UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental

Reachability matrix

Distributions

Discrete-time Markov chains Stochastic algorithms

Francesco Corona

Department of Computer Science Federal University of Ceará, Fortaleza

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental matrices

Important matrices

We let f_{ij} be the probability of ever reaching state j from state i

• All f_{ij} s define the reachability matrix F

$$f_{jj}^{(n)} = p_{jj}^{(n)} - \sum_{l=1}^{n-1} f_{jj}^{(l)} p_{jj}^{(n-l)}, \text{ (for } n \ge 1)$$

$$f_{ij}^{(n)} = p_{ij}^{(n)} - \sum_{l=1}^{n-1} f_{ij}^{(l)} p_{jj}^{(n-l)}, \text{ (for } n \ge 1)$$

We use F to compute the probability of visiting recurrent states

• Given that the process starts in a transient state

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and undamental natrices

Reachability matr

Distributions

Important matrices

Discrete-time Markov chains

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental

Reachability matr

Distribution

Important matrices (cont.)

Let r_{ij} be the expected number of times that state j is visited

 \rightarrow Given that the chain starts in state i

$$r_{ij} = \langle N_j | X_0 = i \rangle = \langle \left[\sum_{n=0}^{\infty} I_n | X_0 = i \right] \rangle = \sum_{n=0}^{\infty} \langle I_n | X_0 = i \rangle$$
$$= \sum_{n=0}^{\infty} \operatorname{Prob} \{ X_n = j | X_0 = i \} = \sum_{n=0}^{\infty} p_{ij}^{(n)}$$

 $I_n = 1$ if process is in j at time n and zero otherwise

• $\sum_{n=0}^{\infty} I_n$ is the number of times j is occupied

Let R be the matrix whose (i, j)-th element is r_{ij}

• Matrix *R* is called the **potential matrix**

$$R = \sum_{n=0}^{\infty} P^n \tag{1}$$

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental

Reachability matri

Distributions

Important matrices (cont.)

Let the states be arranged so that transient states precede recurrent states

Upper-left corner of R concerns in/out transitions from/to transient states

• This matrix defines the fundamental matrix

)

Element s_{ij} is the expected number of times a chain is in transient state j

• Given that it started in transient state i

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

fundamental matrices

Distributions

Important matrices (cont.)

Easier to first calculate matrix R (and S), then from it calculate matrix F

We first concentrate on the potential and the fundamental matrix

• We compute the mean number of steps until absorption

We then concentrate on the reachability matrix

 \bullet We compute probabilities of absorption

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential an fundamental matrices

eachability matrix

Distributions

Important matrices (cont.)

We have defined the reachability, the potential and the fundamental matrix

They can be used to compute important properties of the chain

- Mean and variance of the RV defining the number of visits to specific transient states, starting from potentially different transient states, before getting absorbed into a recurrent state
- The mean and variance of the RV defining the total number of steps the process makes before being absorbed into a recurrent state (mean time to absorption), given an initial transient state

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportan

Potential and fundamental matrices

eachability matrix

Distributions

Potential and fundamental matrices

Important matrices

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental matrices

Reachability mati

Distributions

Potential and fundamental matrices

Mean time to absorption

The elements of R can be infinite, zero, and finite positive real numbers

$$R = \sum_{n=0}^{\infty} P^n$$

Consider some state i and the elements of the i-th row of R

- \rightarrow r_{ij} is the expected number of times state j is visited
- \leadsto Starting from state i

A number of different possibilities occur, depending on state classification

 \rightarrow They depend on both initial *i* and final *j* states

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

Reachability matrix

Distributions

Potential and fundamental matrices (cont.)

It is not possible to go from a recurrent state i to any transient state j

$$ightharpoonup r_{ij} = 0$$

Nor is possible to go from recurrent state i to any recurrent state j

• If j is in a different irreducible class

Thus, all other elements (i, j) of row i of matrix R must be zero

$$\rightsquigarrow$$
 $r_{ij}=0$

Element r_{ij} is the expected number of times that state j is visited

- Conditioned on the fact that the process starts from state i
- (*i* is recurrent)

$$ightharpoonup r_{ij} = \begin{cases} \infty, & j \in C(i) \\ 0, & \text{otherwise} \end{cases}$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant

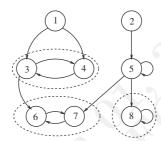
Potential and fundamental matrices

istributions

Potential and fundamental matrices (cont.)

CASE 1: State i is recurrent

Let i be a recurrent state¹



State 6 and 7 are recurrent

State 8 is recurrent

The Markov process will return to state i an infinite number of times

 \rightarrow Diagonal element in row i and column i is infinite, $\rightarrow r_{ii} = \infty$

The elements in column j for states j that communicate² with state i

 \rightarrow They must also be infinite, $\rightarrow r_{ij} = \infty$

True for all js in the same closed communicating class, C(i), as i

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importan

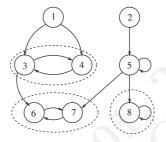
Potential and fundamental matrices

Reachability matrix

Distribution

Potential and fundamental matrices (cont.)

CASE 2: State i is transient and j is recurrent



State 1 and 2 are transient

State 3 and 4 are transient

State 5 is transient

Suppose that transient state 4 i can reach any state of recurrent 5 class C(i)

$$\rightarrow$$
 $r_{ik} = \infty$, for all $k \in C(i)$

After leaving state i, the process may enter C(i) and stay in it for ever

Suppose transient state i cannot reach any state of recurrent⁶ class C(i)

$$\rightarrow$$
 $r_{ik} = 0$, for all $k \in C(i)$

³The probability to ever visit $f_{ij} < 1$.

¹The probability to ever return $f_{ii} = 1$, with mean recurrence time M_{ii} .

²The probability to ever visit $f_{ij} = 1$, with mean first passage time M_{ij} .

⁴The probability to ever return $f_{ii} < 1$.

⁵The probability to ever visit $f_{ik} = 1$, with mean first passage time M_{ik} .

⁶The probability to ever visit $f_{ik} < 1$.

UFC/DC SA (CK0191) 2018.1

Important matrices

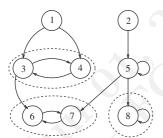
Potential and fundamental matrices

Reachability matrix

Distributions

Potential and fundamental matrices (cont.)

CASE 3: State i and state j are both transient



State 1 and 2 are transient

State 3 and 4 are transient

State 5 is transient

We can use the (i,j) elements of the potential matrix $R = \sum_{n=0}^{\infty} P^n$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

eachability matrix

Distributions

Potential and fundamental matrices (cont.)

For some matrix \overline{U} , we have

$$\rightarrow P^n = \begin{pmatrix} T^n & \overline{U}(n) \\ 0 & V^n \end{pmatrix}$$

Thus,

$$R = \sum_{n=0}^{\infty} P^n = \begin{pmatrix} \sum_{n=0}^{\infty} T^n & \sum_{n=0}^{\infty} \overline{U}(n) \\ 0 & \sum_{n=0}^{\infty} V^n \end{pmatrix} \equiv \begin{pmatrix} S & \sum_{n=0}^{\infty} \overline{U}(n) \\ 0 & \sum_{n=0}^{\infty} V^n \end{pmatrix}$$

We are interested in the expected number of visits to transient state j

• Given the process starts from transient state i

These quantities correspond to the element of matrix $S = \sum_{n=0}^{\infty} T^n$

- The only elements of R that are not zero or infinity
- (The fundamental matrix)

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant

Potential and fundamental matrices

Reachability matrix

Distributions

Potential and fundamental matrices (cont.)

Let states be ordered so that transient states come before recurrent ones

The transition probability matrix

$$\rightsquigarrow P = \begin{pmatrix} T & U \\ 0 & V \end{pmatrix}$$

 \leadsto Sub-matrix T represents transitions between transient states only

 \leadsto Sub-matrix U represents transitions from transient to recurrent states

 \rightarrow Sub-matrix V represents transitions between recurrent states only

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

teachability matrix

Distribution

Potential and fundamental matrices (cont.)

Consider the (i, j)-th element of the fundamental matrix S

 \rightarrow It holds the expected number of visits to j, from i

 \rightsquigarrow (Both *i* and *j* are transient)

By definition, we have

$$S = \sum_{n=0}^{\infty} T^n = I + T + T^2 + \cdots$$

Thus, we have

$$S - I = T + T^2 + T^3 + \dots = TS$$
 (2)

Hence.

Furthermore, it can be shown that S satisfies S(I-T)=I

UFC/DC SA (CK0191) 2018.1

Potential and fundamental matrices

Potential and fundamental matrices (cont.)

Consider the original series $ST = TS = T + T^2 + T^3 + \cdots$

• (Without identity matrix)

 T^n gives n-step transition probabilities from/to transient states

- Suppose that the number of transient states is finite
- Matrices T^n must ultimately tend to zero

The chain cannot escape leaving the set of transient states

• At some point, it will enter a recurrent state

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Potential and fundamental matrices

Potential and fundamental matrices (cont.)

If the number of states is not finite, we have

$$(I-T)X = I, X \ge 0$$

Matrix S is the minimal non-negative solution to the system

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Potential and fundamental matrices

Potential and fundamental matrices (cont.)

Thus, in the limit $n \to \infty$, we have that $T^n \to 0$

• Thus, series $I + T + T^2 + \cdots$ converges

Consider rewriting the expansion

$$T = (\underbrace{I + T + T^2 + \cdots}_{S})(I - T)$$

We have, the fundamental matrix S

$$S = \sum_{k=0}^{\infty} T^k = I + T + T^2 + \dots = (I - T)^{-1}$$

The non-singularity of (I - T) is required to compute S

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Potential and fundamental matrices

Potential and fundamental matrices (cont.)

Consider the transition probability matrix of a discrete-time Markov chain

$$P = \begin{pmatrix} 0.4 & 0.2 & 0.0 & 0.2 & 0.0 & 0 & 0.0 & 0.2 \\ 0.3 & 0.3 & 0.0 & 0.0 & 0.1 & 0 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.3 & 0.1 & 0 & 0.5 & 0.0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.9 \end{pmatrix}$$

Interest in the potential matrix R and in the fundamental matrix S

- State 1, 2 and 3 are transient
- State 4 and 5 define an irreducible set
- State 6 is an absorbing state
- State 7 and 8 define an irreducible set

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

Reachability matrix

Distributions

Potential and fundamental matrices (cont.)

$$P = \begin{pmatrix} 0.4 & 0.2 & 0.0 & 0.2 & 0.0 & 0 & 0.0 & 0.2 \\ 0.3 & 0.3 & 0.0 & 0.0 & 0.1 & 0 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.3 & 0.1 & 0 & 0.5 & 0.0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.9 \end{pmatrix}$$

- State 1, 2 and 3 are transient
- \bullet State 4 and 5 define an irreducible set
- State 6 is an absorbing state
- State 7 and 8 define an irreducible set

Consider row 4-8 of matrix R

All its elements are zero, except for the elements in diagonal blocks

- Transitions among recurrent states of the same closed class
- They are all set to be equal to infinity

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

Reachability matrix

Distribution

Potential and fundamental matrices (cont.)

$$P = \begin{pmatrix} 0.4 & 0.2 & 0.0 & 0.2 & 0.0 & 0 & 0.0 & 0.2 \\ 0.3 & 0.3 & 0.0 & 0.0 & 0.1 & 0 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.3 & 0.1 & 0 & 0.5 & 0.0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.9 \\ \end{pmatrix}$$

- State 1, 2 and 3 are transient
- State 4 and 5 define an irreducible set
- State 6 is an absorbing state
- State 7 and 8 define an irreducible set

Consider all the elements of R that are in column 6

There is no path from any transient state to absorbing

• They must be equal to zero

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importan

Potential and fundamental matrices

Potential and fundamental matrices (cont.)

$$P = \begin{pmatrix} 0.4 & 0.2 & 0.0 & 0.2 & 0.0 & 0 & 0.0 & 0.2 \\ 0.3 & 0.3 & 0.0 & 0.0 & 0.1 & 0 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.3 & 0.1 & 0 & 0.5 & 0.0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.9 \end{pmatrix}$$

- State 1, 2 and 3 are transient
- State 4 and 5 define an irreducible set
- State 6 is an absorbing state
- State 7 and 8 define an irreducible set

Consider row 1-3 of matrix R

All its elements in positions 4, 5, 7 and 8 are equal to infinity

The chain will eventually transition from states 1-3

- Destination 4 and 5, irreducible subset
- Destination 7 and 8, irreducible subset

The process will remain there

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

eachability matrix

Distribution

Potential and fundamental matrices (cont.)

Consider the fundamental matrix $S = (I - T)^{-1}$

We have,

$$T = \begin{pmatrix} 0.4 & 0.2 & 0 \\ 0.3 & 0.3 & 0 \\ 0 & 0 & 0.1 \end{pmatrix}$$

Moreover,

$$(I-T) = \begin{pmatrix} 0.6 & -0.2 & 0 \\ -0.3 & 0.7 & 0 \\ 0 & 0 & 0.9 \end{pmatrix}$$

Thus

$$S = (I - T)^{-1} = \begin{pmatrix} 1.94 & 0.56 & 0 \\ 0.83 & 1.67 & 0 \\ 0 & 0 & 1.11 \end{pmatrix}$$

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental matrices

Reachability matrix

Distributions

Potential and fundamental matrices (cont.)

Therefore, we can complete the potential matrix R

$$R = \begin{pmatrix} 1.94 & 0.56 & 0 & \infty & \infty & 0 & \infty & \infty \\ 0.83 & 1.67 & 0 & \infty & \infty & 0 & \infty & \infty \\ 0 & 0 & 1.11 & \infty & \infty & 0 & \infty & \infty \\ 0 & 0 & 0 & \infty & \infty & 0 & 0 & 0 \\ 0 & 0 & 0 & \infty & \infty & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \infty & \infty & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \infty & \infty & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \infty & \infty & \infty \\ 0 & 0 & 0 & 0 & 0 & 0 & \infty & \infty & \infty \end{pmatrix}$$

Element (i, j) is the expected number of visits to state j

 \bullet Given that the process stated from state i

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

Reachability matrix

Distributions

Potential and fundamental matrices (cont.)

Consider the element (i, j) of the fundamental matrix S

$$S = (I - T)^{-1} = \begin{pmatrix} 1.94 & 0.56 & 0.0 \\ 0.83 & 1.67 & 0.0 \\ 0.0 & 0.0 & 1.11 \end{pmatrix}$$

Number of visits to transient state i, from transient state i

Consider the sum of all the elements in row i of matrix S

- Mean number of steps from i before absorption
- The *i*-th element of vector *Se*

The variance of the total time to absorption, from i

$$(2S-I)Se - \operatorname{sq}(Se)$$

 $\operatorname{Sq}(Se)$ is a vector whose *i*-th element is $(Se)_i$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental matrices

Reachability matrix

Distributions

Potential and fundamental matrices (cont.)

Let N_{ij} be the RV defining the total number of visits to j (transient)

• Given that the process stated from state i

Let N be the matrix with those elements, we have

$$\langle N_{ij} \rangle = s_{ij}, \quad \rightsquigarrow \quad \langle N \rangle = S$$

Moreover, we have

$$\langle N^2 \rangle = S \left[2 \operatorname{diag}(S) - I \right]$$

And.

$$Var(N) = \langle N^2 \rangle - \langle N \rangle^2 = S[2diag(S) - I] - sq(S)$$

 $\operatorname{sq}(S)$ is a matrix whose (i,j)-th element is $(s_{ij} \times s_{ij})$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

Reachability matrix

Distribution

Potential and fundamental matrices (cont.)

Theorem

Consider a discrete-time chain with a finite number of transient states

Let the transition probability matrix P

$$P = \begin{pmatrix} T & U \\ 0 & V \end{pmatrix} \tag{3}$$

Assume that the Markov chain begin at some transient state i

- \rightarrow The mean number of times the chain visits transient state j is given by the (i,j)-th element of matrix $S=(I-T)^{-1}$
- \rightarrow The variance of the number of times the chain visits transit state j is given by the (i, j)-th element of matrix S[2diag(S) I] sq(S)
- The mean time to absorption (average number of steps among transient states before visiting a recurrent state) is given by the *i*-th element of vector $Se = (I T)^{-1}e$
- \leadsto The variance of the time to absorption is given by the *i*-th element of vector (2S-I)Se-sq(Se)

UFC/DC SA (CK0191) 2018.1

Important matrices Potential and fundamental

matrices

Distributions

Potential and fundamental matrices (cont.)

Suppose that the Markov chain starts from state i with probability α_i

 $\rightarrow \alpha$ is the vector of initial probabilities

The results must be modified accordingly

- αS is a vector whose j-th component gives the mean number of visits to state j before absorption, $\alpha S \left[2 \operatorname{diag}(S) I \right] \operatorname{sq}(\alpha S)$ is the variance
- $\sim \alpha Se$ is a real number that gives the expected number of steps before absorption, $\alpha(2S-I)Se-(\alpha Se)^2$ is the variance

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importan

Potential and fundamental matrices

-

Potential and fundamental matrices (cont.)

The variance can be computed

$$\frac{1}{(1-p_{11})} \left(\frac{2}{1-P_{11}} - 1\right) - \left(\frac{1}{1-p_{11}}\right)^{2}$$

$$= \frac{2}{(1-p_{11})^{2}} - \frac{1}{(1-p_{11})} - \frac{1}{(1-p_{11})^{2}}$$

$$= \frac{1}{(1-p+11)^{2}} - \frac{1}{1-p_{11}} = \frac{p_{11}}{(1-p_{11})^{2}}$$

We derived these results earlier

 \leadsto Holding time

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices Potential and fundamental

matrices

Distributions

Potential and fundamental matrices (cont.)

The sub-matrix T (usually) represents the subset of transient states

• Yet, the theorem holds, regardless

We can use this theorem to investigate non-absorbing state i

- We can let T be the single element p_{ii}
- Say, i = 1 (p_{11} strictly smaller than 1)

As a result, matrix S consists also of a single element $1/(1-p_{ii})$

- Average number of steps the chain remains in i = 1
- (It is a non-absorbing state)

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

Reachability matrix

Distributio

Potential and fundamental matrices (cont.)

Example

Consider the transition probability matrix of a discrete-time Markov chain

$$P = \begin{pmatrix} 0.4 & 0.2 & 0.0 & 0.2 & 0.0 & 0 & 0.0 & 0.2 \\ 0.3 & 0.3 & 0.0 & 0.0 & 0.1 & 0 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.3 & 0.1 & 0 & 0.5 & 0.0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.9 \end{pmatrix}$$

The fundamental matrix $S = (I - T)^{-1}$

$$S = (I - T)^{-1} = \begin{pmatrix} 1.94 & 0.56 & 0.0 \\ 0.83 & 1.67 & 0.0 \\ 0.0 & 0.0 & 1.11 \end{pmatrix}$$

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

Reachability matrix

Distributions

Potential and fundamental matrices (cont.)

The mean time to absorption, when starting from state i = 1, 2, 3

$$Se = (I - T)^{-1}e = \begin{pmatrix} 1.94 & 0.56 & 0.0 \\ 0.83 & 1.67 & 0.0 \\ 0.0 & 0.0 & 1.11 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2.5 \\ 2.5 \\ 1.11 \end{pmatrix}$$

The variance of the number of times the chain visits j starting from i

$$\begin{split} S[2\mathrm{diag}(S)-I] &- \mathrm{sq}(S) \\ &= \begin{pmatrix} 1.94 & 0.56 & 0 \\ 0.83 & 1.67 & 0 \\ 0 & 0 & 1.11 \end{pmatrix} \begin{pmatrix} 2.89 & 0 & 0 \\ 0 & 2.33 & 0 \\ 0 & 0 & 1.22 \end{pmatrix} - \begin{pmatrix} 3.78 & 0.31 & 0 \\ 0.69 & 2.78 & 0 \\ 0 & 0 & 1.23 \end{pmatrix} \\ &= \begin{pmatrix} 1.83 & 0.98 & 0 \\ 1.71 & 1.11 & 0 \\ 0 & 0 & 1.23 \end{pmatrix} \end{split}$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportan

Potential ar fundamenta

Reachability matrix

Nistribution

Reachability matrix

Important matrices

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental matrices

Distributions

Potential and fundamental matrices (cont.)

The variance of the total time to absorption from i

$$[2S - I](Se) - \operatorname{sq}(Se)$$

$$= \begin{pmatrix} 2.89 & 1.11 & 0 \\ 1.67 & 2.33 & 0 \\ 0 & 0 & 1.22 \end{pmatrix} \begin{pmatrix} 2.5 \\ 2.5 \\ 1.11 \end{pmatrix} - \begin{pmatrix} 6.25 \\ 6.25 \\ 1.23 \end{pmatrix} = \begin{pmatrix} 3.75 \\ 3.75 \\ 0.23 \end{pmatrix}$$

Discrete-time Markov chains

> UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distribution

Reachability matrix

We discuss the computation of the elements of the reachability matrix F

Consider the (i, j)-th element of the reachability matrix F

• The probability of ever reaching j from i, f_{ij}

We shall split elements f_{ij} into categories

• Based on initial and final states

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

State i and state j are recurrent and belong to the same closed communicating class

$$\rightsquigarrow f_{ij} = 1$$

State i and state j are recurrent and belong to the same closed communicating class

$$\leadsto$$
 $f_{ij}=0$

State i is recurrent and state j is transient

$$\rightsquigarrow f_{ij} = 0$$

State i and state j are both transient

$$\rightsquigarrow f_{ij} < 1$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

Let H denote the upper left corner of the reachability matrix F

• (Transient states to transient states only)

In matrix notation,

$$\rightarrow$$
 $S = I + H[\operatorname{diag}(S)]$

Alternatively,

$$\rightarrow$$
 $H = (S - I) \left[\operatorname{diag}(S) \right]^{-1}$ (4)

The inverse must exist, as $s_{ii} > 0$, for all i

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential s fundament matrices

Reachability matrix

Distributions

Reachability matrix (cont.)

State i and state j are both transient $(f_{ij} < 1)$

Expected number of hits to transient state i from transient i

$$ightharpoonup s_{ij} = \sum_{n=0}^{\infty} p_{ij}^{(n)} = \sum_{n=0}^{\infty} \sum_{l=1}^{n-1} f_{ij}^{(l)} p_{jj}^{(n-l)}$$

For any finite number of states

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)} = \sum_{n=1}^{\infty} \left[p_{ij}^{(n)} - \sum_{l=1}^{n-1} f_{ij}^{(n)} p_{jj}^{(n-l)} \right]$$

Thus,

$$\rightarrow$$
 $s_{ij} = 1_{[i=j]} + f_{ij} s_{j}$

 $1_{[i=j]}$ is equal to one if i=j, zero otherwise

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importa

Potential and fundamental

Reachability matrix

Distributio

Reachability matrix (cont.)

We may write the elements of S in terms of the elements of H

$$\Rightarrow \quad s_{ii} = \frac{1}{1 - h_{ii}}$$

$$\Rightarrow \quad s_{ij} = h_{ij} s_{jj}, \quad (\text{for } i \neq j)$$

Alternatively,

UFC/DC SA (CK0191) 2018.1

Important matrices

fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

State i and state j are both transient $(f_{ij} < 1)$

Probability of visiting state j a fixed number of times

• (Assuming a starting state i)

Consider visiting j a number k > 0 times

We must have,

- Transitions $i \to j$ at least once (occurs with probability h_{ij})
- **2** Returns from j to j, (k-1) times (probability h_{ij}^{k-1})
- **3** No returns j to j again (probability $1 h_{jj}$)

In matrix terms,

$$\rightarrow$$
 $H \times \operatorname{diag}(H)^{k-1} \times [I - \operatorname{diag}(H)]$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportan

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

State i and state j are both transient $(f_{ij} < 1)$

Mean number of different transient states before absorption

• (Into some recurrent class, from some transient state i)

It is the sum of probabilities of visiting the different transient states

- The probability of ever hitting state j from i is h_{ij}
- The probability of ever visiting i from i is one

The mean number of transient states visited before absorption

$$\rightarrow 1 + \sum_{j \neq i} h_{ij}$$

The sum across row i of $(H - \operatorname{diag}(H) + I)$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Reachability matrix

Distributions

Reachability matrix (cont.)

$$H \times \operatorname{diag}(H)^{k-1} \times [I - \operatorname{diag}(H)]$$

Using $H = (S - I)[\operatorname{diag}(S)]^{-1}$ and observing that $\operatorname{diag}(H) = I - [\operatorname{diag}(S)]^{-1}$

$$\rightsquigarrow$$
 $(S-I)[\operatorname{diag}(S)]^{-1} \times [\operatorname{diag}(S)]^{-1} \times (I-[\operatorname{diag}(S)]^{-1})^{k-1}$

The probability state j is visited zero times, starting from state i

• Zero if i = j, and $(1 - h_{ij})$ if $i \neq j$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental

Reachability matrix

Distributio

Reachability matrix (cont.)

In terms of the fundamental matrix S

$$\begin{split} \left[H - \mathrm{diag}(H) + I\right] e &= \left[H + (I - \mathrm{diag}(H))\right] e \\ &= \left((S - I)\left[\mathrm{diag}(S)\right]^{-1} + (I - (I - \left[\mathrm{diag}(S)\right]^{-1})\right) e \\ &= \left((S - I)\left[\mathrm{diag}(S)\right]^{-1} + \left[\mathrm{diag}(S)\right]^{-1}\right) e \\ &= S\left[\mathrm{diag}(S)\right]^{-1} e \end{split}$$

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

State i is transient and state j is recurrent

Suppose that some recurrent state j can be reached from transient state i

Then, all states in C(j) can be reached from i, with same probability

• C(i) is the recurrent class containing state i

$$\rightarrow f_{ik} = f_{ij}$$
, for all $k \in C(i)$

They are called absorption probabilities

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

Reachability matrix

Distributions

Reachability matrix(cont.)

We obtain

$$\Rightarrow \quad \overline{P} = \begin{pmatrix} T_{11} & t_2 & t_3 & \cdots & t_N \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

This process is denoted as absorbing chain

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

matrices Reachability matrix

Distributions

Reachability matrix (cont.)

Combine all states in an irreducible recurrent set into an absorbing state

• Compute the probability of entering this state from transient i

Assume a state arrangement in normal form

$$P = \begin{pmatrix} T_{11} & T_{12} & T_{13} & \cdots & T_{1N} \\ 0 & R_2 & 0 & \cdots & 0 \\ 0 & 0 & R_3 & \cdots & 0 \\ \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & R_N \end{pmatrix}$$

Replace each block R_k with 1 (an absorbing state)

Block T_{1k} is replaced by vector t_k

• Sum over row T_{ik} , $t_k = T_{1k} e$

Block T_{11} is kept unchanged

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental

Reachability matrix

Distributio

Reachability matrix(cont.)

Example

Consider the transition matrix P of a discrete-state Markov chain

$$P = \begin{pmatrix} 0.4 & 0.2 & 0.0 & 0.2 & 0.0 & 0 & 0.0 & 0.2 \\ 0.3 & 0.3 & 0.0 & 0.0 & 0.1 & 0 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.3 & 0.1 & 0 & 0.5 & 0.0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.9 \\ \end{pmatrix}$$

The transition matrix \overline{P} of the absorbing chain

$$P = \begin{pmatrix} 0.4 & 0.2 & 0 & 0.2 & 0 & 0.2 \\ 0.3 & 0.3 & 0 & 0.1 & 0 & 0.3 \\ 0 & 0 & 0.1 & 0.4 & 0 & 0.5 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

$$\overline{P} = egin{pmatrix} T_{11} & t_2 & t_3 & \cdots & t_N \ 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ \cdots & \vdots & \vdots & \ddots & \vdots \ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

We simplify the notation and re-write the absorbing chain

$$\rightsquigarrow \quad \overline{P} = \begin{pmatrix} T & B \\ 0 & I \end{pmatrix}$$

The higher-order powers of \overline{P}

$$\longrightarrow \overline{P}^n = \begin{pmatrix} T^n & (I+T+\cdots+T^{n-1})B \\ 0 & I \end{pmatrix} = \begin{pmatrix} T^n & B_n \\ 0 & I \end{pmatrix}$$

We can compute the absorption probabilities

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importar

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

Matrix $A = \lim_{n \to \infty} B_n$ is called absorption probability matrix

Suppose that the number of transient states is finite

We can obtain A from the fundamental matrix S

$$A = \lim_{n \to \infty} B_n = \lim_{n \to \infty} (I + T + \dots + T^{n-1})B$$
$$= \left(\sum_{k=0}^{\infty} T^k\right)B = (I - T)^{-1}B = SB$$

The (i, j)-th element, probability of ever reaching j-th recurrent class

• Starting from transient state i

For every state k in this class, we have that $f_{ik} = a_{ij}$

• We get them all from the inner product SB

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential s fundament matrices

Reachability matrix

Distributions

Reachability matrix (cont.)

$$\overline{P}^n = \begin{pmatrix} T^n & (I+T+\dots+T^{n-1})B \\ 0 & I \end{pmatrix} = \begin{pmatrix} T^n & B_n \\ 0 & I \end{pmatrix}$$

The probability of entering the j-th irreducible recurrent class n steps after starting from transient state i is given by element (i, j) of matrix B_n

- \rightarrow States of the first recurrent class, transitions associated to block R_2
- \leadsto States of the second recurrent class, transitions associated to block R_3

~→ · · ·

The probability of ever being absorbed from state i into the j-th recurrent

• The (i,j)-th element of matrix $A = \lim_{n \to \infty} B_n$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

lmportan matrices

Potential and fundamental

Reachability matrix

Distribution

Reachability matrix (cont.)

Consider the following absorption probability matrix A

$$\overline{A} = \begin{pmatrix} 0 & A \\ 0 & I \end{pmatrix}$$

Then.

$$\Rightarrow \quad \overline{P} \, \overline{A} = \begin{pmatrix} T & B \\ 0 & I \end{pmatrix} \begin{pmatrix} 0 & A \\ 0 & I \end{pmatrix} = \begin{pmatrix} 0 & A \\ 0 & I \end{pmatrix} = \overline{A}$$

Since.

$$TA + B = TSB + B = (S - I)B + B = SB = A$$

We used A = SB and TS = (S - I)

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

Let a column of matrix \overline{A} to be the vector $\overline{\alpha}$

We have,

$$\overline{P} \ \overline{\alpha} = \overline{\alpha}$$

 $\overline{\alpha}$ is the right eigenvector associated to a unit eigenvalue of \overline{P}

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

We can compute the first 3×3 block by using $H = (S - I)[\operatorname{diag}(S)]^{-1}$

$$H = F_{3\times3} = (S - I) \left[\operatorname{diag}(S) \right]^{-1}$$

$$= \begin{pmatrix} 0.9444 & 0.5556 & 0.0 \\ 0.8333 & 0.6667 & 0.0 \\ 0.0 & 0.0 & 0.11111 \end{pmatrix} \begin{pmatrix} 1.9444 & 0.0 & 0.0 \\ 0.0 & 1.6667 & 0.0 \\ 0.0 & 0.0 & 1.1111 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 0.4857 & 0.3333 & 0.0 \\ 0.4286 & 0.4000 & 0.0 \\ 0.0 & 0.0 & 0.1 \end{pmatrix}$$

We still need to find the absorption probabilities

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

fundamental matrices Reachability matrix

istributions

Reachability matrix (cont.)

Example

Consider the transition matrix P of a discrete-state Markov chain

$$P = \begin{pmatrix} 0.4 & 0.2 & 0.0 & 0.2 & 0.0 & 0 & 0.0 & 0.2 \\ 0.3 & 0.3 & 0.0 & 0.0 & 0.1 & 0 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.3 & 0.1 & 0 & 0.5 & 0.0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.9 \end{pmatrix}$$

We are interested in the first-return matrix F

We can directly determine the elements of rows 4 to 8

- One inside diagonal blocks
- Zero elsewhere

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant

Potential and fundamental

Reachability matrix

Distributio

Reachability matrix (cont.)

We have,

$$A = \lim_{n \to \infty} B_n = (I - T)^{-1}B = SB$$

$$= \begin{pmatrix} 0.6 & -0.2 & 0.0 \\ -0.3 & 0.7 & 0.0 \\ 0.0 & 0.0 & 0.9 \end{pmatrix}^{-1} \begin{pmatrix} 0.2 & 0.0 & 0.2 \\ 0.1 & 0.0 & 0.3 \\ 0.4 & 0.0 & 0.5 \end{pmatrix}$$

$$= \begin{pmatrix} 0.4444 & 0.0 & 0.5556 \\ 0.3333 & 0.0 & 0.6667 \\ 0.4444 & 0.0 & 0.5556 \end{pmatrix}$$

Element (i, j) is the probability of being absorbed into the j-th class

• Starting from transient state i

(The sum of absorption probabilities is 1, for each state)

UFC/DC SA (CK0191) 2018.1

Important matrices

Reachability matrix

Distributions

Reachability matrix (cont.)

The complete matrix F

$$F = \begin{pmatrix} 0.4857 & 0.3333 & 0 & 0.4444 & 0.4444 & 0 & 0.5556 & 0.5556 \\ 0.4286 & 0.4 & 0 & 0.3333 & 0.3333 & 0 & 0.6667 & 0.6667 \\ 0 & 0 & 0.1 & 0.4444 & 0.4444 & 0 & 0.5556 & 0.5556 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

Consider a finite irreducible Markov chain

We wish to compute the probability of reaching state i before state j

• Starting from any other state k $(i \neq j \neq k)$

This can be achieved by splitting states i and j from the other states

- We construct the fundamental matrix of the remainder
- (All states become transient states)

We can then compute the probability that starting in a non-absorbing state k, the chain visits an absorbing state i before it visits an absorbing state j

The set of all states other than i and j forms an open set

• States i and j can be turned into absorbing states

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant natrices

Potential an fundamental matrices

Reachability matrix

Distribution

Reachability matrix (cont.)

The results refer to Markov chains with both transient and recurrent states

Transition from transient states to one or more close communicating classes

• (Transition probabilities)

We can use sich results for chains without transient states

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

Assume there is a total of n states with some specific ordering

- 1. Set of (n-2) states not including i or j but including k
- 2. State i
- 3. State j

 \rightarrow The probability that *i* is visited before *j*

The elements of the vector as product of matrix S and a vector v_{n-1} whose components are the first (n-2) elements of column (n-1) of matrix P

- The elements that set the conditional probabilities of entering state i
- Given that the Markov chain is in state $k, k = 1, 2, \dots, (n-2)$

 \rightarrow The probability that j is visited before i

The elements of the vector as product of matrix S and a vector v_n whose components are the first (n-2) elements of the last column of matrix P

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

$\operatorname{Example}$

Consider the transition probability matrix of a six-state Markov chain

$$P = \begin{pmatrix} 0.25 & 0.25 & 0 & 0 & 0.5 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 0.5 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 0.50 & 0.5 \end{pmatrix}$$

We have,

$$S = \begin{pmatrix} 0.75 & -0.25 & 0 & 0 \\ 0.50 & 1 & -0.5 & 0 \\ 0 & -0.50 & 1 & -0.5 \\ 0 & 0 & -0.5 & 1 \end{pmatrix}^{-1} = 2/9 \begin{pmatrix} 8 & 3 & 2 & 1 \\ 6 & 9 & 6 & 3 \\ 4 & 6 & 10 & 5 \\ 2 & 3 & 5 & 7 \end{pmatrix}$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant

Potential and fundamental

Reachability matrix

Distributions

Reachability matrix (cont.)

Consider combining v_5 and v_6 into a single 4×2

 \leadsto We obtain what we called matrix B

We are computing matrix SB = A of absorption probabilities

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Reachability matrix

Distributions

Reachability matrix (cont.)

We have

$$v_5 = (0.5, 0.0, 0.0, 0.0)^T$$

 $v_6 = (0.0, 0.0, 0.0, 0.5)^T$

From this we obtain,

$$Sv_5 = (0.8889, 0.6667, 0.4444, 0.2222)^T$$

 $Sv_6 = (0.1111, 0.3333, 0.5556, 0.7778)^T$

The probability that state i = 5 is reached before state j = 6 is 0.8889

• Given initial state k=1

The probability that state j is reached before state i is 0.1111

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importan

Potential and fundamental

Reachability matrix

Distributions

Distributions

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions

We study the probability distributions defined on the states of a chain

We consider the homogeneous discrete-time Markov chains

Focus on the probability that the chain is in some state at some step

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

In matrix notation, we have

$$\rightarrow \quad \pi(n) = \pi(0)P^{(n)} = \pi(0)P^n$$

 $\rightarrow \pi(0)$ denotes the initial state distribution

 $\rightarrow P^{(n)} = P^n$, as the chain is homogeneous

The distribution $\pi(n)$ is referred to as **transient distribution** of the chain

- It gives the probability of the process states at a particular time n
- It is transient, as it is dropped as the chain goes to step n+1

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

Let $\pi_i(n)$ be the probability that the chain is in state i at time n

$$\rightarrow \pi_i(n) = \text{Prob}\{X_n = i\}$$

 \rightsquigarrow Vector π is a row-vector of probabilities

$$\rightarrow \pi(n) = [\pi_1(n), \pi_2(n), \dots, \pi_i(n), \dots]$$

State probabilities at time n are derived from transition matrices

• Given the initial probability distribution at time 0, $\pi(0)$

Using the laws of probability, we get

$$\pi_{i}(n) = \sum_{\text{all } k} \text{Prob}\{X_{n} = i | X_{0} = k\} \pi_{k}(0)$$

$$= \sum_{i \in I} p_{ki}^{(n)} \pi_{k}(0)$$
(5a)
(5b)

$$=\sum_{\text{all }k}p_{ki}^{(n)}\pi_k(0) \tag{5b}$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

We now consider three state distributions

- → Limiting distributions
- → Stationary distributions
- → Steady-state distributions

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

D -- -b - b : 1:4-- -- - 4--i--

Distributions

Stationary distribution

Distributions (cont.)

Let P be the transition probability matrix of a discrete-time Markov chain

Let vector $z \in \mathcal{R}$ of elements z_j indicate the probability of states j

$$0 \le z_j \le 1$$
$$\sum_{i \in J} z_j = 1$$

z is said to be a stationary distribution if and only if zP = z

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant

Potential and fundamental

Reachability matr

Distributions

Distributions (cont.)

This distribution resembles vector z = zP (introduced for irreducible chains)

- \rightarrow The components of that vector z must be strictly positive
- → Its existence implies that the states are positive-recurrent

Any non-zero vector that satisfies z = Pz is called an invariant vector

• Its elements are not necessarily probabilities are

It can be any left-hand eigenvector associated to a unit eigenvalue of ${\cal P}$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

fundamental matrices

Distributions

Distributions (cont.)

$$z = zP = zP^2 = \ldots = zP^n = \ldots$$

Suppose that z is chosen to be the initial probability distribution

$$\rightsquigarrow \pi_j(0) = z_j \text{ (for all } j)$$

Then, we have,

$$ightsquigarrow \pi_j(n) = z_j \; ext{(for all } n)$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importa

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Example

Let P be the transition matrix of a discrete-time Markov chain

$$P = \begin{pmatrix} 0.4 & 0.6 & 0 & 0 \\ 0.6 & 0.4 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{pmatrix}$$

Consider the following distributions

$$z = (1/2, 1/2, 0, 0)$$

$$z = (0, 0, 1/2, 1/2)$$

$$z = (\alpha/2, \alpha/2, (1-\alpha)/2, (1-\alpha)/2)$$
 [for $0 \ge \alpha \ge 1$]

Are these distributions stationary distributions?

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Each of these distributions satisfy z = Pz and are stationary distributions

$$z = zP$$

$$(1/2, 1/2, 0, 0) = \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \\ 0 \end{pmatrix}^{T} \begin{pmatrix} 0.4 & 0.6 & 0 & 0 \\ 0.6 & 0.4 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{pmatrix}$$

$$(0,0,1/2,1/2) = \begin{pmatrix} 0 \\ 0 \\ 1/2 \\ 1/2 \end{pmatrix}^{T} \begin{pmatrix} 0.4 & 0.6 & 0 & 0 \\ 0.6 & 0.4 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{pmatrix}$$

$$(\alpha/2, \alpha/2, (1-\alpha)/2, (1-\alpha)/2) = \begin{pmatrix} \alpha/2 \\ \alpha/2 \\ (1-\alpha)/2 \\ (1-\alpha)/2 \end{pmatrix}^T \begin{pmatrix} 0.4 & 0.6 & 0 & 0 \\ 0.6 & 0.4 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{pmatrix}$$

[for $0 \ge \alpha \ge 1$]

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant

Potential and fundamental

Reachability matrix
Distributions

Distributions (cont.)

Discrete-time Markov chain often have a unique stationary distribution

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential an

Reachability matrix

Distributions

Distributions (cont.)

Also vector (1, 1, -1, 1) is an invariant vector

$$z = zF$$

$$(1,1,-1,-1) = \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}^T \begin{pmatrix} 0.4 & 0.6 & 0 & 0\\0.6 & 0.4 & 0 & 0\\0 & 0 & 0.5 & 0.5\\0 & 0 & 0.5 & 0.5 \end{pmatrix}$$

But, it is not a stationary distribution

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importai

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Example

Let P be the transition matrix of a discrete-time Markov chain

$$P = \begin{pmatrix} 0.45 & 0.50 & 0.05 \\ 0.15 & 0.65 & 0.20 \\ 0.00 & 0.50 & 0.50 \end{pmatrix}$$

We are interested in the stationary distribution of this process

z = Pz defines the homogeneous systems of equations z(P - I) = 0

 \rightarrow The system must have a singular coefficient matrix (P-I)

 \rightarrow Otherwise, z = 0

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

$$0 = z(P - I) = (z_1, z_2, z_3) \begin{bmatrix} \begin{pmatrix} 0.45 & 0.50 & 0.05 \\ 0.15 & 0.65 & 0.20 \\ 0.00 & 0.50 & 0.50 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{bmatrix}$$

The singular coefficient matrix gives two linearly independent equations

$$z_1 = 0.45z_1 + 0.15z_2$$

$$z_2 = 0.50z_1 + 0.65z_2 + 0.50z_3$$

(They are the first two equations out of three possible ones)

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importan

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Normalisation converts the system of equations with singular coefficient matrix into another one with non-singular coefficient matrix and non-zero RHS

$$(z_1, z_2, z_3) \begin{pmatrix} -0.55 & 0.50 & 1\\ 0.15 & -0.35 & 1\\ 0.00 & 0.50 & 1 \end{pmatrix} = (0, 0, 1)$$

The third equation has been replaced by the normalisation equation

The resulting system has a unique, non-zero solution

→ The stationary distribution of the chain

$$zP = (0.160, 0.588, 0.250) \begin{pmatrix} 0.45 & 0.50 & 0.05 \\ 0.15 & 0.65 & 0.20 \\ 0.00 & 0.50 & 0.50 \end{pmatrix}$$
$$= (0.160, 0.588, 0.250)$$
$$= z$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential a fundament matrices

Reachability matri

Distributions

Distributions (cont.)

$$z_1 = 0.45z_1 + 0.15z_2$$

$$z_2 = 0.50z_1 + 0.65z_2 + 0.50z_3$$

Let (momentarily) $z_1 = 1$, we have

$$z_2 = 0.55/0.15 = 3.\overline{6}$$

Substitute z_1 and z_2 into the second equation

We get,

$$z_3 = 2[-0.5 + 0.35(0.55/0.15)] = 1.5\overline{6}$$

Thus, the computed solution is $(1, 3.\overline{6}, 1.5\overline{6})$

- It must be normalised to sum to 1
- We divide it by $z_1 + z_2 + z_3$

$$\rightarrow z \approx (0.160, 0.588, 0.250)$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

[mportan

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Finite and irreducible Markov chains have a unique stationary distribution

- No proper subset of states that is closed
- That is, no absorbing states

We replaced one of the equations in z(P-I)=0 by the closure

- A non-singular coefficient matrix and non-zero RHS
- → The resulting solution is therefore unique

UFC/DC SA (CK0191) 2018.1

Important

fundamental matrices

Reachability mat:

Distributions

Distributions (cont.)

We now study the existence of $\lim_{n\to\infty} \pi(n) = \lim_{n\to\infty} \pi(0) P^{(n)}$

• For some selected initial probability distribution $\pi(0)$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matr

Distributions

Distributions (cont.)

Let the states of the chain be positive recurrent and aperiodic (ergodic)

- → In this case, the limiting distribution always exists
- → Moreover, it is unique

The result also holds for finite, irreducible and aperiodic chains

→ (As the first two properties imply positive recurrence)

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

fundamental matrices

Reachability matri

Distributions

Distributions (cont.)

Definition

Limiting distribution

Let P be the transition probability matrix of a discrete-time Markov chain

Let $\pi(0)$ be an initial probability distribution

Suppose the existence of the limit

$$\lim_{n \to \infty} P^{(n)} = \lim_{n \to \infty} P^n$$

Then, it also exists the probability distribution π

$$\pi = \lim_{n \to \infty} \pi(n) = \lim_{n \to \infty} \pi(0) P^{(n)} = \pi(0) \lim_{n \to \infty} P^{(n)} = \pi(0) \lim_{n \to \infty} P^n$$

This distribution is called the *limiting distribution* of the Markov chain

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Example

Let P be the transition matrix of a discrete-time Markov chain

$$P = \begin{pmatrix} 0.8 & 0.15 & 0.05 \\ 0.70 & 0.20 & 0.10 \\ 0.50 & 0.30 & 0.20 \end{pmatrix}$$

We have already computed $\lim_{n\to\infty} P^{(n)} = \lim_{n\to\infty} P^n$

$$\lim_{n \to \infty} P^n = \begin{pmatrix} 0.7625 & 0.16875 & 0.06875 \\ 0.7625 & 0.16875 & 0.06875 \\ 0.7625 & 0.16875 & 0.06875 \end{pmatrix}$$

The elements in a probability vector are in the interval $\left[0,1\right]$ and sum to 1

Multiply $\lim_{n\to\infty} P^n$ by any probability vector to get

$$\rightarrow \pi = (0.7625, 0.16875, 0.06875)$$

This is the limiting distribution of the chain

UFC/DC SA (CK0191) 2018.1

Important matrices

matrices

Distributions

Distributions (cont.)

Limiting distribution may exist when the transition matrix is reducible

• All the states need be positive recurrent

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matr

Distributions

Distributions (cont.)

Consider the following (initial) probability vectors

$$\begin{array}{l} \rightsquigarrow (1,0,0,0) \\ \rightsquigarrow (0,0,0.5,0.5) \\ \rightsquigarrow (\alpha,1-\alpha,0,0), \ (\text{for } 0 \leq \alpha \leq 1) \\ \rightsquigarrow (0.375,0.375,0.125,0.125) \end{array}$$

All satisfy the necessary conditions for a limiting probability distribution

$$(1,0,0,0) \lim_{n \to \infty} P^{(n)} = (0.5,0.5,0,0)$$

$$(0,0,0.5,0.5) \lim_{n \to \infty} P^{(n)} = (0,0,0.5,0.5)$$

$$(\alpha,1-\alpha,0,0) \lim_{n \to \infty} P^{(n)} = (0.5,0.5,0,0), \text{ (for } 0 \le \alpha \le 1)$$

$$(0.375,0.375,0.125,0.125) \lim_{n \to \infty} P^{(n)} = (0.375,0.375,0.125,0.125)$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant natrices

matrices

Distributions

Distributions (cont.)

Example

Let P be the transition matrix of a discrete-time Markov chain

$$P = \begin{pmatrix} 0.4 & 0.6 & 0 & 0 \\ 0.6 & 0.4 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{pmatrix}$$

We can compute $\lim_{n\to\infty} P^{(n)} = \lim_{n\to\infty} P^n$

$$\lim_{n \to \infty} P^{(n)} = \begin{pmatrix} 0.5 & 0.5 & 0 & 0\\ 0.5 & 0.5 & 0 & 0\\ 0 & 0 & 0.5 & 0.5\\ 0 & 0 & 0.5 & 0.5 \end{pmatrix}$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Aperiodicity is a necessary property

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Example

Let P be the transition matrix of a discrete-time Markov chain

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

It is easy to observe that $\lim_{n\to\infty} P^n$ does not exist

- \leadsto The chain has no limiting distribution
- \rightarrow Successive powers of P oscillate

The successive powers of P

Distributions (cont.)

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}}_{P} \to \underbrace{\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}}_{P^{2}} \to \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{P^{3}} \to \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}}_{P^{4}=P} \to \cdots$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix
Distributions

T.....

Evample

Let P be the transition matrix of a discrete-time Markov chain

$$P = \begin{pmatrix} 0.4 & 0.6 & 0 & 0 \\ 0.6 & 0.4 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{pmatrix}$$

Different initial distributions gave different limiting distributions

$$(1,0,0,0) \lim_{n \to \infty} P^{(n)} = (0.5,0.5,0,0)$$

$$(0,0,0.5,0.5) \lim_{n \to \infty} P^{(n)} = (0,0,0.5,0.5)$$

$$(\alpha,1-\alpha,0,0) \lim_{n \to \infty} P^{(n)} = (0.5,0.5,0,0), \text{ (for } 0 \le \alpha \le 1)$$

$$(0.375,0.375,0.125,0.125) \lim_{n \to \infty} P^{(n)} = (0.365,0.375,0.125,0.125)$$

This Markov chain has no limiting distribution

• Thus, it has no steady-state distribution

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

matrices

Distributions

Distributions (cont.)

Definition

Steady-state distribution

Let P be the transition probability matrix of a discrete-time Markov chain

A limiting distribution π is a steady-state distribution if it converges to a vector whose components are strictly positive and sum to one (probability)

$$\rightarrow \pi_i > 0$$
 for all states i, and $\sum \pi_i = 1$

This must be true independently of the initial distribution $\pi(0)$

If a steady-state distribution exists, it is unique

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importan

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Component i in the steady-state distribution of a Markov chain is understood as **long-term proportion** of time the process spends in state i

This is equivalent to the probability that a random observer sees the Markov chain in state i, after the process has evolved over a long period of time

Existence of the steady-state distribution implies two convergences

- Vector $\pi(n)$
- Matrix $P^{(n)}$

They must converge independently of the initial distribution $\pi(0)$

UFC/DC SA (CK0191) 2018.1

Important matrices

fundamental

D -- -b - b : lia-- --- a--i--

Distributions

Distributions (cont.)

Steady state distributions are often given different names

- → Equilibrium distributions
- → Long-run distributions

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

Distributions

Distributions (cont.)

Equation $\pi = P\pi$ is called the global balance equation of the process

- → It is understood as if it equates the states in- and out-flow
- → (From queueing literature)

Consider the i-th equation

$$\pi_i = \sum_{ ext{all } j} \pi_j p_j$$

It can be re-written

$$ightarrow \pi_i(1-p_{ii}) = \sum_{j,j \neq i} \pi_j p_j$$

Or

$$\longrightarrow \pi_i \sum_{j,j \neq i} p_{ij} = \sum_{j,j \neq i} \pi_j p_j$$

- \rightarrow The LHS, total flow from state *i* into states *j* other than *i*
- \rightarrow The RHS, total flow from all states $j \neq i$ into state i

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential ar

Reachability matrix

Distributions

Distributions (cont.)

Consider a Markov chain with a steady-state distribution π

• This is also the unique stationary distribution

We have,

$$\pi = \pi(0) \lim_{n \to \infty} P^{(n)} = \pi(0) \lim_{n \to \infty} P^{(n+1)}$$
$$= [\pi(0) \lim_{n \to \infty} P^{(n)}]P = \pi P$$

This implies that $\pi = \pi P$, thus π is the (unique) stationary vector

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

[mportan

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Example

Let P be the transition matrix of a discrete-time Markov chain

$$P = \begin{pmatrix} 1 - p & p \\ q & 1 - q \end{pmatrix}$$
, (for $0 and $0 < q < 1$)$

We are interested in the steady-state distribution of the chain

 \longrightarrow The process $\{X_n, n \geq 0\}$ has two states (say, 0 and 1)

Let $\pi_0(0) = \text{Prob}\{X_0 = 0\}$ be the probability that the chain begins in 0

• We know that $Prob\{X_0 = 1\} = 1 - \pi_0(0) = \pi_1(0)$

We are interested in the distribution at time step n

UFC/DC SA (CK0191) 2018.1

mportant

Potential and fundamental

Panahahilitu matui

Distributions

Distributions (cont.)

We have,

$$Arr$$
 Prob $\{X_{n+1} = 0\}$
= Prob $\{X_{n+1} = 0 | X_n = 0\}$ Prob $\{X_n = 0\}$
+ Prob $\{X_{n+1} = 0 | X_n = 1\}$ Prob $\{X_n = 1\}$

Let
$$n = 0$$

Let
$$n =$$

$$\text{Prob}\{X_2 = 0\}$$

$$= \text{Prob}\{X_2 = 0 | X_0 = 0\} \text{Prob}\{X_1 = 0\} + \text{Prob}\{X_2 = 0 | X_1 = 1\} \text{Prob}\{X_1 = 1\}$$

$$= (1 - p)[(1 - p - q)\pi_0(0) + q] + q[1 - (1 - p - q)\pi_0(0) - q]$$

$$= (1 - p - q)[(1 - p - q)\pi_0(0) + q] + q$$

$$= (1 - p - q)^2\pi_0(0) + (1 - p - q)q + q$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

matrices

Distributions

Distributions (cont.)

We can now determine the limiting distribution, as $n \to \infty$

$$\lim_{n \to \infty} \text{Prob}\{X_n = 0\} = \frac{q}{p+q}$$

$$\lim_{n \to \infty} \text{Prob}\{X_n = 1\} = \frac{p}{p+q}$$

Moreover.

$$\lim_{n\to\infty}P^n=\lim_{n\to\infty}\begin{pmatrix}1-p&p\\q&1-q\end{pmatrix}^n=\frac{1}{p+q}\begin{pmatrix}q&p\\q&p\end{pmatrix}$$

We used

$$\frac{1}{p+q}\begin{pmatrix} q & p \\ q & p \end{pmatrix}\begin{pmatrix} 1-p & p \\ q & 1-q \end{pmatrix} = \frac{1}{p+q}\begin{pmatrix} q & p \\ q & p \end{pmatrix}$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant

Potential an fundamental matrices

Techcinomicy min

Distributions

Distributions (cont.)

We may suspect that for n = n, we could get

$$Prob\{X_n = 0\} = (1 - p - q)^n \pi_0(0) + q \sum_{j=0}^{n-1} (1 - p - q)^j$$

$$Prob\{X_n = 1\} = -ProbX_n = 0$$

$$\sum_{j=0}^{n-1} (1-p-q)^j = \frac{1-(1-p-q)^n}{p+q}$$
 is the sum of a finite geometric series

Thus.

$$Prob{X_n = 0} = (1 - p - q)^n \pi_0(0) + \frac{q}{p+q} - q \frac{(1 - p - q)^n}{p+q}$$

$$= \frac{q}{p+q} + (1 - p - q)^n \left[\pi_0(0) - \frac{q}{p+q}\right]$$

And

$$\rightarrow$$
 Prob $\{X_n = 1\} = \frac{p}{p+q} + (1-p-q)^n \left[\pi_1(0) - \frac{p}{p+q}\right]$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

lmportan matrices

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Let $\alpha \in [0, 1]$

We have that $(\alpha, 1 - \alpha)$ times $\lim_{n \to \infty} P^n$ equals [q/(p+q), p(p+q)]

That is,

$$(\alpha, 1 - \alpha) \begin{pmatrix} q/(p+q) & p/(p+q) \\ q/(p+q) & p/(p+q) \end{pmatrix} = [q/(p+q), p/(p+q)]$$

Hence, [q/(p+q), p/(p+q)] is the unique steady-state distribution

UFC/DC SA (CK0191) 2018.1

Important

natrices

Distributions

Distributions (cont.)

This fact can also be verified differently

The following must hold

$$[q/(p+q), p/(p+q)] \begin{pmatrix} 1-p & p \\ q & 1-q \end{pmatrix} = [q/(p+q), p(p+q)]$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental matrices

Reachability matr

Distributions

Distributions (cont.)

Irreducible Markov chains: Null recurrent or transient

For such Markov chains there is no stationary probability vector

System z = zP has only the trivial solution

• z, all components are zero

If a limiting distribution exists, its components are zeros

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Beachability matrix

Distributions

Distributions (cont.)

The unique stationary distribution and limiting distribution may coincide

• This is happens in some cases

In some other cases, the chain may possess only a stationary distribution

• No limiting distribution

We explore various classes of Markov chains

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportan

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Irreducible Markov chains: Positive recurrent

The system of equations z=zP has a unique and strictly positive solution

The solution is the stationary probability distribution π

$$\rightarrow \quad \pi_j = 1/M_{jj} \tag{6}$$

 M_{jj} is the mean recurrence time of j (finite, for positive-recurrent states)

Multiply both sides of M = E + P[M - diag(M)] by π

$$\begin{aligned} & \to & \pi M = \pi E + \pi P[M - \operatorname{diag}(M)] \\ & = e^T + \pi [M - \operatorname{diag}(M)] \\ & = e^T + \pi M - \pi \operatorname{diag}(M) \end{aligned}$$

Thus, $\pi \operatorname{diag}(M) = e^T$

UFC/DC SA (CK0191) 2018.1

Important matrices

fundamental matrices

Reachability matrix

Distributions

Distributions (cont.)

Consider an irreducible chain with unique stationary probability vector

• The states are positive-recurrent

Consider an irreducible and positive-recurrent Markov chain

• It does not necessarily have a limiting distribution

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matri

Distributions

Distributions (cont.)

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

This Markov chain is also periodic, with period p = 4

- If in state 1 at time n it will transition to state 2 at time n+1, to state 3 at time n+2, to state 4 to state n+3 and back to state 1 at time n+4
- This process never stabilises to a limiting distribution, it will alternate
- $\lim_{n\to\infty} P^{(n)}$ does not exist

A unique distribution does not imply the existence of a limiting distribution

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

Potential an fundamental matrices

Distributions

Distributions (cont.)

Example

Consider an irreducible positive-recurrent discrete-time Markov chain

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

We are interested in the stationary and the limiting distributions

Vector (1/4, 1/4, 1/4, 1/4) is the unique stationary distribution

The chain does not have a limiting distribution

• Whatever the initial distribution

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

[mportan

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Irreducible and aperiodic Markov chains

We have two possible situations

States of irreducible and aperiodic discrete-time chains are all null-recurrent

$$\rightarrow$$
 $\pi_i = 0 \text{ (for all } j)$

The limiting distribution always exists but no stationary distribution

• Moreover, it is independent of the initial distribution

The state space must be infinite

UFC/DC SA (CK0191) 2018.1

Distributions

States of irreducible and aperiodic chains are all positive-recurrent (ergodic)
$$\leadsto \quad \pi_j > 0 \text{ (for all } j)$$

Probabilities π_i define a stationary distribution

• They are uniquely determined

Distributions (cont.)

$$ightarrow \pi_j = \sum_{ ext{all } j} \pi_j p_{ij}, \quad \sum_j \pi_j = 1$$

In matrix notation,

$$\rightarrow \pi = \pi P, \quad \pi e = 1$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

In matrix notation, we have

$$\pi = \pi P$$
, (with $\pi > 0$ and $||\pi||_1 = 1$) (7)

It can be shown that, for $n \to \infty$, the rows of the n-step transition matrix $P^{(n)} = P^n$ all converge to the exact same vector of stationary probabilities

By letting $p_{ii}^{(n)}$ be the (i,j)-th element of $P^{(n)}$, we get

$$\pi_j = \lim_{n \to \infty} p_{ij}^{(n)}$$
 (for all i and j)

(We saw that with the simplified weather model)

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

Irreducible and ergodic Markov chains

States of ergodic discrete-time chains are all positive-recurrent and ergodic

The distribution $\pi(n)$ converges to a limiting distribution π

• Because of irreducibility

The limiting (steady-state) distribution is the unique stationary distribution

Thus, from the probability that the process is in state i at step n

$$\pi_n(n) = \sum_{\text{all } k} p_{ki}^{(n)} \pi_k(0)$$

$$\leadsto \quad \pi_j(n+1) = \sum_{\text{all } i} p_{ij} \pi_i(n)$$

It follows that for $n \to \infty$ on both sides

$$\rightsquigarrow \quad \pi_j = \sum_{\text{all } j} p_{ij} \pi_j$$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

Some performance quantities from steady-state probability vectors

- (Irreducible and ergodic Markov processes, only)
- \rightarrow Mean time spent in state j in a fixed interval τ at steady-state

$$\leadsto$$
 $v_j(\tau) = \pi_j \tau$

The steady state probability π_i is the portion of time in state j, averaged over the long-run

- \rightarrow Mean number of steps between successive hits to state j, $1/\pi_i$
- \sim Mean time spent in state i at steady-state and between two successive hits to state j

$$\rightsquigarrow v_{ij} = \pi_i/\pi_j$$

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

Irreducible and periodic Markov chains

We investigate the effect of periodicity in seeking limiting distributions

• (And high order powers of single-step transition matrix)

Consider a irreducible discrete-time Markov chain

Let the chain have period/index p

The number of single-step transitions needed to return, by any path, on some state after leaving it is a multiple of some integer p > 1

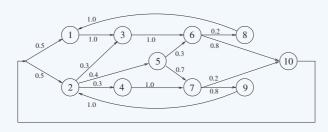
Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

Consider the transition diagram of a discrete-time Markov chain



The states have been ordered according to their respective classes

The process has period p = 4 and four cyclic classes

$$C_1 = \{1, 2\}$$

$$C_2 = \{3, 4, 5\}$$

$$C_3 = \{6, 7\}$$

$$\sim$$
 $C_4 = \{8, 9, 10\}$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

For such chains we can permute rows and columns of the transition matrix

→ The normal form

This corresponds to partitioning and ordering of the states in p subsets

• The cyclic classes of the chain

$$P = \begin{pmatrix} 0 & P_{12} & 0 & \cdots & 0 \\ 0 & 0 & P_{23} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & P_{p-1,p} \\ P_{p1} & 0 & 0 & \cdots & 0 \end{pmatrix}$$
(8)

The only non-zero sub-matrices are $P_{12}, P_{23}, \ldots, P_{p1}$

• Diagonal sub-matrices P_{ii} are all square

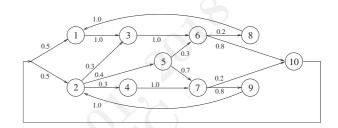
According to this ordering, a chain in a state from subset i exits this subset in the next time step and then it enters a state from subset $(i \mod p) + 1$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018 1

Distributions

Distributions (cont.)



From states in class C_i the chain can only go to states in class $C_{(i \mod p)+1}$

$$\sim$$
 $C_1 = \{1, 2\}$

$$\sim C_2 = \{3, 4, 5\}$$

$$C_3 = \{6, 7\}$$

$$\sim C_4 = \{8, 9, 10\}$$

The process will return to initial state only after $4 \cdot n$ steps $(n = 1, 2, \cdots)$

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Consider the transition matrix P of the process

Suppose that our interest is in the behaviour of the chain at time $n \to \infty$

We wish to investigate the behaviour of P^n , as $n \to \infty$, the existence of the limiting distribution and the existence of a stationary distribution

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability mat

Distributions

Distributions (cont.)

By taking successive powers of P, we obtain

$$P^{2} = \begin{pmatrix} 0 & 0 & P_{12}P_{23} & 0 \\ 0 & 0 & 0 & P_{23}P_{34} \\ P_{34}P_{41} & 0 & 0 & 0 \\ 0 & P_{41}P_{12} & 0 & 0 \end{pmatrix}$$

$$P^{3} = \begin{pmatrix} 0 & 0 & 0 & P_{12}P_{23}P_{34} \\ P_{23}P_{34}P_{41} & 0 & 0 & 0 \\ 0 & P_{34}P_{41}P_{12} & 0 & 0 \\ 0 & 0 & P_{41}P_{12}P_{23} & 0 \end{pmatrix}$$

$$P^{4} = \begin{pmatrix} P_{12}P_{23}P_{34}P_{41} & 0 & 0 & 0 \\ 0 & P_{23}P_{34}P_{41}P_{12} & 0 & 0 \\ 0 & 0 & P_{34}P_{41}P_{12}P_{23} & 0 \\ 0 & 0 & 0 & P_{41}P_{12}P_{23}P_{34} \end{pmatrix}$$

After four steps the transition matrix has taken a block-diagonal form

→ Moreover, each individual block is row-stochastic

Each block represents an irreducible, recurrent and aperiodic chain

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant natrices

fundamental matrices

Distributions

Distributions (cont.)

Consider the transition matrix P, with p = 4 cycles

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

[mportan

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Consider beginning in state C_1

- \rightarrow A state C_2 may be reached in one step
- \rightarrow A state C_3 may be reached in two steps
- \rightarrow A state C_4 may be reached in three steps

After four steps, the Markov chain is back to state C_1

 \rightarrow At any time 4n, with n = 1, 2, ...

Each block represents the transition probability matrix

An irreducible, recurrent and aperiodic chain

(Aperiodic as one single-step in the new chain is four original steps)

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Distributions

Distributions (cont.)

We can apply the theory of irreducible, recurrent and aperiodic chains

• Each block can be treated individually, as $n \to \infty$

We have that for each block $\lim_{n\to\infty} P^{4n}$ exists

$$P^4 = \begin{pmatrix} .60 & .40 \\ .31 & .69 \\ & .72 & .120 & .16 \\ & .37 & .270 & .36 \\ & .75 & .225 & .30 \\ & & & .768 & .232 \\ & & & .478 & .522 \\ & & & & .200 & .000 & .800 \\ & & & & .800 & .464 & .452 \\ & & & .142 & .232 & .626 \end{pmatrix}$$

In addition, we can compute $\lim_{n\to\infty} P^{4n}$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Importan

Potential and fundamental matrices

Distributions

Distributions (cont.)

By concatenating the four stationary distributions yields a vector z=zP We obtain the vector

$$z =$$

(0.4366, 0.5634, 0.6056, 0.1690, 0.2254, 0.6732, 0.3268, 0.1367, 0.2614, 0.6039)

The stationary distribution is obtained by normalisation (0.1092, 0.1408, 0.1514, 0.0423, 0.0563, 0.1683, 0.0817, 0.0337, 0.0654, 0.1510)

The result assumes that the chain spends equal time in all periodic classes \leadsto This is correct

Irreducible, positive-recurrent chains has a strictly positive distribution

The distribution is unique (the only possible one)

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important matrices

fundamental matrices

Distributions

Distributions (cont.)

That is,

Each diagonal block can be treated as a transition probability matrix

• A finite, aperiodic and irreducible Markov process

The limiting distribution coincides with the stationary distribution

• It can be computed for each block individually $(n \to \infty)$

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportan

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Reducible Markov chains

We consider in some detail chains that are reducible

 \leadsto Multiple transient and irreducible closed classes

Such chains possess multiple stationary distributions

Also, any linear combination of the stationary distributions is stationary

 \longrightarrow This allows to treat each irreducible closed class individually

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matri:

Distributions

Distributions (cont.)

Example

Consider the discrete-time Markov chain with transition matrix P

$$P = \begin{pmatrix} 0.4 & 0.2 & 0.0 & 0.2 & 0.0 & 0 & 0.0 & 0.2 \\ 0.3 & 0.3 & 0.0 & 0.0 & 0.1 & 0 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.3 & 0.1 & 0 & 0.5 & 0.0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.9 \end{pmatrix}$$

These chain has 3 transient states and 3 irreducible classes

- \rightarrow Transient states (1, 2 and 3)
- \rightarrow Irreducible classes ($\{4,5\}$, $\{6\}$ and $\{7,8\}$)

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Important

Potential and fundamental

Reachability matr

Distributions

Distributions (cont.)

$$(0.625, 0.375) = (0.625, 0.375) \begin{pmatrix} 0.7 & 0.3 \\ 0.5 & 0.5 \end{pmatrix}$$

Consider the case of the first stationary distribution

$$\rightarrow$$
 $(0,0,0,0.625,0.375,0,0,0)$

$$\times \begin{pmatrix} 0.4 & 0.2 & 0 & 0.2 & 0 & 0 & 0 & 0.2 \\ 0.3 & 0.3 & 0 & 0 & 0.1 & 0 & 0.2 & 0.1 \\ 0 & 0 & 0.1 & 0.3 & 0.1 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.9 \end{pmatrix}$$

$$= (0, 0, 0, 0.625, 0.375, 0, 0, 0)$$

The same applies to the other two distributions

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

mportant natrices

fundamental matrices

Distributions

Distributions (cont.)

The stationary distributions of the three irreducible classes is unique

$$(0.625, 0.375) = (0.625, 0.375) \begin{pmatrix} 0.7 & 0.3 \\ 0.5 & 0.5 \end{pmatrix}$$
$$(1.000) = (1.000)(1)$$
$$(0.500, 0.500) = (0.500, 0.500) \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix}$$

These distributions can be filled with zeros to produce a vector length 8

• This vector is a stationary distribution for the process

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

[mportan

Potential and fundamental

Reachability matrix

Distributions

Distributions (cont.)

Consider adding up all three distributions and normalising

$$(0, 0, 0, 0.6250, 0.3750, 1.0000, 0.5000, 0.5000)$$
unnormalised
$$(0, 0, 0, 0.2083, 0.1250, 0.3333, 0.1667, 0.1667)$$
normalised

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

Consider the powers of the transition probability matrix P

(0, 0, 0, 0.2083, 0.1250, 0.3333, 0.1667, 0.1667)

$$\times \begin{pmatrix} 0.4 & 0.2 & 0 & 0.2 & 0 & 0 & 0 & 0.2 \\ 0.3 & 0.3 & 0 & 0 & 0.1 & 0 & 0.2 & 0.1 \\ 0 & 0 & 0.1 & 0.3 & 0.1 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.9 \end{pmatrix}$$

$$= (0, 0, 0, 0.2083, 0.1250, 0.3333, 0.1667, 0.1667)$$

Distributions (cont.)

Markov chains UFC/DC SA (CK0191) 2018.1

Discrete-time

Distributions

Transition probabilities into transient states

$$\rightarrow$$
 $\lim_{n\to\infty} p_{ij}^{(n)} = 0$ (zero)

Transition probabilities from ergodic states to the same state

$$\rightsquigarrow \quad \lim_{n \to \infty} p_{jj}^{(n)} > 0 \text{ (strictly positive)}$$

Transition probabilities from any state i into an ergodic state j

$$\lim_{n\to\infty} p_{ij}^{(n)} = f_{ij} \lim_{n\to\infty} p_{jj}^{(n)}$$

(We must first compute elements f_{ij} of reachability matrix F)

Discrete-time Markov chains

UFC/DC SA (CK0191) 2018.1

Distributions

Distributions (cont.)

In the limit $n \to \infty$, we get

$$\lim_{n\to\infty}P^n \quad = \quad \begin{pmatrix} 0 & 0 & 0 & 0.2778 & 0.1667 & 0 & 0.2778 & 0.2778 \\ 0 & 0 & 0 & 0.2083 & 0.1250 & 0 & 0.3334 & 0.3333 \\ 0 & 0 & 0 & 0.2788 & 0.1667 & 0 & 0.2778 & 0.2778 \\ 0 & 0 & 0 & 0.6250 & 0.3750 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.6250 & 0.3750 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.55 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.55 & 0.5 \end{pmatrix}$$

Not all the rows are equal, yet they all are stationary distributions

- They equal some linear combination of the three solutions
- → (Need re-normalisation due to rounding approximations)

Markov chains UFC/DC SA (CK0191) 2018.1

Discrete-time

Distributions

Distributions (cont.)

The elements f_{ij} of the reachability matrix F have been calculated earlier

$$\lim_{n \to \infty} p_{14}^{(n)} = 0.4444 \cdot 0.6250 = 0.2778$$

$$\lim_{n \to \infty} p_{28}^{(n)} = 0.6667 \cdot 0.5000 = 0.3333$$

$$\lim_{n \to \infty} p_{35}^{(n)} = 0.4444 \cdot 0.3750 = 0.1667$$

... and so on