Generalities (cont.)

Consider a homogeneous discrete-time Markov chain

! pij (n) = Prob{Xn+1 = j |Xn = i}

= Prob{Xn+1 = j |Xn = i} = pij ,

for all n = 0, 1, 2, . . . (and for all i and j )

! Transition probabilities are independent of n

Thus, matrix P(n) can be replaced with matrix P

! P =

0
1
2
...
i
...

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00 p01 p02 · · · p0j · · ·
p10 p11 p12 · · · p1j · · ·
p20 p21 p22 · · · p2j · · ·
...

...
...

...
...

...
pi0 pi1 pi2 · · · pij · · ·
...

...
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Generalities (cont.)

We now consider the time-evolution of the Markov chain

We are given a (potentially infinite) set of time steps, 0, 1, · · ·

We assume that at some initial time 0 the chain is in state i

! The chain may change state at each step

! (But, only at those time steps)
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Discrete-time Markov chains (cont.)

P(n) =

0
1
2
...
i
...

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00(n) p01(n) p02(n) · · · p0j (n) · · ·
p10(n) p11(n) p12(n) · · · p1j (n) · · ·
p20(n) p21(n) p22(n) · · · p2j (n) · · ·

...
...

...
...

...
...

pi0(n) pi1(n) pi2(n) · · · pij (n) · · ·
...

...
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Suppose that at time step n the chain is in state i

• At step n + 1, the chain will be in state j

! with probability pij (n)
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Generalities (cont.)

P(n) =

0
1
2
...
i
...

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00(n) p01(n) p02(n) · · · p0j (n) · · ·
p10(n) p11(n) p12(n) · · · p1j (n) · · ·
p20(n) p21(n) p22(n) · · · p2j (n) · · ·

...
...

...
...

...
...

pi0(n) pi1(n) pi2(n) · · · pij (n) · · ·
...

...
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Suppose that pii (n) > 0, the chain is said to have a self-loop

• Suppose that at time step n the chain is in state i

• At step n + 1, the chain will remain in its state i

! with probability pii (n)
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Generalities (cont.)

The probability of being in state j at step n + 1 and in state k at step n + 2

• Given that the state at time step n is i

We have,

! Prob{Xn+2 = k ,Xn+1 = j |Xn = i}

= Prob{Xn+2 = k |Xn+1 = j ,Xn = i}Prob{Xn+1 = j |Xn = i}

= Prob{Xn+2 = k |Xn+1 = j}Prob{Xn+1 = j |Xn = i}

= pjk (n + 1)pij (n)

We used the definition of conditional probability and then Markovianity
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Generalities (cont.)

Sample path

A sequence of states visited by the chain is called a sample path

The probability of the sample path i → j → k , given state i at step n

! pjk (n + 1)pij (n)

More generally, for a sample path i → j → k → · · ·→ b → a

Prob{Xn+m = a,Xn+m−1 = b, · · ·,Xn+2 = k ,Xn+1 = j |Xn = i}

= Prob{Xn+m = a|Xn+m−1 = b}Prob{Xn+m−1 = b|Xn+m−2 = c}

· · ·Prob{Xn+2 = k |Xn+1 = j}Prob{Xn+1 = j |Xn = i}

= pba (n +m − 1)pcb (n +m − 2)

· · · pjk (n + 1)pij (n) (4)
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Generalities (cont.)

Prob{Xn+m = a,Xn+m−1 = b, · · ·,Xn+2 = k ,Xn+1 = j |Xn = i}

= Prob{Xn+m = a|Xn+m−1 = b}Prob{Xn+m−1 = b|Xn+m−2 = c}

· · ·Prob{Xn+2 = k |Xn+1 = j}Prob{Xn+1 = j |Xn = i}

= pba (n +m − 1)pcb(n +m − 2)

· · · pjk (n + 1)pij (n)

Consider the case of a chain that is homogeneous

We have,

Prob{Xn+m = a,Xn+m−1 = b, · · ·,Xn+2 = k ,Xn+1 = j |Xn = i}

= pij pjk · · · pcbpba , (for all possible values of n)
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Generalities (cont.)

Markov chains are commonly depicted using some graphical device

! Transition diagram

! Nodes are used to represent states

! Directed edges represent single-state transitions

! Edges can be labelled to show transition probabilities

The absence of an edge indicates no single-step transition
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Generalities (cont.)

Example

A weather model

Consider an application of a homogenous discrete-time Markov chain

• We use a Markov chain to describe the weather in some place

We simplify weather, three types of weather only

! Rainy (R), Cloudy (C ) and Sunny (S)

! The (three) states of the Markov chain

We assume that the weather is observed daily

We assume the chain is time-homogeneous
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Generalities (cont.)

We are given values for the transition probabilities

We have,

P =
R
C
S

⎛

⎝

pRR pRC pRS

pCR pCC pCS

pSR pSC pSS

⎞

⎠ =

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠ (5)

P(i , j ) = pij is the conditional probability that given that the chain (weather)
is in state i in one time it will be found in state j after one time step

! Prob{Xn+1 = j |Xn = i} = pij
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Generalities (cont.)

P =
R
C
S

⎛

⎝

pRR pRC pRS

pCR pCC pCS

pSR pSC pSS

⎞

⎠ =

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

We can calculate tomorrow’s weather, given today’s weather

! Prob{Xn+1 = C |Xn = S} = pSC = 0.30

! (The probability of the sample path S → C )
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Generalities (cont.)

P =
R
C
S

⎛

⎝

pRR pRC pRS

pCR pCC pCS

pSR pSC pSS

⎞

⎠ =

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

We can calculate the weather in the next two days, given today’s weather

! Prob{Xn+2 = R,Xn+1 = C |Xn = S}

= Prob{Xn+2 = R|Xn+1 = C ,Xn = S}Prob{Xn+1 = C |Xn = S}

= Prob{Xn+2 = R|Xn+1 = C}
︸ ︷︷ ︸

pCR

Prob{Xn+1 = C |Xn = S}
︸ ︷︷ ︸

pSC

= pSC pCR = 0.30 · 0.70 = 0.21

! (The probability of the sample path S → C → R) M
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Generalities (cont.)

The transition diagram

R

C S

0.8

0.2 0.2

0.05

0.3

0.1

0.7

0.5

0.15

The transition probability matrix

P =
R
C
S

⎛

⎝

pRR pRC pRS

pCR pCC pCS

pSR pSC pSS

⎞

⎠ =

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

"
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Generalities (cont.)

Example

The fate of data scientists

The career destiny of a data scientist across years of work

Three levels of competence/status were established

! Wizard (W )

! Regular (R)

! Poser (P)

Career can be modelled as a discrete-time Markov chain {Xn , n ≥ 0}

• RV Xn models the status at the n-th year

Transition probabilities from year to year (one-step) were estimated

P =
W
R
P

⎛

⎝

pWW pWR pWP

pRW pRR pRP

pPW pPR pPP

⎞

⎠ =

⎛

⎝

0.85 0.14 0.01
0.05 0.85 0.10
0.00 0.20 0.80

⎞
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Generalities (cont.)

P =
W
R
P

⎛

⎝

pWW pWR pWP

pRW pRR pRP

pPW pPR pPP

⎞

⎠ =

⎛

⎝

0.85 0.14 0.01
0.05 0.85 0.10
0.00 0.20 0.80

⎞

⎠

The probability that a poser at time n becomes a wizard in 2-year time

• After becoming a regular after one year

This is the probability of the sample path P → R →W

! Prob{Xn+2 = W ,Xn+1 = R|Xn = P}

= Prob{Xn+2 = W |Xn+1 = R,Xn = P}Prob{Xn+1 = R|Xn = P}

= Prob{Xn+2 = W |Xn+1 = R}
︸ ︷︷ ︸

pRW

Prob{Xn+1 = R|Xn = P}
︸ ︷︷ ︸

pPR

= pPRpRW = 0.20 · 0.05 = 0.01
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Generalities (cont.)

P =
W
R
P

⎛

⎝

pWW pWR pWP

pRW pRR pRP

pPW pPR pPP

⎞

⎠ =

⎛

⎝

0.85 0.14 0.01
0.05 0.85 0.10
0.00 0.20 0.80

⎞

⎠

According to this (any?) model, a poser cannot move in one year to wizard
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Generalities (cont.)

Example

The Ehrenfest model

Suppose that you have two boxes containing a total of N small balls in it

At each time instant, a ball is chosen at random from one of the boxes

• Then, the ball is moved into the other box

The state of the system is the number of balls Xn in the first box

• After n selections

This is a Markov chain, Xn+1 depends on Xn = xn only

{Xn ,n = 1, 2, . . . }
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Generalities (cont.)

Xn is the random variable ‘balls in first box, after n selections’

Let k < N be the number of balls in the first box at step n

The probability of k + 1 balls after the next step

! Prob{Xn+1 = k + 1|Xn = k} =
N − k

N

To increase the number of balls in the first box by one, one of the N − k balls
in the second box must be selected, at random, with probability (N − k)/N

The probability of k − 1 balls after the next step

! Prob{Xn+1 = k − 1|Xn = k} =
k

N
(for k ≥ 1)

To decrease by one the number of balls in the first box, one of the k balls
must be selected, at random, with probability k/N M
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Generalities (cont.)

Suppose that N = 6

P =

0
1
2
3
4
5
6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 6/6 0 0 0 0 0
1/6 0 5/6 0 0 0 0
0 2/6 0 4/6 0 0 0
0 0 3/6 0 3/6 0 0
0 0 0 4/6 0 2/6 0
0 0 0 0 5/6 0 1/6
0 0 0 0 0 6/6 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The transition probability matrix has seven rows and seven columns

! They correspond to the states

! (Zero through six)

"
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Generalities (cont.)

Example

A two-state non-homogeneous Markov chain

Consider a two-state discrete-time Markov chain {Xn ,n = 1, 2, . . . }

• Let a and b be the states Xn can take on

Let paa (n) = pbb(n) be the probability to keep the current state (time n)

paa (n) = pbb(n) = 1/n

The probability pab(n) = pba (n) to change state is given by the complement

pab(n) = pba (n) = (n − 1)/n
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Generalities (cont.)

Thus, the n-th transition matrix

p(n) =
a
b

(
paa(n) pab(n)
pba (n) pbb(n)

)

=

(
1/n (n − 1)/n

(n − 1)/n 1/n

)

The transition diagram for this non-homogeneous Markov chain

1/n 1/n

(n−1)/n

(n−1)/n

a b

The probability of changing state increases at each time step

• (That of remaining, decreases)
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Generalities (cont.)

p(n) =
a
b

(
paa(n) pab(n)
pba (n) pbb(n)

)

=

(
1/n (n − 1)/n

(n − 1)/n 1/n

)

The first four transition probability matrices

P(1) =

(
1 0
0 1

)

P(2) =

(
1/2 1/2
1/2 1/2

)

P(3) =

(
1/3 2/3
2/3 1/3

)

P(4) =

(
1/4 3/4
3/4 1/4

)

Probabilities change with time, yet the process is Markovian

• At any step, future evolution only depends on present M
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Generalities (cont.)

The collection of sample paths, beginning from state a

1

b

b

b

b

b

b

b

a

a

a

a

a

a

a

aa

1/3

4/5

1/5

4/5

1/5

1/5

1/5

4/5

4/5

1/4

3/4

1/4

3/4

1/4

3/41/3

2/3

1/2

1/2

1/4

3/4

2/3
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Generalities (cont.)

Consider paths that begins in state a, stay in a after the first and second
time steps, move to state b on third step and then remain in b on the fourth

a → a → a → b → b

The probability of the path is the product of the probabilities of the segments

Prob{X5 = b,X4 = b,X3 = a,X2 = a|X1 = a}

= paa (1)
︸ ︷︷ ︸

1

paa (2)
︸ ︷︷ ︸

1/2

pab(3)
︸ ︷︷ ︸

2/3

pbb(4)
︸ ︷︷ ︸

1/4

= 1/12

There exist other paths that take the chain from state a to b in four steps

! They are assigned different probabilities
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Generalities (cont.)

No matter which path is chosen, once the chain arrives to state b after four
steps, the future evolution is specified by P(5) and not any other P(i), i ≤ 4

1

b

b

b

b

b

b

b

a

a

a

a

a

a

a

aa

1/3

4/5

1/5

4/5

1/5

1/5

1/5

4/5

4/5

1/4

3/4

1/4

3/4

1/4

3/41/3

2/3

1/2

1/2

1/4

3/4

2/3

All transition probabilities leading out of b are the same

"
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Generalities (cont.)

k-dependent Markov chains

A process is not Markovian if evolution depends on more than current state

M
A
Y
14
,
20
18

–
FC

–

Discrete-time

Markov chains

UFC/DC
SA (CK0191)

2018.1

Generalities

Chapman-
Kolmogorov

Classification of
states

Irreducibility

Generalities (cont.)

Example

A weather model

Consider the simplified weather model and suppose the following

• Transition at n + 1 depends on state at time n and n − 1

We have been given one-step probabilities given two rainy days in a row

• The probabilities the next day be rainy, cloudy or sunny

! (0.6, 0.3, 0.1)

And, one-step probabilities given a sunny day followed by a rainy day

• The probabilities the next day be rainy, cloudy or sunny

! (0.80, 0.15, 0.05)

And, one-step probabilities given a cloudy day followed by a rainy day

• The probabilities the next day be rainy, cloudy or sunny

! (0.80, 0.15, 0.05)
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Generalities (cont.)

The transition probabilities depend on today’s and also yesterday’s weather

! The process is not a (first-order) Markovian process

We can still transform this process into a (first-order) Markov chain

! We must increase the number of states
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Generalities (cont.)
The probability transition matrix of the original process

P =
R
C
S

⎛

⎝

pRR pRC pRS

pCR pCC pCS

pSR pSC pSS

⎞

⎠ =

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

Consider the case in which we add a single extra state

• State RR, two consecutive days of rain

We assumed original probabilities remain unchanged

C

0.2 0.2

S

RRR

0.6

0.3

0.1

0.8

0.15

0.05

0.5

0.3

0.7

0.1

"
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Discrete-time Markov chains (cont.)

This device converts non-Markovian processes into Markovian ones

! It can be generalised

Consider a process with s states with dependence on two prior steps

We can define a new (now first-order) process with s2 states

• Each new state characterise the weather two days back

For the simplified weather model

! RR, RC and RS

! CR, CC and CS

! SR, SC and SS
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Discrete-time Markov chains (cont.)

Consider a process that has s states and k -step back dependencies

• We can build a first-order Markov process with sk states

Let {Xn , n ≥ 0} be a stochastic process and let k be an integer

Prob{Xn+1 = xn+1|

Xn = xn , · · · ,Xn−k+1 = xn−k+1,Xn−k = xn−k , · · · ,X0 = x0}

= Prob{Xn+1 = xn+1|Xn = xn , · · · ,Xn−k+1 = xn−k+1}

(for all n ≥ k)

The evolution of the process depends on the k previously visited states

! k-dependent process or k-order process
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Discrete-time Markov chains (cont.)

Prob{Xn+1 = xn+1|

Xn = xn , · · · ,Xn−k+1 = xn−k+1,Xn−k = xn−k , · · · ,X0 = x0}

= Prob{Xn+1 = xn+1|Xn = xn , · · · ,Xn−k+1 = xn−k+1}

(for all n ≥ k)

For k = 1, {Xn} is a Markov process

For k > 1, {Yn} is Markov process

! Yn = (Xn ,Xn+1, · · · ,Xn+k−1)

The states Yn are elements of the Cartesian-product of states

! S × S × · · ·× S
︸ ︷︷ ︸

k terms

S denotes the original set of states Xn
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Discrete-time Markov chains (cont.)

Holding/sojourn time

Consider the diagonal elements of the transition probability matrix P

Suppose that they are all non-zero and strictly smaller than one

! pii ∈ (0, 1)

! At any step the chain may remain in its current state
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Discrete-time Markov chains (cont.)

We define the number of consecutive steps a chain remains in a state

! Sojourn time, or holding time of that state
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Generalities (cont.)

At each time, the probability of leaving state i is past-independent

For a homogeneous Markov chain, we have

!

∑

i≠j

pij = 1− pii

The process may be understood as a sequence of Bernoulli trials

! The probability of success is (1− pii )

! (Success means ‘exit from i ’)
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Generalities (cont.)

Suppose that the probability that the holding time is equal to k steps

! (k − 1) consecutive Bernoulli failures, and one success

The probability Ri of the holding time of state i ,

! Prob{Rj = k} = (1− pii )p
k−1
ii

(for k = 1, 2, . . ., and 0 elsewhere)

This corresponds to the geometric distribution with parameter (1− pii )

! Its distinguished feature is the memoryless property

! (No other discrete RVs has it)
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Generalities (cont.)

Mean and variance of holding time of a homogeneous chain in state i

! E[Ri ] =
1

1− pii

! Var[Ri ] =
pii

(1− pii )2

This is only valid for homogeneous Markov processes (it is important)
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Generalities (cont.)

Memoryless property

A sequence of j − 1 unsuccessful trials has no effect on success at j -th trial

! (On the probability of success, to be exact)
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Generalities (cont.)

Consider a non-homogeneous Markov chains in state i at time step n

Let Ri (n) be the RV representing the remaining number of steps in i

Ri(n) is not distributed according to a geometric distribution

! Prob{Ri (n) = k}

= pii (n)pii (n + 1) · · · pii (n + k − 2)
[
1− pii (n + k − 1)

]

(It becomes geometric for pii (n) = pii , for all n)
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Generalities (cont.)

Embedded Markov chains

Consider the transition diagram of the extended weather model

C

0.2 0.2

S

RRR

0.6

0.3

0.1

0.8

0.15

0.05

0.5

0.3

0.7

0.1

There are no self-loops on state R (other states have them)

• A rainy (R) day is followed by a rainy day (state RR)

• A rainy (R) day is followed by a cloudy day (C )

• A rainy (R) day is followed by a sunny day (S)
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Discrete-time Markov chains (cont.)

We consider an alternative way of consider this homogeneous Markov chain

So far, we only considered the process evolution at each time steps

• (Including self-transitions, at any step)

Consider evolution at those steps in which there is an actual change

• We neglect (postpone) self-transitions
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Generalities (cont.)

To embed this interpretation we modify the transition probability matrix

For all rows i for which pii ∈ (0, 1), we remove the self loop (set pii = 0)

• Then, we must replace pij with conditional probabilities

• Condition of the fact that transitions are out of state i

For i ≠ j , we have

! pij =
pij

(1 − pii )

This keeps the transition matrix row-stochastic, for all i

∑

j

pij

1− pii
=

pii

1− pii
+

∑

j≠i

pij

1− pij

=
∑

j≠i

pij

1− pii
=

1

1− pii

∑

j≠i

pij

=
1

1− pii
(1 − pii ) = 1
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Generalities (cont.)

The new process is called the embedded process

The embedding points (of time) are those at which transitions occur

• (Transitions out of state, that is)

It is fully characterised by adding the holding times for all states
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Generalities (cont.)

Example

Consider the transition probability matrix of the simplified weather model

P =
R
C
S

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

The transition diagram and the transition matrix of the embedded chain

R

C S

0.875
0.25

0.125

0.375

0.75 0.625 P =
R
C
S

⎛

⎝

0.000 0.750 0.250
0.875 0.000 0.125
0.625 0.375 0.000

⎞

⎠

The probabilities of success for the geometric distribution

• The holding times, 0.2, 0.8 and 0.8
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Chapman-Kolmogorov equations

Suppose that we have a discrete-time Markov chain

We are interested in computing path probabilities

! Starting from some given state, onward

We derived a general expression for that

For a sample path i → j → k → · · ·→ b → a,

Prob{Xn+m = a,Xn+m−1 = b, · · ·,Xn+2 = k ,Xn+1 = j |Xn = i}

= Prob{Xn+m = a|Xn+m−1 = b}Prob{Xn+m−1 = b|Xn+m−2 = c} · · ·

· · ·Prob{Xn+2 = k |Xn+1 = j}Prob{Xn+1 = j |Xn = i}

= pba (n +m − 1)pcb(n +m − 2) · · ·

· · · pjk (n + 1)pij (n)
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Chapman-Kolmogorov equations (cont.)

For the homogeneous case, the expression simplifies

For a sample path i → j → k → · · ·→ b → a

Prob{Xn+m = a,Xn+m−1 = b, · · ·,Xn+2 = k ,Xn+1 = j |Xn = i}

= pij pjk · · · pcbpba , (for all possible values of n)
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Chapman-Kolmogorov equations (cont.)

Example

A weather model

Consider the simplified weather model for some location

• Daily observations, time-homogenous Markov chain

• Rainy (R), Cloudy (R) and Sunny S

The transition probability matrix

P =

⎛

⎝

pRR pRC pRS

pCR pCC pCS

pSR pSC pSS

⎞

⎠ =

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠
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Chapman-Kolmogorov equations (cont.)

R

C S

0.8

0.2 0.2

0.05

0.3

0.1

0.7

0.5

0.15

Probability of rain tomorrow and clouds the day after, given today is sunny

The probability of the sample path S → R → C

! Prob{Xn+2 = C ,Xn+1 = R|Xn = S}

= Prob{Xn+2 = C |Xn+1 = R,Xn = S}Prob{Xn+1 = R|Xn = S}

= Prob{Xn+2 = C |Xn+1 = R}Prob{Xn+1 = R|Xn = S}

= pSRpRC = 0.50 · 0.15 = 0.075
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Chapman-Kolmogorovequations(cont.)

Whattheprobabilitythatitwillbecloudyintwodays,giventodayissunny

!TheprobabilityofthesamplepathS→×→C

C

S

S

SSS

R

R RC C
C

0
.5

0
.3

0
.2

0
.1

5

0
.2 0

.3

R

Wemustexamineallsamplepaths(thosethatincludeintermediateweather)

!ThesamplepathS→S→C

!ThesamplepathS→C→C

!ThesamplepathS→R→C
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Chapman-Kolmogorov equations (cont.)

P =

⎛

⎝

pRR pRC pRS

pCR pCC pCS

pSR pSC pSS

⎞

⎠ =

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

The weather on the next (2) day can be through any of those three possi-
bilities

• The events are all mutually exclusive

• Probabilities can be summed up

Thus, the probability that it will be C in two days, given that today is S

! pSRpRC + pSC pCC + pSSpSC =
∑

w∈{R,C ,S}

pSwpwC

= 0.5 · 0.15
︸ ︷︷ ︸

0.075

+0.3 · 0.2
︸ ︷︷ ︸

0.06

+0.2 · 0.3
︸ ︷︷ ︸

0.06

= 0.195
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Chapman-Kolmogorov equations (cont.)

pSRpRC + pSC pCC + pSSpSC =
∑

w∈{R,C ,S}

pSwpwC

=
∑

w∈{R,C ,S}

Prob{Xn+2 = C |Xn+1 = w}
︸ ︷︷ ︸

pwC

Prob{Xn+1 = w |Xn = S}
︸ ︷︷ ︸

pSw

This result can be readily obtained from the single-step transition matrix

P =

⎛

⎝

pRR pRC pRS

pCR pCC pCS

pSR pSC pSS

⎞

⎠ =

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

It is an inner product of one row and one column of P

Row 3, transitions from a sunny S day into a w-day, Sw

! r3 = (0.50, 0.30, 0.20)

Column 2, transitions from a w -day into a cloudy day C , wC

! c2 = (0.15, 0.20, 0.30)T

! r3c2 = 0.5 · 0.15 + 0.3 · 0.2 + 0.2 · 0.3 = 0.195
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Chapman-Kolmogorov equations (cont.)

Let today’s weather be given by w1

! With w1 ∈ {R,C , S}

Let the weather in two days be w2

! With w2 ∈ {R,C , S}

The probability that the weather in two days is w2

• The product between row w1 and column w2

All possibilities ({R,C , S}× {R,C ,S}) make the elements of matrix P2 = PP

! P2 =
R
C
S

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

=

⎛

⎝

0.770 0.165 0.065
0.750 0.175 0.075
0.710 0.195 0.095

⎞

⎠
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Chapman-Kolmogorov equations (cont.)

P2 =
R
C
S

⎛

⎝

0.770 0.165 0.065
0.750 0.175 0.075
0.710 0.195 0.095

⎞

⎠

Element (2, 3) gives the probability that it will be sunny (3) in two days

• Given that today is cloudy (2)

More generally, element (i , j ) is the probability of state j in two steps

• Given the current state i
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Chapman-Kolmogorov equations (cont.)

In the same way, we can construct matrix P3 = P(PP)

! P3 =
R
C
S

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

=

⎛

⎝

0.764 0.168 0.068
0.760 0.170 0.070
0.752 0.174 0.074

⎞

⎠

It gives conditional probabilities three steps from now

And, so on with higher powers of P
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Chapman-Kolmogorov equations (cont.)

For this particular example, this sequence converges to a particular matrix

! All rows become identical

! lim
n→∞

Pn =
R
C
S

⎛

⎝

0.7625 0.16875 0.06875
0.7625 0.16875 0.06875
0.7625 0.16875 0.06875

⎞

⎠ (6)

"
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Chapman-Kolmogorov equations (cont.)

The results we obtained are mere applications of the laws of probability

! We summed over all sample paths of length n , from i to k
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Chapman-Kolmogorov equations (cont.)

P =

0
1
2
...
i
...

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00 p01 p02 · · · p0j · · ·
p10 p11 p12 · · · p1j · · ·
p20 p21 p22 · · · p2j · · ·
...

...
...

...
...

...
pi0 pi1 pi2 · · · pij · · ·
...

...
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

For a homogeneous discrete-time Markov chain, for any n = 0, 1, 2, . . .

Prob{Xn+2 = k ,Xn+1 = j |Xn = i} = pij pjk

From the laws of probability,

! Prob{Xn+2 = k |Xn = i} =
∑

all j

pij pjk = p(2)
ik

The RHS defines element (i , k) of matrix P2 = PP

! p
(2)
ik ≡ (P2)ik
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Chapman-Kolmogorov equations (cont.)

We may proceed in the same fashion for sample path of arbitrary length

Prob{Xn+3 = l ,Xn+2 = k ,Xn+1 = j |Xn = i} = pij pjkpkl

Again, from the laws of probability,

! Prob{Xn+3 = l |Xn = i} =
∑

all j

∑

all k

pij pjkpkl

=
∑

all j

pij
∑

all k

pjkpkl =
∑

all j

pij p
(2)
jl = p

(3)
il

The RHS is the (i , l)-th element of matrix P3 = PPP

! p(3)
il ≡ (P3)il

Above, we had that p
(2)
jl is the (i , l)-th element of P2
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Chapman-Kolmogorov equations (cont.)

We can fully generalise the single-step transition probability matrix

For a homogeneous discrete-time Markov chain, the m-step matrix

p(m)
ij = Prob{Xn+m = j |Xn = i}

p
(m)
ij is obtained from the single-step transition probability matrix

! p(m)
ij =

∑

all k

p(l)
ik p(m−l)

kj , (for 0 < l < m)

The recursive formula is the Chapman-Kolmogorov equation

M
A
Y
14
,
20
18

–
FC

–

Discrete-time

Markov chains

UFC/DC
SA (CK0191)

2018.1

Generalities

Chapman-
Kolmogorov

Classification of
states

Irreducibility

Chapman-Kolmogorov equations (cont.)

Consider a homogenous discrete-time Markov chain

We have,

p(m)
ij = Prob{Xm = j |X0 = i}

=
∑

all k

Prob{Xm = j ,Xl = k |X0 = i}, (for 0 < l < m)

=
∑

all k

Prob{Xm = j |Xl = k ,X0 = i}Prob{Xl = k |X0 = i}, (for 0 < l < m)

By using the Markov property, we get

! p(m)
ij

=
∑

all k

Prob{Xm = j |Xl = k}Prob{Xl = k |X0 = i}, (for 0 < l < m)

=
∑

all k

p(m−l)
kj p(l)

ik , (for 0 < l < m)
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Chapman-Kolmogorov equations (cont.)

The Chapman-Kolmogorov equations can be compacted, in matrix notation

! P(m) = P(l)P(m−l)

By definition, P(0) = I

It is possible to write any m-step homogeneous transition probability matrix

! The sum of products of l-step and (m − l)-step transition matrices
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Chapman-Kolmogorov equations (cont.)

Consider how we travelled the space-time, from i to j in m steps

! First, go from i to whatever intermediate state k in l steps

! Then, bang from k to j in the remaining (m − l) steps

We considered all possible distinct paths from i to j in m steps

! By summing over all intermediate states k
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Chapman-Kolmogorov equations (cont.)

Consider a non-homogeneous discrete-time Markov chain

Matrices P(n) depend on time step n

! P2 must be replaced by P(n)P(n + 1)

! P3 must be replaced by P(n)P(n + 1)P(n + 2)

! · · ·

Thus, we have

! P(m)(n, n + 1, · · · ,n +m − 1) = P(n)P(n + 1) · · ·P(n +m − 1)

Element (i , j ) is Prob{Xn+m = j |Xn = i}
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Chapman-Kolmogorov equations (cont.)

Let π
(0)
i be the probability that the Markov chain begins in state i

! π(0) is a row-vector, the i -th element is π(0)
i

The probabilities of being in any state j after the first time-step

! π(1) = π(0)P(0)

! The j -th element π
(1)
j of π(1)
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Chapman-Kolmogorov equations (cont.)

Consider the homogeneous discrete-time Markov chain

We have,
! π(1) = π(0)P

The elements of vector π(1), probabilities after first step

• For all the various states (the probability distribution)
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Chapman-Kolmogorov equations (cont.)

Example

A weather model

Consider the simplified weather model for some location

• Daily observations, time homogenous Markov chain

• Rainy (R), Cloudy (R) and Sunny S

The transition probability matrix

P =
R
C
S

⎛

⎝

pRR pRC pRS

pCR pCC pCS

pSR pSC pSS

⎞

⎠ =

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠
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Chapman-Kolmogorov equations (cont.)

Assume that at time 0, we begin with a cloudy weather, π(0) = (0, 1, 0)

! π(1) = π(0)P(0)

= (0, 1, 0)

⎛

⎝

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

⎞

⎠

= (0.7, 0.2, 0.1)

This result corresponds to the second row of matrix P (unsurprisingly)

Starting from a cloudy day 0, the probability that day 1 is cloudy is 0.2
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Chapman-Kolmogorov equations (cont.)

We can compute the probability of being in any state after two steps

Consider the non-homogeneous case

We have,
! π(2) = π(1)P(1) = π(0)P(0)

︸ ︷︷ ︸

π(1)

P(1)

Consider the homogeneous case

We have,
! π(2) = π(1)P = π(0)P2

In computing the j -th component of π(2), we sum over all sample paths of
length 2 that begin, with probability π(0), from state i and finish at state j
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Chapman-Kolmogorov equations (cont.)

More specifically, in the case of the weather example

For the probability of being in any state after two steps, we have

! π(2) = π(1)P = π(0)P2

= (0, 1, 0)

⎛

⎝

0.770 0.165 0.065
0.750 0.175 0.075
0.710 0.195 0.095

⎞

⎠

= (0.750, 0.175, 0.075)

We summed over all sample paths of length two that begin and end in C

The probability that it will be cloudy after two days, from cloudy, 0.175
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Chapman-Kolmogorov equations (cont.)

We can compute the full state probability distribution after any n steps

Consider the non-homogeneous case

We have,

! π(n) = π(n−1)P(n − 1) = π(0)P(0)P(1) · · ·P(n − 1)

Consider the homogeneous case

We have,
! π(n) = π(n−1)P = π(0)Pn

In computing the j -th component of π(n), we sum over all sample paths of
length n that begin, with probability π(0), from state i and finish at state j
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Chapman-Kolmogorov equations (cont.)

Again, for the weather example

Let n →∞

limn→∞π(n) = π(0) lim
n→∞

Pn

= (0, 1, 0)

⎛

⎝

0.7625 0.16875 0.06875
0.7625 0.16875 0.06875
0.7625 0.16875 0.06875

⎞

⎠

= (0.7625, 0.16875, 0.06875)

"
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Chapman-Kolmogorov equations (cont.)

The limit limn→∞ π(n) does not necessarily exist for all Markov chains

! Not even for finite-state ones
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Discrete-time Markov chains
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Classification of states

We shall provide some important definitions regarding the individual states

! We focus on (homogeneous) discrete-time Markov processes

• (We discuss the classification of groups of states later on)

We distinguish between two main types of individual states

! Recurrent states

! Transient states
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Classification of states (cont.)

Informally first,

! Recurrent states

The Markov chain is guaranteed to return to these states infinitely often

! Transient states

The Markov chain has a nonnull probability to never return to such states
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Classification of states (cont.)

1 2

3 4 5

6 7 8

Some transient states

State 1 and 2 are transient states

• The chain can be in state 1 or 2 only at the first step

• States that exist at the first step are ephemeral

State 3 and 4 are transient states

• The chain can enter either of these states, move from one to the other

• Eventually, the chain will exit the loops, from state 3, to enter state 6
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Classification of states (cont.)

1 2

3 4 5

6 7 8

Another transient state

State 5 is a transient state

• State 5 can be entered from state 2, at first step if 2 is occupied

• Once in 5, the chain remains in it for a finite number of steps M
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Classification of states (cont.)

1 2

3 4 5

6 7 8

Some recurrent states

State 6 and 7 are recurrent states

If one of these states is reached, subsequent transitions will start alternating

• When in state 6, the chain returns to state 6 every other transition

• (The same is true for state 7)

Returns to states in this group occur at time steps that are multiples of 2

• Such states are said to be periodic (the period is two)
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Classification of states (cont.)

1 2

3 4 5

6 7 8

Some recurrent states

State 6 and 7 are recurrent states (cont.)

Recurrent states can have a finite or an infinite mean recurrence time

• Finite recurrence time, positive recurrent

• Infinite recurrence time, null recurrent

Infinite recurrence time occurs only in infinite-state Markov chains
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Classification of states (cont.)

1 2

3 4 5

6 7 8

Another recurrent state

State 8 is a recurrent state

• When the chain reaches this state, it will stay there

• Such states are said to be absorbing

A state i is an absorbing state if and only if pii = 1

• For non-absorbing states, we have pii < 1

• (Either transient or plain recurrent)
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Classification of states (cont.)

We can define the return/non-return properties more formally

Let p(n)
jj be the probability that the process is again in state j after n steps

• The process (may have) visited many states (including state j )

j → × → · · ·→ ×→ j

We know how to compute this quantity

p(n)
jj = Prob{a return to state j occurs n steps after leaving it}

= Prob{Xn = j ,Xn−1 = ×, . . . ,X1 = ×|X0 = j}

(for n = 1, 2, . . .)
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Classification of states (cont.)

We now define/introduce a new conditional probability

Let f (n)jj be probability that the first-return to state j occurs in n steps

• This probability is defined on leaving state j

That is,

f
(n)
jj = Prob{first return to state j occurs n steps after leaving it}

= Prob{Xn = j ,Xn−1 ≠ j , . . . ,X1 ≠ j |X0 = j}

(for n = 1, 2, . . .)

This probability is NOT probability p(n)
jj of returning to state j in n steps

• (There, state j may be visited at intermediate steps)

M
A
Y
14
,
20
18

–
FC

–

Discrete-time

Markov chains

UFC/DC
SA (CK0191)

2018.1

Generalities

Chapman-
Kolmogorov

Classification of
states

Irreducibility

Classification of states (cont.)

We relate p(n)
jj and f (n)jj , then construct a recursive relation to compute f (n)jj

We get p(n)
jj from powers of the single-step probability transition matrix P
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Classification of states (cont.)

Consider the probability f (1)jj of first return to j in one step after leaving it

! It is equal to the single-step-probability pjj

! f
(1)
jj = p

(1)
jj = pjj

For n = 1, compare the two definitions

f (n)jj = Prob{first return to state j occurs n steps after leaving it}

= Prob{Xn = j ,Xn−1 ≠ j , . . . ,X1 ≠ j |X0 = j}

p(n)
jj = Prob{a return to state j occurs n steps after leaving it}

= Prob{Xn = j |X0 = j}

Since p
(0)
jj = 1, we can write

p(1)
jj = f (1)jj p(0)

jj
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Classification of states (cont.)

Consider p(2)
jj , the probability of being in j , two steps after leaving it

We have two ways of getting there

! The process does not move from state j at either time step

j → j → j

! The process leaves j on step 1 and returns on step 2

j → × → j
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We can interpret these two possibilities

Case 1 (j → j → j )

The process leaves j and returns to it for the first time after one step (prob-

ability f
(1)
jj ) and then returns to it at the second step (probability p

(1)
jj )

Case 2 (j → ×→ j )

The process leaves j and does not return for the first time until two steps

later (probability f (2)jj )
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Classification of states (cont.)

Thus, by combining these (mutually exclusive) possibilities

! p
(2)
jj = f

(1)
jj p

(1)
jj

︸ ︷︷ ︸

jjj

+ f
(2)
jj p

(0)
jj

︸ ︷︷ ︸

j×j

Then, we can compute f (2)jj ,

! f (2)jj = p(2)
jj − f (1)jj p(1)

jj
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Classification of states (cont.)

In a similar manner, we can write an expression for p(3)
jj

• Probability of state j , three steps after leaving

The three ways that this may occur

This occurs if the first return to j is after one step and in the two next steps
the process may have been elsewhere but has returned to state j after that

j → j → × → j

Or, this occurs if the first return to state j is two steps after leaving it

j → ×→ j → j

Or, this occurs if the first return to state j is three steps after leaving it

j → × → ×→ j
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Again, by combining these possibilities,

p
(3)
jj = f

(1)
jj p

(2)
jj

︸ ︷︷ ︸

jj×j

+ f
(2)
jj p

(1)
jj

︸ ︷︷ ︸

j×jj

+ f
(3)
jj p

(0)
jj

︸ ︷︷ ︸

j××j

We can then compute f
(3)
jj ,

! f (3)jj = p(3)
jj − f (1)jj p(2)

jj − f (2)jj p(1)
jj
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Classification of states (cont.)

Summarising,

p(1)
jj = f (1)jj p(0)

jj

p(2)
jj = f (1)jj p(1)

jj + f (2)jj p(0)
jj

p(3)
jj = f (1)jj p(2)

jj + f (2)jj p(1)
jj + f (3)jj p(0)

jj

We can continue by applying the laws of probability and using p(0)
jj = 1

We get,

! p
(n)
jj =

n∑

l=1

f
(l)
jj p

(n−l)
jj , (for n ≥ 1) (7)
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Classification of states (cont.)

Similarly,

f (1)jj = p(1)
jj

f (2)jj = p(2)
jj − f (1)jj p(1)

jj

f (3)jj = p(3)
jj − f (1)jj p(2)

jj − f (2)jj p(1)
jj

Hence, f
(n)
jj can be recursively computed for n ≥ 1

! f
(n)
jj = p

(n)
jj −

n−1∑

l=1

f
(l)
jj p

(n−l)
jj , (for n ≥ 1)
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Classification of states (cont.)

Consider the probability (denoted fjj ) of ever returning to state j

fjj =
∞∑

n=1

f
(n)
jj

If fjj = 1, then we say that state j is a recurrent state

State j is recurrent IFF, starting in j , the probability of returning to j is 1

! (The process is guaranteed to return to j )

In this case, we must have that p
(n)
jj > 0, for some n > 0

• The process returns to j infinitely often
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Classification of states (cont.)

When fjj = 1, we can define the mean recurrence time Mjj of state j

Mjj =
∞∑

n=1

nf (n)jj

The expected number of steps till first-return to state j after leaving

• A recurrent state j for which Mjj is finite is positive recurrent

If Mjj =∞, we say that state j is null recurrent
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Classification of states (cont.)

Consider the probability fjj of ever returning to state j

fjj =
∞∑

n=1

f (n)jj

If fjj < 1, there is a non-zero probability the process will never return to j

! We say that the state j is a transient state

Each time the chain is in state j , the probability it will never return is 1− fjj
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Classification of states (cont.)

Theorem

Consider a finite Markov chain

We have that

1 No state is null recurrent (Mii ≠∞, for all i)

2 At least one state must be positive recurrent

! (Not all states can be transient)

! (fii ≠ 1 for some i)

Suppose that all states are transient (fii < 1, for all i)

The process would spend some finite amount of time in each of them

• After that time, the process would have nowhere to go

This is impossible, there must be at least one positive-recurrent state
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Classification of states (cont.)

Example

Consider the following discrete-time Markov chain

0.5

0.5

0.5
0.5

1.0

3

1 2

P =
1
2
3

⎛

⎝

0 1/2 1/2
1/2 0 1/2
0 0 1

⎞

⎠

We are interested in the probability of first-return to state j after leaving it

f (n)jj = p(n)
jj −

n−1∑

l=1

f (l)jj p(n−l)
jj , (for n ≥ 1)
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Classification of states (cont.)

The sequence of powers of P

Pk =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

3

⎛

⎜
⎝

0 (1/2)k 1− (1/2)k

(1/2)k 0 1− (1/2)k

0 0 1

⎞

⎟
⎠ , if k = 1, 3, 5, . . .

1

2

3

⎛

⎜
⎝

(1/2)k 0 1− (1/2)k

0 (1/2)k 1− (1/2)k

0 0 1

⎞

⎟
⎠ , if k = 2, 4, 6, . . .
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Classification of states (cont.)

f (n)jj = p(n)
jj −

n−1∑

l=1

f (l)jj p(n−l)
jj , (for n ≥ 1)

For state j = 1, we have

f (1)11 = p(1)
11 = 0

f (2)11 = p(2)
11 − f (1)11 p(1)

11

= (1/2)2 − 0 = (1/2)2

f
(3)
11 = p

(3)
11 − f

(2)
11 p

(1)
11 − f

(1)
11 p

(2)
11

= 0− (1/2)2 · 0− 0 · (1/2)2 = 0

f
(4)
11 = p

(4)
11 − f

(3)
11 p

(1)
11 − f

(2)
11 p

(2)
11 − f

(1)
11 p

(3)
11

= (1/2)4 − 0− (1/2)2 · (1/2)2 − 0 = 0

In general, we get

! f
(k)
11 = 0, (for all k ≥ 3)
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0.5

0.5

0.5
0.5

1.0

3

1 2

The first return to state 1 must occur after 2 steps (or never again)

State 1 must therefore be a transient state (not recurrent, f11 ≠ 1)

f11 =
∞∑

n=1

f
(n)
11 = 0 + 1/4 + 0 + · · · ≠ 1

A similar result applies to state 2 (transient, not recurrent, f22 ≠ 1) M
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Classification of states (cont.)

The Markov chain has three states, of which two are transient (1 and 2)

! The third state (3) must be positive recurrent (M33 ≠∞)

More explicitly,

f (1)33 = p(1)
33 = 1

f
(2)
33 = p

(2)
33 − f

(1)
33 p

(1)
33 = 1− 1 = 0

f (3)33 = p(3)
33 − f (1)33 p(2)

33 − f (2)33 p(2)
33 = 1− 1− 0 = 0

In general, we get

! f
(k)
33 = 0, (for all k ≥ 2)
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0.5

0.5

0.5
0.5

1.0

3

1 2

State 3 is therefore a recurrent state (f33 = 1)

f33 =
∞∑

n=1

f (n)33 = 1 + 0 + 0 + · · · = 1

To see that, consider the mean recurrence time of state 3

M33 =
∞∑

n=1

nf (n)33 = 1 · 1 + 2 · 0 + 3 · 0 + · · · = 1

M33 is finite, 3 is a positive-recurrent state

"
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Classification of states (cont.)

We considered only transitions from any state back again to that same state

Now, we consider also transitions between two different states
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Classification of states (cont.)

Let f (n)ij for i ≠ j be the first-passage probability to state j in n steps

• Conditioned on the fact that we started from state i

We have that f (1)ij = pij

We derive a recursive expression to compute p(n)
ij

! p
(n)
ij =

n∑

l=1

f
(l)
ij p

(n−l)
jj , (for n ≥ 1)

After rearranging the terms, we get an expression to compute f (n)ij

! f (n)ij = p(n)
ij −

n−1∑

l=1

f (l)ij p(n−l)
jj

Again, this recursive relation is a more convenient M
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Classification of states (cont.)

Let fij be the probability that state j is ever visited from state i

fij =
∞∑

n=1

f (n)ij

If fij < 1, a process starting from state i might never visit state j

If fij = 1, the expected value of sequence f (n)ij , n = 1, 2, . . . of first-passage

probabilities for i , j (j ≠ i) is the mean first-passage time Mij of state j

Mij =
∞∑

n=1

nf (n)ij , (for i ≠ j )

The expected number of steps to first-passage to state j after leaving i
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The Mij uniquely satisfies the equation

Mij = pij +
∑

k≠j

pik (1 +Mkj ) = 1 +
∑

k≠j

pjkMkj (8)

Consider a process that is in some state i

The chain can either go to state j in one step (probability pij ), or go to
some intermediate state k in one step (probability pik ), then onto state j

• This will require an extra (expected) Mkj steps

(Let i = j , then Mij corresponds to the mean recurrence time of state j )
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Classification of states (cont.)

Mij = pij +
∑

k≠j

pik (1 +Mkj ) = 1 +
∑

k≠j

pjkMkj

We have,

! Mij = 1 +
∑

k≠j

pik (1 +Mkj ) = 1 +
∑

k≠j

pjkMkj − pijMjj

Let e be a column vector whose components are all ones

Let E be a square matrix whose elements are all ones

! E = eeT

Let diag(M ) be a diagonal matrix whose i-th column is Mii

Thus, in matrix form we obtain

! M = E + P
[

M − diag(M )
]
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Classification of states (cont.)

M = E + P
[
M − diag(M )

]

! The diagonal elements of M are mean recurrence (first-return) times

! The off-diagonal entries are expected first-passage times

Matrix M can be built iteratively, starting from M (0) = E

M (k+1) = E + P
[
M (k) − diag(M (k))

]
(9)
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Classification of states (cont.)

Matrix F whose elements are fij is referred to as reacheability matrix

! Probabilities to ever visit state j after leaving state i

! (Alternative ways of calculating probabilities fij )

! We will examine this matrix later on

We also study how to get the expected number of visits to j on leaving i
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Periodicity

A state j is said periodic or cyclic, with period p, if on leaving state j a
return is only possible in a number of step that is multiple of integer p > 1

! The period of state j is therefore defined as the largest common

divisor of the set of integers n for which we have that p(n)
jj > 0

A state for which p = 1 is aperiodic
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A state that is positive-recurrent and aperiodic is said to be ergodic

! If all states are ergodic, the chain is ergodic
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Some limit results on the behaviour of Pn as n →∞
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Theorem

Consider a homogeneous discrete-time Markov chain

Let state j be a null-recurrent1 or transient2 state and let i be any state

We have,

! lim
n→∞

p(n)
ij = 0

Let j be a positive-recurrent3 and aperiodic (i.e., ergodic) state

We have,

! lim
n→∞

p
(n)
jj > 0

Let j be a positive-recurrent and aperiodic (i.e., ergodic) state and let i be
a any positive-recurrent, transient, or otherwise state

We have
! lim

n→∞
p(n)
ij = fij lim

n→∞
p(n)
jj

"
1Recurrent, fjj = 1, with mean recurrence time Mjj = ∞.
2Non-zero probability of never returning, fjj < 1.
3Recurrent, fjj = 1, with finite mean recurrence time Mjj ≠ ∞.
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Example

Consider the Markov chain with transition probability P and limn→∞ Pn

P =

⎛

⎜
⎜
⎝

0.4 0.5 0.1 0
0.3 0.7 0 0
0 0 0 1
0 0 0.8 0.2

⎞

⎟
⎟
⎠

, lim
n→∞

Pn =

⎛

⎜
⎜
⎝

0 0 4/9 5/9
0 0 4/9 5/9
0 0 4/9 5/9
0 0 4/9 5/9

⎞

⎟
⎟
⎠

The process has two transient states 1 and 2 and two ergodic states 3 and 4

State 1 and 2 are transient

! lim
n→∞

p(n)
ij = 0 (for i = 1, 2, 3, 4 and j = 1, 2)

States 3 and 4 are ergodic

! lim
n→∞

p(n)
jj > 0 (for j = 3, 2)

As fij = 1, for i = 1, 2, 3, 4, j = 3, 4 and i ≠ j , we have

! lim
n→∞

p(n)
ij = fij lim

n→∞
p(n)
jj = lim

n→∞
p(n)
jj > 0

"
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Irreducibility

We discuss the classification of groups of states
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Let S be the complete set of states in a discrete-time Markov chain

1 1 2

3

4

5

6

S

S
2

Two subsets partition S

• S1 and S2

No one-step transition from any state in S1 to any state in S2

! S1 = {4, 5, 6} is said to be closed

There exist transitions from states in S2 to states in S1

! S2 = {1, 2, 3} is said to be open

(The set of all subsets, S = {1, 2, 3, 4, 5, 6}, is closed)
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S1 is said to be closed if no state in S1 leads to any state outside S1

1 1 2

3

4

5

6

S

S
2

p
(n)
ij = 0, (i ∈ S1, j /∈ S1)

This must be true for any number of steps (n ≥ 1)

M
A
Y
14
,
20
18

–
FC

–

Discrete-time

Markov chains

UFC/DC
SA (CK0191)

2018.1

Generalities

Chapman-
Kolmogorov

Classification of
states

Irreducibility

Irreducibility (cont.)

These concepts can be generalised to any non-empty subset S1 of S

Let the closed subset S1 consists of a single state

! Any such state is an absorbing state

Any finite set of transient states must define an open set

! Any non-absorbing state is an open set
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Irreducibility (cont.)

Suppose that S does not contain any proper subset that is closed

• The Markov chain is said to be irreducible

• (There are no absorbing states)

1 1 2

3

4

5

6

S

S
2

This chain is not irreducible

• S1 = {4, 5, 6} is closed

If S contains proper subsets that are closed, then the chain is reducible M
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Irreducibility (cont.)

Consider a closed subset of states with no proper subset that is closed

! This is called an irreducible subset

1 1 2

3

4

5

6

S

S
2

S1 = {4, 5, 6} is irreducible

• No closed sub-subsets

S1, only irreducible subset

Any proper subset of an irreducible subset makes an open set of states
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Irreducibility (cont.)

1 1 2

3

4

5

6

S

S
2

Matrix of transition probabilities

P =

1
2
3
4
5
6

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 ∗ 0 0 0 ∗
0 0 ∗ 0 0 0
∗ 0 0 ∗ 0 0
0 0 0 0 0 ∗
0 0 0 ∗ 0 0
0 0 0 0 ∗ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

(
D11 U12

L21 D22

)

∗ indicates non-zero probabilities

The matrix is decomposed according to the partition {1, 2, 3} and {4, 5, 6}

• Two off-diagonal blocks U12 and L21

• Two diagonal blocks D11 and D22

Each block has size (3 × 3) M
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Irreducibility (cont.)

1 1 2

3

4

5

6

S

S
2

Matrix of transition probabilities

P =

1
2
3
4
5
6

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 ∗ 0 0 0 ∗
0 0 ∗ 0 0 0
∗ 0 0 ∗ 0 0
0 0 0 0 0 ∗
0 0 0 ∗ 0 0
0 0 0 0 ∗ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

(
D11 U12

L21 D22

)

The lower off-diagonal block L21 is identically equal to zero

• No transitions from states in D22 to states in D11

The upper off-diagonal block U12 contains non-zero elements

• Transitions from states in D11 to states in D22
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Irreducibility (cont.)

We consider an alternative definition of irreducibility of a Markov chain

• We define it in terms of reachability of the states

• (We defined already the reachability matrix)

State j is reachable/accessible from state i if there is a i to j path

• The path need not be unit-length, we write i → j
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1 1 2

3

4

5

6

S

S
2

Matrix of transition probabilities

P =

1
2
3
4
5
6

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 ∗ 0 0 0 ∗
0 0 ∗ 0 0 0
∗ 0 0 ∗ 0 0
0 0 0 0 0 ∗
0 0 0 ∗ 0 0
0 0 0 0 ∗ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

(
D11 U12

L21 D22

)

There is a path from state 3 to state 5, through states 4 and 6

! State 5 is reachable from state 3

! Path probability, p34p46p65 > 0

There exists no path from state 5 to state 3

! State 3 is not reachable from state 5
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Irreducibility (cont.)

A chain is irreducible if every state is reachable from every other state

• That is, there exists an integer n for which p(n)
ij > 0

• This must be true for every pair of states i and j
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Irreducibility (cont.)

1 1 2

3

4

5

6

S

S
2

Matrix of transition probabilities

P =

1
2
3
4
5
6

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 ∗ 0 0 0 ∗
0 0 ∗ 0 0 0
∗ 0 0 ∗ 0 0
0 0 0 0 0 ∗
0 0 0 ∗ 0 0
0 0 0 0 ∗ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

(
D11 U12

L21 D22

)

It is not possible for any of the states 4, 5 and 6 to reach states 1, 2 and 3

• (Though the converse is possible)

We could make this Markov chain irreducible by adding a single path

• From any state of {4, 5, 6} to whatever state of {1, 2, 3}
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Irreducibility (cont.)

Consider the case of a state j that is reachable from state i

! i → j

Consider the case of a state i that is reachable from state j

! j → i

States i and j are communicating states

! i ←→ j

The communication property sets an equivalence relationship

! Symmetry

! Reflexivity

! Transitivity M
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Irreducibility (cont.)

Consider any three states i , j and k

i ←→ j =⇒ j ←→ i

i ←→ j and j ←→ i =⇒ i ←→ i

i ←→ j and j ←→ k =⇒ i ←→ k

! The first relation holds by definition

! The third relation holds because i ←→ j implies i → j

• There is a n1 > 0 for which p
(n1)
ij > 0

Similarly, we also have that j ←→ k implies j → k

• There is a n2 > 0 for which p(n2)
jk > 0

Set n = n1 + n2, then use Chapman-Kolmogorov equation to get i → k

! p
(n)
ik =

∑

all l

p
(n1)
il p

(n2)
lk ≥ p

(n1)
ij p

(n2)
jk > 0

It may be similarly shown that k → i

! The second relation follows from the third one by transitivity

i ←→ j and j ←→ i =⇒ i ←→ i
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Irreducibility (cont.)

A state that communicates with itself in this way is a return state

A non-return state is one that does not communicate with itself

• Once gone, the Markov chain never returns to that state
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Irreducibility (cont.)

Consider the set of all states that communicate with state i

! The set is a called a communicating class, C (i)

! (The communicating class can be an empty set)

It is possible that a state communicates with no other state

! This is the case of the ephemeral states

! They can only be occupied initially

On the other hand, any state i for which p(n)
ii > 0 is a return state
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Irreducibility (cont.)

This suggests an alternative partitioning of the states of a Markov chain

! Communicating classes

! Non-return states

Moreover, we have that communicating classes may or may not be closed

! A recurrent state belongs to a closed communicating class

! Only transient states can be members of non-closed classes
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Irreducibility (cont.)

If state i is recurrent and i → j then state j must communicate with state i

! i ←→ j

There is a path from i to j and, since i is recurrent, after leaving j we must
eventually return to i , which implies that there is also a path from j to i

• In this case, j must be also recurrent

We return to i infinitely often and j is reachable from i

! Then, we can also return to j infinitely often
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Irreducibility (cont.)

Since i and j communicate, for some n1, n2 > 0 we have

p(n1)
ij > 0

p(n2)
ji > 0

Since i is recurrent, for some integer n > 0 we have

! p
(n2+n+n1)
jj ≥ p

(n2)
ji p

(n)
ii pij (n1) > 0

State i is recurrent (
∑∞

n=1 p
(n)
ii =∞) then j is recurrent (

∑∞
m=1 p

(m)
jj =∞)

This is because we have

∞∑

n=1

p(n2)
ji p(n)

ii p(n1)
ij = p(n2)

ji p(n1)
ij

(∞)
∑

n=1

p(n)
ii =∞
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Irreducibility (cont.)

Recurrent states can only reach other recurrent states

! Transient states cannot be reached from them

! The set of recurrent states must be closed

If state i is a recurrent state, then C (i) is an irreducible closed set

• And, it contains only recurrent states

All states must be positive recurrent or they must be null recurrent

Consider a chain whose states are in the same communicating class

• We say that that Markov chain is irreducible
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Irreducibility (cont.)

Some theorems concerning irreducible discrete-time Markov chains
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Irreducibility (cont.)

Theorem

Consider an irreducible discrete-time Markov chain

The process is positive-recurrent or null-recurrent or it is transient

That is,

! All states are positive-recurrent, or

! All states are null-recurrent, or

! All states are transient

Moreover, all states are periodic, with same period p

! Or, else, they are aperiodic

"
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Irreducibility (cont.)

Theorem

In a finite, irreducible Markov chain, all states are positive-recurrent

In finite Markov chain, no states are null-recurrent

! At least one state must be positive recurrent

Adding irreducibility means all states must be positive recurrent

"
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Irreducibility (cont.)

Theorem

The states of an aperiodic, finite, irreducible Markov chain are ergodic

The conditions are only sufficient conditions

! (Not a definition of ergodicity)

"
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Irreducibility (cont.)

1 2

3 4 5

6 7 8

State 1 and 2 are non-return states

State 3 and 4, communicating class

• Not closed

State 5, a communicating class

• It is a return state

• Non-closed

(Non-return if without self-loop)

State 7 and 6 together form a closed communicating class

State 8 is an return state, a closed communicating class

• An absorbing state M
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Irreducibility (cont.)

We can partition the state-space of the Markov chain

1 2

3 4 5

6 7 8

We consider two main subsets

1. Transient states

2. Recurrent states

• Irreducible

• Closed communicating classes
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Irreducibility (cont.)

It is possible to bring the transition matrix to a normal form

• (Potentially, re-ordering of the states is needed)

! P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T11 T12 T13 · · · T1N

0 R2 0 · · · 0
0 0 R3 · · · 0
...

...
...

. . .
...

0 0 0 · · · RN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

! (N − 1) closed communicating classes Rk (k = 2, . . . ,N )

! A set containing all transient states T

The set of transient states may contain multiple communicating classes

Suppose that some transient state T1k is not identically null, transitions
from at least one of the transient states into the closed set Rk are possible M
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Irreducibility (cont.)

! P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T11 T12 T13 · · · T1N

0 R2 0 · · · 0
0 0 R3 · · · 0
...

...
...

. . .
...

0 0 0 · · · RN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Each of the Rk may be considered as a irreducible Markov chain

! Many properties of Rk are independent of other states
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Irreducibility (cont.)

The transition matrix in partitioned form and the transition diagram

1 2

3 4 5

6 7 8

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ∗ ∗ 0 0 0 0
0 0 0 0 ∗ 0 0 0
0 0 0 ∗ 0 ∗ 0 0
0 0 ∗ 0 0 0 0 0
0 0 0 0 ∗ 0 ∗ ∗
0 0 0 0 0 0 ∗ 0
0 0 0 0 0 ∗ 0 0
0 0 0 0 0 0 0 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝

T11 T12 T13

0 R2 0
0 0 R3

⎞

⎠


