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Abstract

Liitiäinen, E. (2010): Advances in the Theory of Nearest Neighbor Dis-
tributions. Doctoral thesis, Aalto University School of Science and Technology,
Dissertations in Information and Computer Science, TKK-ICS-D18, Espoo, Fin-
land.

Keywords: nearest neighbor, computational geometry, entropy, residual variance,
correlation, nonparametric

A large part of non-parametric statistical techniques are in one way or another re-
lated to the geometric properties of random point sets. This connection is present
both in the design of estimators and theoretical convergence studies. One such rela-
tion between geometry and probability occurs in the application of non-parametric
techniques for computing information theoretic entropies: it has been shown that
the moments of the nearest neighbor distance distributions for a set of indepen-
dent identically distributed random variables are asymptotically characterized by
the Rényi entropies of the underlying probability density. As entropy estimation
is a problem of major importance, this connection motivates an extensive study of
nearest neighbor distances and distributions.

In this thesis, new results in the theory of nearest neighbor distributions are derived
using both geometric and probabilistic proof techniques. The emphasis is on results
that are useful for finite samples and not only in the asymptotic limit of an infinite
sample.

Previously, in the literature it has been shown that after imposing sufficient regu-
larity assumptions, the moments of the nearest neighbor distances can be approxi-
mated by invoking a Taylor series argument providing the connection to the Rényi
entropies. However, the theoretical results provide limited understanding to the
nature of the error in the approximation. As a central result of the thesis, it is
shown that if the random points take values in a compact set (e.g. according to
the uniform distribution), then under sufficient regularity, a higher order moment
expansion is possible. Asymptotically, the result completely characterizes the error
for the original low order approximation.

Instead of striving for exact computation of the moments through a Taylor series
expansion, in some cases inequalities are more useful. In the thesis, it is shown that
concrete upper and lower bounds can be established under general assumptions.
In fact, the upper bounds rely only on a geometric analysis.

The thesis also contains applications to two problems in nonparametric statistics,
residual variance and Rényi entropy estimation. A well-established nearest neigh-
bor entropy estimator is analyzed and it is shown that by taking the boundary
effect into account, estimation bias can be significantly reduced. Secondly, the
convergence properties of a recent residual variance estimator are analyzed.
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Tiivistelmä

Liitiäinen, E. (2010): Kehitysaskeleita Lähimmän Naapurin Jakaumien
Teoriassa. Tohtorin väitöskirja, Aalto-yliopiston teknillinen korkeakoulu, Disser-
tations in Information and Computer Science, TKK-ICS-D18, Espoo, Suomi.

Avainsanat: lähin naapuri, laskennallinen geometria, entropia, residuaalivarians-
si, korrelaatio, epäparametrinen

Suuri osa epäparametrisen tilastotieteen tekniikoista liittyy tavalla tai toisella sa-
tunnaisten pistejoukkojen geometrisiin ominaisuuksiin. Tämä yhteys on läsnä sekä
estimaattoreiden suunnittelussa että teoreettisessa konvergenssianalyysissa. Yksi
tällainen suhde geometrian ja todennäköisyyden välillä esiintyy epäparametristen
tekniikoiden sovelluksessa informaatioteoreettisten entropioiden laskentaan: on
näytetty, että alla olevan tiheysfunktion Rényi entropiat karakterisoivat asymp-
toottisesti täysin lähimmän naapurin jakaumien momentit joukolle riippumatto-
mia samoin jakautuneita satunnaismuuttujia.

Tässä väitöskirjassa on johdettu uusia tuloksia lähimmän naapurin jakaumien teo-
riassa käyttäen sekä geometrisia että todennäköisyysteoreettisia todistustekniikoi-
ta. Paino on tuloksissa jotka ovat käyttökelpoisia äärellisille näytejoukoille eivätkä
vain äärettömän näytteen asymptoottisella rajalla.

Aiemmassa kirjallisuudessa on näytetty, että asettamalla riittävät
säännöllisyysoletukset, lähimmän naapurin jakaumien momentteja voidaan
approksimoida käyttäen Taylor-sarja argumenttia, jolloin löydetään yhteys
Rényi entropioihin. Kuitenkin kyseiset teoreettiset tulokset antavat rajoitetusti
ymmärrystä approksimaatiovirheen luonteesta. Väitöskirjan keskeisenä tulok-
sena on näytetty, että mikäli satunnaiset pisteet ottavat arvoja kompaktissa
joukossa (esim. tasajakauman mukaisesti), niin silloin riittävän säännöllisyyden
läsnäollessa korkeamman asteen momenttikehitelmä on mahdollinen. Asymp-
toottisesti tulos karakterisoi täydellisesti virheen alkuperäisessä alhaisen asteen
approksimaatiossa.

Sen sijaan, että pyritään tarkkaan momenttien laskentaan Taylor-sarjan avul-
la, voidaan joissain tapauksissa käyttää myös epäyhtälöitä. Tässä väitöskirjassa
näytetään, että voidaan löytää konkreettiset ala- ja ylärajat yleisillä oletuksilla.
Itse asiassa ylärajat voidaan johtaa käyttäen ainoastaan geometrista analyysia.

Väitöskirja sisältää myös sovelluksen kahteen ongelmaan epäparametrisessa ti-
lastotieteessä, jotka ovat residuaalivarianssin ja Rényi entropioiden estimointi.
Yhtä vakiintunutta lähimmän naapurin estimaattoria analysoidaan ja näytetään,
että ottamalla reunavaikutus huomioon, voidaan estimointiharhaa pienentää mer-
kittävästi. Toiseksi, erään viime aikoina keksityn residuaalivarianssi estimaattorin
konvergenssiominaisuuksia on analysoitu.
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Chapter 1

Introduction

Modern society produces vast amount of data due to the emergence of information
technology. This has led to the rise of data-based science including machine learn-
ing and data-mining in addition to interesting new developments in traditional
statistical techniques. The interest in developing efficient and robust methods for
data-based modelling and data exploration is increasing; one might even say that
there is an on-going revolution in engineering and science.

While new fields of science have emerged, at the same time the borderline between
data-based methods and first principles modelling has grown more vague. For
example, neural networks and other machine learning methods have emerged as
an alternative modelling tool for real-world systems and on the other hand, data-
analysis often brings new insights for modelling.

From the engineer’s point of view, these developments can be described using the
concept of data engineering as demonstrated in Figure 1.1. When facing a real
world problem, the first step is to develop theoretical models for the system at
hand. Often the difficulty is that in practice there are many factors that are
hard to take into account limiting the scope of theoretical considerations. Once
a sufficient understanding is achieved, the data-engineer develops models or in
general terms practical solutions based on the data that is available. It is common
that even if the theoretical understanding is incomplete, data-based methods are
able to find good solutions by using a general enough model. Of course the two
steps also interact with each other: valid theoretical principles are supported by
data and vice versa.

This thesis can be associated with the first step in the aforementioned process. The
goal is to develop new theoretical tools and understanding for statistical estimation
and modeling. In the spirit of data engineering, the work is of very general nature:
most of the results require relatively weak prior assumptions and the emphasis is
on methods that can be used in a large class of problems. The theoretical research
was motivated by practical needs, but on the other hand the applying research has
on its turn been guided by theoretical considerations.

As a specific task, at the early stages the thesis research was orientated towards

9



10 1. Introduction

Figure 1.1: The chart demonstrates the concept of data-engineering: theoretical
considerations produce a class of possible models, of which the one that fits best
the data is chosen using statistical techniques.

providing input selection methods for statistical regression between two random
vectors in order to alleviate the effect of the curse of dimensionality. Performing
trustworthy input selection is possible only if reliable methods for measuring de-
pendencies between random variables are available. It has turned out that the
analysis of nearest neighbor distributions provides a unifying factor behind several
important techniques. In the following, the research behind the thesis is intro-
duced in more detail by discussing statistical measures of dependency in order to
concretize the reasons behind the study of nearest neighbor distributions and to
establish a link to information theory.

1.1 Dependency Measures

A commonly encountered statistical modelling task is the prediction of a target
variable Y given a predictor Z. In order to perform the prediction, the underlying
relation between Z and Y is modelled using a finite set of observations (Zi, Yi)M

i=1,
where the number of samples M depends on the task at hand. The estimation
of the model can be difficult or easy depending on three aspects: the degree of
non-linearity present in the relation between Z and Y , the dimensionality (n) of
the predictor Z and the number of samples.

To simplify matters, classical statistics often focuses on the case where a linear
function from Z to Y is sufficient for a good prediction. In that case n can be
relatively large without imposing the requirement of having a very large number
of observations available, even though even in linear statistics small dimension-
ality is preferable. However, when linearity does not hold, things become more
complicated as seen from Figure 1.2. When no strong prior assumptions on the
non-linearity can be used, resorting to neural networks and basis expansions (e.g.
MLP and Gaussian processes [25, 53]) is one of the most important approaches.
However, a common denominator of such methods is their sensitivity to the di-
mensionality n. Currently the seriousness of the problem is debatable, but based
e.g. on [25, 67, 66], it is safe to claim that in high dimensional spaces, most non-
linear approximators do face problems with approximation capability, stability and
computational complexity consequently requiring a large amount of samples in the
estimation process.
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Figure 1.2: The dashed line is the optimal mean square linear fit to the parabola.
A linear dependency measure would indicate that X is not a good predictor of Y .

Luckily things are not as gloomy as they might seem to the data engineer who
does not have strong prior assumptions. In fact, it is common that even though Z
has many components, most of them are not needed for the prediction of Y and
a small subset is sufficient. This idea leads to the field of input selection, which
vaguely expressed investigates methods for finding a good subset of variables for
the prediction of Y . The task decomposes naturally into two subtasks: firstly, an
optimization method is used to go through subsets of the components of Z and
secondly, a method to evaluate the quality of such subsets is needed.

While the field of input selection arises naturally, it has been investigated sur-
prisingly little. Linear methods, however, are well understood. Considering the
random variables

X =





Z(i1)

. . .
Z(ik)





consisting of components of Z, the most basic linear input selection criterion is
the coefficient of determination (R2-value) of the empirical linear least squares fit
between X and Y , even though it is not the only possibility. However, if we look
in the univariate case of Figure 1.2, it is seen that no linear method is able to
capture the simple parabolic functional dependency. The inability to cope with
such non-linear relations suggests the idea of non-linear measures as a possibility
for measuring relevance when linearity cannot be assumed similarly as non-linear
modelling is a generalization of linear modelling. Of course, the reader familiar
with the topic might argue that non-linear modelling can be used to develop such
methods; however, as a deep theoretical and practical fact, the two problems should
be viewed separately as merely estimating the magnitude of dependencies is easier
than building a complete model (see Chapter 6 and [36], for example).

Obviously motivating non-linear dependency measures through input selection for
regression is not necessary as linear methods are an important tool in most fields of
science. As an example, ecologists and economists use it to seek validation of their
theoretical hypothesis. But most of the work in this thesis was in fact originally
motivated by the input selection problem largely thanks to the earlier work [1];
later on, more general theoretical ideas then arose as is common in mathematical
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X Y

Figure 1.3: In the figure, Y is the first component of X. Points close in the input
space tend to be close in the output space as well.

analysis.

1.2 Residual Variance Estimation

Under the definition m(x) = E[Y |X = x] and r = Y − m(X), the target variable
Y can be decomposed into

Y = m(X) + r.

The residual variable r is the part that is not captured by the mean square optimal
predictor m(x). In this notation, if the linearity m(X) = wT X holds, then fitting
a linear model into the independent identically distributed (i.i.d) data (Xi, Yi)M

i=1

and computing the coefficient of determination amounts to estimating

1 − Var[r]

Var[Y ]

to measure how well X is able to predict Y . The general residual variance es-
timation problem then suggests itself in a natural way: is it possible to perform
the same without assuming linearity? It is an intuitive consequence of the no-
free lunch theorem that this is not possible without any prior assumptions. But
most real-world phenomena involve at least piecewise smooth functions rendering
non-parametric inference of the residual variance a viable option.

Numerous approaches for estimating the residual variance exist; see Chapter 6
for more details on those. However, all of them build at least to some degree
on the assumed smoothness of m, which implies that points close to each other
in the input space produce similar outputs as demonstrated in Figure 1.3. The
most straightforward way to concretize such an idea is to observe that if Xi and
Xj(i) are two samples close to each other (j(i) is a random index), that is, with
‖Xi − Xj(i)‖ small, then

Yi − Yj(i) ≈ (Xi − Xj(i))
T∇Xim + ri − rj(i) ≈ ri − rj(i) (1.1)

with ∇Xim the gradient of m at the point Xi. Because the approximation is
indicated to depend mostly on ri−rj(i), a natural idea might be to consider (i > 0
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can be arbitrary as only i.i.d. sampling is discussed here)

cE[(Yi − Yj(i))
2] ≈ c

M

M
∑

i=1

(Yi − Yj(i))
2 (1.2)

as an estimate of Var[r] for some constant c > 0. The index j(i) must be chosen
in order to ensure

1. The approximation of the expectation in (1.2) is valid.

2. ‖Xi − Xj(i)‖ is small.

3. E[(ri − rj(i))
2] ≈ c−1Var[r2].

The validity of point 2 is maximized by choosing Xj(i) as the point closest to Xi

in the sample (Xi)M
i=1 measured in the Euclidean metric. Then j(i) = N [i, 1] is

called the index of the first nearest neighbor of Xi and di,1 = ‖Xi − Xj(i)‖ is the
first nearest neighbor distance. For this choice, point 1 is established in Chapter
4 using a rather standard proof technique. The last point is not obvious, but in
[42] it was shown that

E[(ri − rj(i))
2] ≈ 2Var[r]

is a valid approximation under certain regularity conditions; this also fixes c =
1/2 in Equation (1.2). Unfortunately, those conditions are quite restrictive and
generally there is no theoretical guarantees that (1.2) is a good approximation. To
solve this problem, the estimator

1

M

M
∑

i=1

(Yi − YN [i,1])(Yi − YN [i,2]) (1.3)

has emerged [14, 17, 36] and it is analyzed in detail in Chapter 6 as an application
of the theoretical considerations of the thesis. Here N [i, 2] refers to the second
nearest neighbor of Xi.

In addition to the previous arguments, the choice of using nearest neighbors is
motivated by computational efficiency; in fact, by using special data structures,
at least in low dimensions the nearest neighbors of each point in (Xi)M

i=1 can be
found in O(M log M) time. Nevertheless it should be mentioned that there are
other paradigms not directly based on the use of nearest neighbors; the purpose
of the thesis is not to review those, even though new tools for that are provided.

1.3 Nearest Neighbor Distributions

In the previous section we saw that whether Yi − YN [i,k] is close to ri − rN [i,k]

or not depends on the quantities (Xi − XN [i,k])
T∇Xim if second order terms are

neglected. On the other hand

E[|(Xi − XN [i,k])
T∇Xim|2] ≤ E[‖∇Xim‖2‖Xi − XN [i,k]‖2] ≤ cE[d2

i,k] (1.4)
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for some c > 0 if the gradient is assumed to be a bounded function. By deriving a
bound on E[d2

i,k] it is then possible to establish worst-case convergence bounds for
the nearest neighbor residual variance estimators (1.2) and (1.3) as demonstrated
in Chapter 6. In fact, it is not only due to this particular estimation problem
that nearest neighbors are interesting; an analogous consideration applies to many
non-parametric statistical methods as well [29].

To bound E[dα
i,k] (introducing α > 0 does not complicate matters significantly), it

is possible to examine

1

M

M
∑

i=1

dα
i,k

without any probabilistic arguments. Such an analysis is done in Chapter 2 pro-
viding for example the following theorem (among others):

Theorem 1.1. Suppose that the random vectors (Xi)M
i=1 take values in the cube

[0, 1]n. Then we have for 0 < α ≤ n and M > k,

1

M

M
∑

i=1

dα
i,k ≤ (

2nnn/2k

M
)α/n,

where distances are measured using the Euclidean norm.

So, in general it can be said that E[dα
i,k] tends to go to zero at least as fast as

M−α/n. But can it happen that convergence is strictly faster? When the sample
(Xi)M

i=1 is i.i.d, a negative answer is given in Chapter 2: a constant c1 with

E[dα
1,k] ≥ c1M

−α/n

can be found. Moreover, c1 is found as well, even though the optimality of the
bound cannot be claimed.

The upper and lower bounds effectively settle the issue raised in Equation (1.4).
However, once we have started in the analysis, it is natural to ask, whether the
expectation E[dα

1,k] can be found in some more exact way. It is not hard to find

a partial answer in the literature [18, 69]: in general, for i.i.d. variables (Xi)M
i=1

with the common density q,

Mα/nE[dα
1,k] → V −α/n

n
Γ(k + α/n)

Γ(k)

∫

#n

q(x)1−α/ndx (1.5)

in the limit M → ∞ (Γ(·) denotes the Gamma function). Effectively this amounts
to invoking a locally constant (0th order) approximation of q around X1 as can
be seen from [18]. As a contribution of Chapter 3 and also the central result of
the thesis, the possibility of a higher order expansion is demonstrated: under a
set of theoretical assumptions, the limit remains the same but an additional term
emerges:

Mα/nE[dα
1,k] = V −α/n

n
Γ(k + α/n)

Γ(k)

∫

#n

q(x)1−α/ndx

+ c2
Γ(k + α/n + 1/n)

Γ(k)
M−1/n + o(M−1/n), (1.6)
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where c2 is independent of M and k (see Chapter 3 for details on c2).

While the discussion started from the bound (1.4), it is in fact true that (Xi −
XN [i,k])

T∇Xim has many properties that are not understood only by examining
nearest neighbor distances. While the thesis does not comprehensively analyse
these, Chapter 6 nevertheless scratches the surface by using the local uniformity of
nearest neighbor distributions in order to show that (1.3) has favourable theoretical
convergence properties.

1.4 Entropies

While residual variance is a natural measure to estimate how well a given set of
variables can be used to predict the target variable, it is still based on the use of a
specific cost function (the mean square cost). In many cases, especially when doing
data-analysis, it is not necessarily very useful to estimate the relevance in terms
of a cost function. Instead, we might want to ask, how much of the randomness in
Y is explained by X. If the pair (X,Y ) has a joint density q(x, y), then the joint
randomness is measured by the differential entropy [58]:

H(X,Y ) = −
∫

#

∫

#n

q(x, y) log q(x, y)dxdy; (1.7)

the maximal randomness is in fact achieved if the components of (X,Y ) are jointly
Gaussian and independent of each other. The marginal differential entropy H(X)
for X is defined analogously for the marginal distribution q(x) and the conditional
entropy is

H(Y |X) = H(X,Y ) − H(X).

Consequently, once an estimate for the entropies H(X,Y ) and H(X) is found,
then the theoretically attractive measure of relevance H(Y |X) can be computed.

While the information theoretic approach leads naturally to logarithmic entropies
when some plausible axioms are accepted, there are however other entropies ob-
tained through relaxing one of the axioms. More specifically, the functions

Hβ(X) =
1

1 − β
log(

∫

#n

q(x)βdx)

are called Rényi entropies when β ≥ 0 and while the theoretical foundation behind
these is less solid, they are still attractive as measures of randomness in those prob-
lems, where deep information theoretic connections are not needed. One observes
a connection to nearest neighbor distances: Equation (1.5) yields

n

α
log(Mα/n V α/n

n Γ(k)

Γ(k + α/n)
E[dα

1,k]) → H1−α/n(X)

showing that a natural finite sample (and well-known [34]) estimate of Rényi en-
tropies is

H1−α/n(X) ≈ n

α
log(Mα/n V α/n

n Γ(k)

Γ(k + α/n)
E[dα

1,k]). (1.8)
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Because the definition H1−α/n(Y |X) = H1−α/n(X,Y ) − H1−α/n(X) still makes
sense and is a valid measure of dependency [22] (though the definition is arguable),
we have in fact gone through a full circle: the discussion was started from input se-
lection, which (albeit somewhat vaguely) motivated the research on nearest neigh-
bor distributions and finally the asymptotic analysis led to information theory.

The downside of the estimate of Equation (1.8) is its reliance on the low order result
(1.5). Since after Chapter 3, the higher order result (1.6) is at our disposal, new
possibilities for the estimation emerge. Such techniques are examined in Chapter
5 both theoretically and by simulations. Moreover, not only improvements are
suggested, but an analysis of the low-order estimate is provided. Extending the
work to the estimation of the differential entropy is done as well.

1.5 Outline and Contributions

In Chapter 2, bounds on the mean nearest neighbor distances on random point sets
are derived. The treatment follows our earlier work on the topic in [40]. Originally
it came to us as a slight surprise that the closest work to ours is in the field
of material physics ([64]), where upper bounds are derived in three dimensions.
However, the bounds in [64] do not take the boundary effect into account, and
on the other hand, they work only for the first nearest neighbor distance whereas
we are interested in k (k ≥ 1) nearest neighbors. As a second contribution in
[40], expected nearest neighbor distances E[dα

i,k] are bounded from below using
the theory of maximal functions.

Chapter 3 presents a central result of the thesis: an extension to the boundary-
corrected expansions of power-weighted mean nearest neighbor distances in our
work [38]. In contrast to Chapter 2, the expansion gives exact information in the
asymptotic limit of infinite sample size. In this thesis, the boundary correction is
shown to hold even if singularities exist at the boundary as long as there are not
too many of them.

In Chapter 4, the variance of sums of bounded local functions is analyzed. The
theoretical results are rather similar to [16], but somewhat less general. A variance
analysis is presented mostly for completeness of the theoretical applications in
residual variance and entropy estimation.

In Chapter 5 the boundary corrected expansion is used to derive a bias correction
to a class of entropy estimators introduced in [34]. The method was first presented
by us in [39] and the treatment here is similar.

Chapter 6 concerns the problem of residual variance estimation as an application of
the analysis of nearest neighbor distributions. Recently the product estimator (1.3)
has been shown to possess favourable theoretical properties. Using the theory in
Chapters 2 and 4, a worst-case convergence analysis is established. We speculated
in [41] that the method has a faster rate of convergence than expected by the
worst-case analysis. As a theoretical contribution, a formal proof is presented that
verifies the hypothesis by exploiting the local uniformity of probability densities.
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When reading the thesis, it is best to follow the order of the chapters with the
exception that Chapter 6 can be read before 5 depending on the interest of the
reader. Moreover, Chapter 6 does not rely on Chapter 3



Chapter 2

Geometry of Nearest
Neighbors

2.1 Introduction

Consider a grid of 36 points in the unit cube [0, 1]2 as in Figure 2.1(a). If we
take any of the points, then it is easy to convince oneself that the distance to the
nearest point in the Euclidean distance is always 0.1. Similarly, in general if M
samples are set on an n-dimensional grid, then the nearest neighbor distance is
1/(M1/n − 1) assuming that M1/n is an integer. Consequently, if a sum over all
the first nearest neighbor distances is taken, we have for any α > 0,

M
∑

i=1

dα
i,1 = M1−α/n + o(M1−α/n). (2.1)

Is it possible to generalize Equation (2.1) to hold for a larger class of point sets in
an inequality form? Based on the grid consideration, one might conjecture vaguely
that the left side of Equation (2.1) tends to be of order M1−α/n in most cases. In
this chapter, it is shown that in fact, for any set of points in the unit cube [0, 1]n,
Equation (2.1) generalizes as the inequality

M
∑

i=1

dα
i,k ≤ ckα/nM1−α/n (2.2)

for some constant c > 0 independent of M and k. Two geometric proof techniques
are used: one based on the concept of instrinsic dimensionality following [32] and
another, slightly different technique stemming from material physics [64]. As a
theoretical contribution, the extension of [64] to the case k > 1 was presented by
us in [40] and moreover, by taking the boundary effect into account, a tighter bound
was established in a rigorous way. On the other hand, the instrinsic dimension,
while often providing bounds far from optimal, generalizes naturally to general
metric spaces.

18
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Figure 2.1: Two point sets with the number of points (M) 36 or 121.

Obviously there does not exist any non-trivial universal lower bounds for the
power-weighted sum of distances (2.2) as for example taking M copies of a vector
produces a sample with all 1-NN distances equal to zero. To introduce more struc-
ture, it is common to examine independent identically distributed (i.i.d) samples
in "n, which enables the use of probability theoretic tools. Then the direction of
the inequality in (2.2) can be reversed on expectation:

E[
M
∑

i=1

dα
i,k] ≥ ckα/nM1−α/n (2.3)

for some constant c > 0, which depends on n and the common distribution of the
points. In fact, the inequality is a consequence of the theory of maximal functions.
It seems to appear first time in our work [40].

Figure 2.2 presents an outline of the chapter and it indicates that the sections on
upper and lower bounds can be read separately. After the theoretical analysis,
in the section related to applications, some known applications of the theory are
reviewed.

2.2 Basic Definitions

As the very basic framework in this thesis, we assume that (Xi)M
i=1 is a sequence of

independent random variables taking values in a metric space (X , ρ), where X is the
set of elements and ρ the metric on X . Each variable is distributed according to a
probability distribution Pi on X . Formally, there is also an underlying probability
space (Ω,F ,P), where the σ-algebra F defines the set of events and P is the
probability measure.

It is common in statistical literature to require not only independence, but also
that the variables (Xi)M

i=1 are identically distributed. This is not always done in
this thesis, because as a subtle point, dropping this second constraint adds to the
generality of the proofs.
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Figure 2.2: An outline of Chapter 2.
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1−NN

2−NN

Figure 2.3: 1-NN and 2-NN under the Euclidean distance with X = "2.

The nearest neighbor of a point Xi is defined simply as the point closest to Xi:

N [i, 1] = argmin1≤j≤M,j %=iρ(Xi,Xj).

The k-th nearest neighbor is defined recursively by

N [i, k] = argmin1≤j≤M,j /∈{i,N [i,1],...,N [i,k−1]}ρ(Xi,Xj).

The concept is intuitive as shown in Figure 2.3 for the Euclidean planar case.
Of course, the geometry of the space looks very different with other choices for
ρ and X . Especially in high-dimensional vector spaces one must take care as
considerations stemming from low-dimensional analysis may lead astray.

Some complications may arise if ties occur, that is, ρ(Xi,Xj) = ρ(Xi,Xl) for
some indices j ,= l distinct from i. While for continuous valued random variables,
the occurence of two similar distances has zero probability, this is not the case
for discrete data and for this reason tie-breaking has deserved attention in the
literature [9]. As our purpose is not to delve deeply into this special case due to
the additional complications and because we commonly work with distributions
possessing a density, the problem of ties is solved by choosing the smallest index
among the alternatives.

Using the definition of the k-th nearest neighbor, we may define the corresponding
distance by

di,k = ρ(Xi,XN [i,k])

and the averaged quantity

δM,k,α =
1

M

M
∑

i=1

dα
i,k, (2.4)

which is the target of our analysis in this chapter.

Finally, define the distance between x ∈ X and a set C ⊂ X by

ρ(x, C) = inf
y∈C

ρ(x, y).
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Figure 2.4: (a) presents 50 points sampled according to the uniform distribution
on [0, 1]2. In (b), uniform sampling was applied on the line y = x to generate the
50 vectors.

If X ⊂ "n, we also set

Cr = {x ∈ "n : ∃y ∈ C s.t. ρ(x, y) ≤ r} (2.5)

and ∂rC = (∂C)r ∩ C, where ∂C refers to the boundary of C.

2.3 Upper Bounds

2.3.1 Using the Instrinsic Dimension

In Figure 2.4 we see two different point sets. In 2.4(a), it is natural to take

X = [0, 1]2 (2.6)

as the metric space in which the variables (Xi)50i=1 take values. In 2.4(b), the same
choice would not describe the situation well as the points are restricted onto the
line with unit slope. A better choice is to set instead

X = {x ∈ [0, 1]2 : x(1) = x(2)}. (2.7)

Compare now Figures 2.4(a) and 2.4(b) to verify that the nearest neighbor dis-
tances are much smaller in (b). Clearly this is due to the fact that the space (2.7)
is in some sense smaller than (2.6); in fact, (2.7) is essentially one dimensional
being a scaled and rotated version of the interval [0, 1]. Obviously a good theory
should adapt to the special geometric structure in (2.7) and provide significantly
smaller bounds for δM,k,α compared to the case [0, 1]2.

A survey of mathematical literature reveals that there exists various theoretical
methods for assessing the dimensionality (and size) of a metric space. To facilitate
the choice, the following mathematical observation is useful.

Lemma 2.1. For any choice of X and realization (Xi)M
i=1, it holds that

B(X1, d1,1/2) ∩ B(X2, d2,1/2) = ∅.
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Proof. If x ∈ B(X1, d1,1/2) ∩ B(X2, d2,1/2), then

ρ(X1,X2) ≤ ρ(X1, x) + ρ(x,X2) <
1

2
d1,1 +

1

2
d2,1 ≤ max{d1,1, d2,1}

with a contradiction.

Heuristically, Lemma 2.1 implies that the presence of many large 1-NN distances is
possible only as long as the corresponding disjoint balls fit inside the metric space.
This suggests the use of packing numbers, which bound the maximal number of
disjoint balls with given radius inside X .

Definition 2.1. A set A ⊂ X is an r-packing, if for all distinct points x, y ∈ A,
ρ(x, y) ≥ r. For r > 0, we define the r-packing number as the cardinality of the
maximal packing, that is:

Npacking(r) = sup
A is an r-packing

|A|.

In basic cases, the packing numbers are able to capture the geometric structure of
the underlying space rather well as demonstrated by

Example 2.1. Consider the unit cube X = [0, 1]2 under the Euclidean metric.
Let {x1, . . . , xl} be an r-packing of X with 0 < r < 1. Then the balls B(xi, r/2)
and B(xj , r/2) are disjoint when i ,= j and also λ(B(xi, r/2)∩ [0, 1]2) ≥ 2−4V2r−2,
where λ refers to the Lebesgue measure. We may write

2−4lV2r
2 ≤

l
∑

i=1

λ(B(xi, r/2) ∩ [0, 1]2) = λ([0, 1]2 ∩ ∪l
i=1B(xi, r/2)) ≤ 1

implying the inequality l ≤ [24V −1
2 r−2] (the operation [·] can be used here because l

is an integer) and consequently Npacking(r) ≤ [24π−1r−2]. For the line in Equation
(2.7), we may consider the Hausdorff 1-measure H1 (length) to obtain similarly

2−1lr ≤
l
∑

i=1

H1(B(xi, r/2) ∩ X ) = H1(X ∩ ∪l
i=1B(xi, r/2)) ≤

√
2

and Npacking(r) ≤ [23/2r−1] when 0 < r <
√

2.

Fix a realization of the sample (Xi)M
i=1 and a real number r > 0. Moreover, assume

that i1, . . . , il indicate points with dij ,1 ≥ r. Then (Xij )
l
j=1 is an r-packing of X

and it must be that l ≤ min{M,Npacking(r)}. Thus, we have a concrete method
to bound the amount of points with the first nearest neighbor larger than some
threshold. In order to apply the considerations to

δM,1,α =
1

M

M
∑

i=1

dα
i,1, (2.8)

the following lemma is useful.
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Lemma 2.2. Let µ(dx) be a probability measure on ". For any bounded measur-
able function f : " → [0,∞) and p > 0, we have

∫

#
f(x)pµ(dx) = p

∫ ∞

0
rp−1µ({x ∈ " : f(x) > r})dr. (2.9)

Proof. The proof can be found in [56] in Theorem 8.16; the reference contains
also a compact introduction to measure theory. A short derivation of Equation
(2.9) is presented here for the sake of completeness: by the right continuity of the
integrand

p

∫ ∞

0
rp−1µ({x ∈ " : f(x) > r})dr

= p lim
h→0

h
∞
∑

i=1

(hi)p−1µ({x ∈ " : f(x) > h(i + 1)}).

Because partial integration can be applied to sums as well as to continuous inte-
grals, we have

h
∞
∑

i=1

(hi)p−1µ({x ∈ " : f(x) > h(i + 1)}) = −h
∞
∑

i=1

[µ({x ∈ " : f(x) > h(i + 2)})

− µ({x ∈ " : f(x) > h(i + 1)})]
i
∑

j=1

(hj)p−1

= hp
∞
∑

i=1

µ({x ∈ " : h(i + 1) < f(x) ≤ h(i + 2)})
i
∑

j=1

jp−1. (2.10)

When i grows, the approximation
∑i

j=1 jp−1 ≈ p−1ip becomes increasingly accu-
rate and on the other hand, terms with a small i can be neglected in the limit
h → 0; thus

lim
h→0

hp
∞
∑

i=1

µ({x ∈ " : h(i + 1) < f(x) ≤ h(i + 2)})
i
∑

j=1

jp−1

= lim
h→0

p−1
∞
∑

i=0

µ({x ∈ " : h(i + 1) < f(x) ≤ h(i + 2)})(hi)p

= p−1

∫ ∞

0
f(x)pµ(dx).

Applying Lemma 2.2 and the discussion before it to δM,1,α (viewing the sum as
an integral) yields

δM,1,α ≤ α

∫ diam[X ]

0
rα−1|{1 ≤ i ≤ M : di,1 > r}|dr

≤ α

∫ diam[X ]

0
rα−1 min{M,Npacking(r)}dr. (2.11)
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It remains to replace Npacking(r) with an appropriate expression to generate con-
crete bounds. Example 2.1 indicates that assuming

Npacking(r) ≤ [cr−n] + 1 (2.12)

when r > 0 (observe that Npacking(r) ≥ 1) covers a rather large number of finite
dimensional spaces. We also note that the well-known packing dimension is the
infimum of those n > 0 for which the bound (2.12) can be established for some
c > 0 [65]. Thus, this choice seems appropriate in order to turn (2.11) into the
main result of this section

In addition to being just a summary of the discussion this far, the proof contains
a generalization to k > 1. A proof based on the idea appeared first time in [32].

Theorem 2.1. Assume that for some constants Cn, n > 0, Npacking(r) ≤ [Cnr−n]+
1 when r > 0. Then for 0 < α < n and M ≥ k(Cn + 1),

δM,k,α ≤ n

n − α

(

Cnk

M

)α/n

− αCα/n
n k

(n − α)M
+

Cα/n
n k

M
. (2.13)

For α = n, we have the bound

δM,k,n ≤
(

2 + log(
M

k
)

)

Cnk

M
.

Proof. As a preliminary observation, the diameter of X is bounded by C1/n
n due

to the fact that the existence of two points x, y ∈ X with ρ(x, y) ≥ C1/n
n + ε for

some ε > 0 would indicate that Npacking(C
1/n
n + ε) ≥ 2.

Choose arbitrary r > 0 and define the set of indices

Ir = {0 < i ≤ M : di,k > r}.

When k = 1, we know that Ir is an r-packing. For k > 1, things are slightly
more complicated but it is shown next that Ir can be turned into an r-packing by
removing points.

Choose i1 ∈ Ir and define the set Ir,1 = Ir \ {N [i1, 1], . . . , N [i1, k − 1]}. Then
pick up i2 ,= i1 (i2 ∈ Ir,1) and set Ir,2 = {i1} ∪ (Ir,1 \ {N [i2, 1], . . . , N [i2, k − 1]}).
Correspondingly,

Ir,3 = {i1, i2} ∪ (Ir,2 \ {N [i3, 1], . . . , N [i3, k − 1]})

with i3 ,= i1, i2. To explain in words, in each iteration a point is chosen from the
active set and its nearest neighbors are removed up to the index k − 1 (excluding
the previously chosen points). Then, this chosen point is added to the set {ij}. By
repeating the aforementioned procedure as long as possible, we construct the sets
{Ir,j}L

j=1 for some L ≥ |Ir|/k. By construction each index in the sequence (ij)L
j=1

is in Ir,L.
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Choose now i, j ∈ Ir,L with i ,= j and notice that from the properties of Ir,L it
follows that ρ(Xi,Xj) ≥ r showing that it is an r-packing.

Now the proof proceeds similarly as Equation (2.11) was derived: Ir,L contains
by construction L ≥ |Ir|/k points, which implies that the cardinality of |Ir| is
bounded by

|Ir| ≤ kL ≤ kNpacking(r) ≤ kCnr−n + k.

Under the assumption that M ≥ kCn, we have using Lemma 2.2 (0 < α < n):

δM,k,α =

∫ ∞

0
αM−1rα−1|Ir|dr ≤

∫ C1/n
n

0
αM−1rα−1 min{Cnr−nk + k,M}dr

= Cα/n
n kα/nM−α/n + Cα/n

n kM−1 +

∫ C1/n
n

C1/n
n k1/nM−1/n

αCnkM−1rα−1−ndr

=
n

n − α
Cα/n

n kα/nM−α/n + Cα/n
n kM−1 − αCα/n

n

n − α
kM−1.

When α = n, the calculation is nearly similar, but the integral of r−1 produces a
logarithm:

δM,k,n ≤ 2CnkM−1 +

∫ C1/n
n

C1/n
n k1/nM−1/n

nkCnM−1r−1dr

= CnkM−1(2 + log
M

k
).

Example 2.2. In the case X = [0, 1]2, Example 2.1 and Theorem 2.1 together
imply the inequality

δM,k,1 ≤ 8π−1/2

(

k

M

)1/2

when 0 < α < n. For the space in Equation (2.7) similar considerations reveal
that

δM,k,1 ≤ 23/2

(

2 + log
M

k

)

k

M
.

It is of importance to observe that n does not have to be an integer. Thus,
Theorem 2.1 applies to many fractal sets of non-integer dimension. Such sets
commonly occur for example as attractors of non-linear differential equations.

2.3.2 Arbitrary Point Sets

While Theorem 2.1 adapts well to instrinsic dimensionality, it suffers from subop-
timality in the limit α→ n, because the term

n

n − α
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Figure 2.5: If D is the maximal 1-NN distance, then the balls B(Xi, di,1/2) drawn
in the figure belong to the set [−D/2, 1 + D/2]2.

approaches infinity providing rather unfavourable constants. Moreover, with α = n
one might ask if the additional logarithm can be avoided.

It seems that to address these issues more assumptions are required. At this point
the requirement of generality is dropped and the focus is shifted to worst-case
bounds on the unit cube [0, 1]n (n is from now on an integer) as stated by

(A1) X is a subset of [0, 1]n and ρ(x, y) = ‖x − y‖p for some p ≥ 1 (the lp-norm).

In contrast to general metric spaces, the concept of volume is now available. It
can be employed using the observation that by Lemma 2.1, the sum

M
∑

i=1

dn
i,1

is proportional to the volume of ∪M
i=1B(Xi, di,1/2), which is contained in a cube

with side length determined by the largest nearest neighbor distance as drawn in
Figure 2.5. The generalization to k > 1 requires some additional work; moreover,
the theory becomes more accurate when large distances are handled separately,
which motivates the cut-off in the following lemma.

Lemma 2.3. Suppose that (A1) holds. Then for any 0 < α ≤ n, M > k and
r > 0,

1

M

M
∑

i=1

dα
i,kI(di,k ≤ r) ≤

(

2nλ(Xr/2)k

Vn,pM

)α/n

(2.14)



28 2. Geometry of Nearest Neighbors

with I the indicator function of an event and λ the Lebesgue measure.

Proof. Choose any x ∈ "n. Let us make the counterassumption that there exists
k + 1 points, denoted by Xi1 , . . . ,Xik+1 (the indices being distinct), such that
x ∈ B(Xij , dij ,k/2) (B refers to a ball in the lp-norm) for j = 1, . . . , k + 1. Let
(ij , ij′) be the pair that maximizes the distance ‖Xij − Xij′

‖p. Then the triangle
inequality yields

‖Xij − Xij′
‖p ≤ ‖Xij − x‖p + ‖x − Xij′

‖p <
1

2
dij ,k +

1

2
dij′ ,k.

On the other hand, by the definition of the pair (ij , ij′),

‖Xij − Xij′
‖p =

1

2
‖Xij − Xij′

‖p +
1

2
‖Xij − Xij′

‖p

=
1

2
max

1≤j′≤k+1
‖Xij − Xij′

‖p +
1

2
max

1≤j≤k+1
‖Xij − Xij′

‖p

≥ 1

2
dij ,k +

1

2
dij′ ,k

leading to a contradiction. Thus, we have for the sum of indicator functions

M
∑

i=1

∫

#n

I(x ∈ B(Xi, di,k/2), di,k ≤ r)dx

=

∫

Xr/2

M
∑

i=1

I(x ∈ B(Xi, di,k/2), di,k ≤ r)dx ≤ λ(Xr/2)k.

On the other hand,

M
∑

i=1

∫

#n

I(x ∈ B(Xi, di,k/2), di,k ≤ r)dx = 2−nVn,p

M
∑

i=1

dn
i,kI(di,k ≤ r)

implies that

1

M

M
∑

i=1

dn
i,kI(di,k ≤ r) ≤ 2nV −1

n,pλ(Xr/2)kM−1.

The generalization to 0 < α < n is easiest by Jensen’s inequality [56]:

1

M

M
∑

i=1

dα
i,kI(di,k ≤ r) ≤

[

1

M

M
∑

i=1

dn
i,kI(di,k ≤ r)

]α/n

,

which implies (2.14).

By dropping the constraint di,k ≤ r, one obtains straightforwardly the following
corollary.

Corollary 2.1. Suppose that (A1) holds. Then we have for 0 < α ≤ n and
M > k,

δM,k,α ≤
(

2nnn/pk

M

)α/n

.
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Proof. The diameter of X = [0, 1]n in the lp-norm is n1/p, which implies that
setting r = n1/p in Lemma 2.3 is equivalent to not having the cut-off at all.
Moreover, Xn1/p/2 is contained in the ball of radius n1/p and center at the point

(1
2 , . . . , 1

2 ), which has the volume Vn,pnn/p.

Compared to Theorem 2.1, the logarithmic factor is avoided for α = n. Moreover,
when α is close to n, the constant in front of M−α/n is much smaller.

If one wants to proceed to the direction of deriving as tight a bound as possible,
then the constraints di,k ≤ r in Lemma 2.3 become useful:

Theorem 2.2. Suppose that (A1) holds and 0 < λ(Xr) ≤ λ(X )+ c1r when r ≤ c2

for some constants c1, c2 > 0. Then for any 0 < α < n and M > k,

δM,k,α ≤ inf
0≤r≤n1/p

(

(

2nλ(Xr/2)k

Vn,pM

)α/n

+
2nnn/prα−nk

M

)

= (
2nλ(X )k

Vn,pM
)α/n + O(M−α

n ( n−α+nα−1

n−α+1 )). (2.15)

Proof. The proof follows that in [40]. We already know by Lemma 2.3 that

1

M

M
∑

i=1

dα
i,kI(di,k ≤ r) ≤ (

2nλ(Xr/2)k

Vn,pM
)α/n.

A straightforward application of Corollary 2.1 to the subsample I = {1 ≤ i ≤ M :
di,k > r} yields

1

M

M
∑

i=1

I(di,k > r)dα
i,k ≤ 2αnα/p|I|1−α/nkα/nM−1.

The bound holds also in the special case |I| ≤ k as it is always true that di,k ≤ n1/p.
The first inequality in (2.15) follows now by Chebyshev’s inequality and Corollary
2.1:

|I| ≤ r−n
M
∑

i=1

dn
i,k ≤ 2nnn/pr−nkM−1,

because r can be any value between 0 and n1/p. To see the second result, choose

r = M
− n−α

n2−αn+n and use the approximation (1 + x)α/n ≈ 1 + α
nx valid for small

x.

An analogous result to Theorem 2.2 appeared in [64], but the boundary effect was
neglected as not significant, which is the case when M is very large.

The condition λ(Xr) ≤ λ(X ) + c1r requires some regularity of the boundary ∂X
and works poorly with fractal boundaries. It is similar to condition C.2 in [18].
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Figure 2.6: A demonstration of the bounds in Corollary 2.1 (the solid line) and
Theorem 2.2.

Nevertheless, such a bound holds for many commonly encountered sets; for exam-
ple, if X = [0, 1]n we have

λ(Xr/2) − λ(X ) ≤ (1 + r)n − 1 = nr + O(r2)

and the open ball B(0, 1) satisfies a similar bound. It is clear that the influence of
points close to the boundary grows once the dimensionality of the space becomes
bigger. To demonstrate the achieved improvement compared to the direct appli-
cation of Lemma 2.3 with r =

√
n under the Euclidean metric, both bounds are

drawn in Figure 2.6 with n = 3, k = 1, p = 2, α = 1 and X = [0, 1]3 using the
estimate λ(Xr/2) ≤ (r + 1)3 in (2.15).

The main use of Theorem 2.2 comes from that fact that it is already rather tight
and it looks likely that further improvements would require probabilistic arguments
as it is hard to improve the geometric method. The request for a probabilistic
approach stems from the asymptotic results in [18] and Chapter 3, which the
interested reader can compare to Theorem 2.2.

The analysis assumes that the space X is bounded. However, at least theoretically
it is of interest to ask, whether similar bounds hold even if the boundeness con-
dition is replaced by a condition on the moments E[‖Xi‖β ] (again, a probabilistic
condition is needed). A result to this direction was proven in [36].

2.4 A Probabilistic Lower Bound

2.4.1 The Small Ball Probability

The small ball probability function is often a useful concept when working with
nearest neighbors because of its distribution-free properties. Assuming that (A1)
holds, in the given lp-norm it is defined as the probability mass of a ball with
radius r and center x:

ωx(r) = P (X1 ∈ B(x, r)), (2.16)
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which of course makes sense only if the variables (Xi)M
i=1 are i.i.d. It is a remarkable

fact that the distribution of ωX1(d1,k) is independent of the common distribution
of (Xi)M

i=1 or the choice of p as shown by the following theorem, which has been
proven for example in [18].

Theorem 2.3. Assume that (A1) holds and the sample (Xi)M
i=1 is i.i.d. with a

common density q w.r.t. (with respect to) the Lebesgue measure λ. Then for α > 0,

E[ωX1(d1,k)α|X1] =
Γ(k + α)Γ(M)

Γ(k)Γ(M + α)
,

where Γ(·) refers to the Gamma function.

Proof. Choose 0 < z < 1 and set t = inf{s > 0 : ωX1(s) > z}. By continuity,
ωX1(t) = z. Thus ωX1(d1,k) > z if and only if there are at most k − 1 points in
the set B(X1, t). A combinatorial argument yields (with probability one)

P (ωX1(d1,k) > z|X1) =
k−1
∑

j=0

(

M − 1

j

)

ωX1(t)
j(1 − ωX1(t))

M−j−1

=
k−1
∑

j=0

(

M − 1

j

)

zj(1 − z)M−j−1. (2.17)

Now, we have using the formula
(

M − 1

j

)

=
Γ(M)

Γ(M − j)Γ(j + 1)

and some basic identities for beta functions,
(

M − 1

j

)
∫ 1

0
zj+α−1(1 − z)M−j−1dz =

(

M − 1

j

)

Γ(j + α)Γ(M − j)

Γ(M + α)

=
Γ(j + α)Γ(M)

Γ(j + 1)Γ(M + α)
. (2.18)

Theorem 8.16 in [56] (to represent the conditional expectation) implies that

E[ωX1(d1,k)α|X1] = α

∫ 1

0
zα−1P (ωX1(d1,k) > z|X1)dz

= α
k−1
∑

j=0

(

M − 1

j

)
∫ 1

0
zj+α−1(1 − z)M−j−1dz

= α
k−1
∑

j=0

Γ(j + α)Γ(M)

Γ(j + 1)Γ(M + α)
=

Γ(k + α)Γ(M)

Γ(k)Γ(M + α)
. (2.19)

The last equality can be proven by an induction argument.

For a fixed k the small ball probability behaves as M−α, because

Γ(M)

Γ(M + α)
= M−α + O(M−α−1) (2.20)

as shown by
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Lemma 2.4. For any fixed σ > 0,

Γ(M)

Γ(M + σ)
= M−σ + O(M−σ−1).

Proof. The proof here is a shortened version of that in Lemma 3.7 of [13]. For
any fixed σ ≥ 0 and all M > 0, Stirling’s formula for Gamma functions yields the
approximation

Γ(M + σ) =

√

2π

M + σ
(
M + σ

e
)M+σ[1 + O(M−1)]. (2.21)

Equation (2.21) can be applied to the ratio of two Gamma functions:

Γ(M)

Γ(M + σ)
= (1 +

σ

M
)−M−σ

√

M + σ

M

1 + O(M−1)

1 + O(M−1)
eσM−σ. (2.22)

For small x > 0, log(1 + x) can be expanded as log(1 + x) = x + O(x2) yielding

(1 +
σ

M
)M+σ = e(M+σ) log(1+σM−1) = e(M+σ)σM−1+σ2M−2

= eσ+O(M−1)

= eσ + O(M−1). (2.23)

Equation (2.23) substituted into (2.22) yields

Γ(M)

Γ(M + σ)
=

√

M + σ

M
M−σ[1 + O(M−1)].

And finally
√

M + σ

M
= 1 + O(M−1);

consequently
Γ(M)

Γ(M + σ)
= M−σ + O(M−σ−1).

2.4.2 Maximal Functions

Suppose that X = "n with ρ the lp-metric and that the sample (Xi)M
i=1 is i.i.d.

possessing a common density q w.r.t. the Lebesgue measure. If we want to an-
alyze dα

1,k (notice that by the i.i.d. assumption we may fix the index 1), then
the distribution-free properties of the small ball probability function (2.16) are
attractive. To reach a transformation of the problem, one may write

V α/n
n,p dα

1,k = ωX1(d1,k)α/n(
Vn,pdn

1,k

ωX1(d1,k)
)α/n = ωX1(d1,k)α/n(

ωX1(d1,k)

Vn,pdn
1,k

)−α/n.
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If the interest is only on bounding the expectation E[dα
1,k] from below, then it is

useful to observe that
ωX1(d1,k)

Vn,pdn
1,k

≤ sup
0<r<∞

ωX1(r)

Vn,prn
. (2.24)

Those familiar with measure theory recognize the expression in the right side of
(2.24) as the maximal function of q:

M(x) = sup
r>0

∫

Bp(x,r) q(y)dy

Vn,prn
= sup

r>0

ωx(r)

Vn,prn
.

The theory of maximal functions is in fact extensive and and appears in most basic
treatises of real analysis such as [56]. M(x) : "n → [0,∞] is a positive measurable
function (see e.g. [56]). An important goal in the theory of maximal functions is
the characterization of the conditions under which M is integrable. A satisfying
answer to this question is given by the following classical result, which tells that
finiteness of certain Lp-norms of q is sufficient.

Lemma 2.5. Choose any s > 1. The maximal function of q is bounded by

E[M(Xi)] ≤ 3n/se1/s(
s2

s − 1
)1/s‖q‖s‖q‖s′ .

The scalar s′ refers to the conjugate of s found by solving the equation 1
s + 1

s′ = 1.

Proof. By Hölder’s inequality,

E[M(Xi)] =

∫

#n

q(x)M(x)dx ≤ ‖q‖s′‖M‖s.

The end of the proof relies on the result by Hardy and Littlewood, which can be
found for example in Theorem 8.18 of [56]. It says that

‖M‖s ≤ 3n/se1/s(
s2

s − 1
)1/s‖q‖s.

2.4.3 A Derivation of the Lower Bound

Section 2.4.2 gives a lower bound for E[dα
i,1] in terms of the maximal function.

What remains is an application of Jensen’s inequality as demonstrated by

Theorem 2.4. Suppose that (A1) holds and the variables (Xi)M
i=1 are i.i.d. with

a common density q w.r.t. the Lebesgue measure. Then the inequality

E[dα
1,k] ≥ V −α/n

n,p E[M(X1)]
−α/n Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

≥ 3−α/22−α/ne−α/2n‖q‖−2α/n
2 V −α/n

n,p
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
(2.25)

holds for α > 0.
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Proof. By Theorem 2.3,

E[dα
1,k] ≥ V −α/n

n,p E[M(X1)
−α/nωX1(d1,k)α/n]

= V −α/n
n,p E[M(X1)

−α/n]
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
.

The proof is completed by observing the fact that by Jensen’s inequality

E[M(X1)
−α/n] ≥ E[M(X1)]

−α/n

and applying Lemma 2.5 with s = 2.

The second inequality in (2.25) is of worst-case nature and in fact, some debate
about the optimal constant for the bound on maximal functions is still going on.
For this reason, it is sometimes a good idea to examine the maximal function
directly e.g. when considering the uniform distribution.

Example 2.3. If (A1) holds and q is uniform on the set X ⊂ "n, then the first
inequality in (2.25) yields

E[dα
1,k] ≥ V −α/n

n,p λ(X )α/n Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
.

In the literature it is known that the inequality becomes an approximate equality
in the limit M → ∞. Due to being non-asymptotic, it might be useful in many
applications as demonstrated in [35].

One might ask, whether upper bounds in the spirit of Theorem 2.4 are possible.
If one tries to proceed into this direction, one probably needs to impose regularity
on q.

2.5 Applications

The bounds have importance in discrete and random geometry. Below, we mention
some already established applications.

Convergence analysis in non-parametric statistics

In non-parametric statistics, the inequalities of Section 2.3 serve as a useful tool,
often allowing a relatively general setting. In fact, the bounds first occured as a
method to analyze nearest neighbor classifiers under arbitrary sampling [32]. As
another example, in [28] a probabilistic upper bound was used as an important
building block in the analysis of the rate of convergence. As one direction of
research, one might want to generalize the analysis there to manifolds using the
theory in Section 2.3.1.

In Chapter 6, a worst-case rate of convergence is provided for an estimator of
residual variance. Again, Section 2.3 turns out to be useful there. The lower
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bound seems to find less use in this context, but it should be mentioned that in
the aforementioned [35] it was employed to demonstrate the curse of dimensionality
for a noise variance estimator.

Geometry of high dimensional spaces

Given the i.i.d. sample (Xi)M
i=1 on [0, 1]n and a point q ∈ "n, consider the quantity

∆q =
maxi=1,...,M ‖Xi − q‖p

mini=1,...,M ‖Xi − q‖p
.

It is a non-intuitive fact that ∆q tends to be close to 1 when the dimensionality n is
large as shown in [4]; in fact, this holds for any p-norm. Such considerations have
deserved attention in the theory of nearest neighbor search [4, 19, 52], because they
show that distances lose their significance in high dimensional spaces. The analysis
is done in the context that both M and n approach infinity in some appropriate
proportion. Interestingly, ∆q relates to nearest neighbor distances by

∆q =
dq,M

dq,1
,

where dq,k refers to the nearest neighbor distances of the point q. By Corollary
2.1 and Theorem 2.4,

E[d1,M ]

E[d1,1]
≥ cn1/pV 1/n

n,p M1/n (2.26)

for some c > 0 independent of n and M ; moreover, it was stated in [21] that

lim sup
n→∞

n1/pV 1/n
n,p ≤ 2(ep)1/p.

Consequently, if M1/n is large, then the contrast ∆X tends to be large as well with
a high probability given an independent random variable X distributed similarly
as the variables (Xi)M

i=1; of course, one still has to translate this consideration in
terms of ∆X to take into account that Equation (2.26) has expectations in the
fraction. This was done in [21], where new instability results were derived using
our original work in [40] contributing to the general thread of research.



Chapter 3

Asymptotic Results for
Nearest Neighbors

3.1 Introduction

Suppose that the points (Xi)M
i=1 are i.i.d. with some common density q. In Chapter

2 we derived inequalities for the sum

M
∑

i=1

dα
i,1.

When more probabilistic structure is introduced, it is possible to go deeper and
in fact determine the exact asymptotic M → ∞ behavior. Two aspects arise
naturally: expectation and variance. The focus here is on the former, whereas the
latter is considered in Chapter 4.

As a central result in nearest neighbor analysis, it has been shown that in the
Euclidean space with various other assumptions (see Section 3.3),

Mα/nE[dα
1,k] → V −α/n

n
Γ(k + α/n)

Γ(k)

∫

X
q(x)1−α/ndx; (3.1)

the sufficient conditions for this convergence can be said to be quite well-understood.
The result establishes a remarkable connection to information theory as discussed
in more detail in Chapter 6. However, Equation (3.1) involves in fact only a low
order approximation; for finite M , there are other factors that are significant.

More precisely, there are two sources of error:

1. The derivation of Equation (3.1) is based on a local linearization of q, without
taking into account higher order terms in the Taylor expansion.

2. q is taken as smooth on the set X but not on the whole space "n; conse-
quently, the boundaries ∂X may include points of non-smoothness rendering
a linearization argument challenging.

36
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Whether 1 or 2 is more relevant depends on the adopted setting. The mathematical
setting here involves assuming that q is smooth and strictly above zero with X a
bounded set (e.g. the uniform distribution in the unit cube). Then, somewhat
surprisingly, point 2 is the most relevant source of approximation error. In fact,
as the main result of the chapter, it is shown that under sufficient regularity of X
and q,

Mα/nE[dα
1,k] = V −α/n

n
Γ(k + α/n)

Γ(k)

∫

X
q(x)1−α/ndx

+ (D − V −α/n−1/n
n )

Γ(k + α/n + 1/n)

Γ(k)
M−1/n

∫

∂X
q(x)1−α/n−1/ndS

+ O(M−2/n log2+2α/n+4/n M).

The second term in the right side shows that the boundary effect contributes a
surface integral. The constant D is computed later; it does not depend on k or M .
The expansion has appeared before in [38]; in this chapter an extension to that
result is provided by adopting more general regularity conditions.

The logarithmic distance has been analyzed in a similar fashion as the expectation
(3.1) and it is known that under some regularity,

E[log d1,k] = − 1

n

∫

X
q(x) log q(x)dx +

1

n
(ψ(k) − ψ(M) − log Vn) + o(1), (3.2)

where ψ denotes the digamma function. Even though it has not appeared in
the literature before, the boundary correction extends straightforwardly to the
logarithmic case. The derivation is demonstrated in parallel with the analysis for
the α-moments.

The chapter is divided into eight parts as shown in Figure 3.1. In Section 3.2
basic definitions and assumptions are stated. The assumptions exclude unbounded
probability measures and require some smoothness of the densities. In Section 3.3
previous work and the main contributions are overviewed and placed in relation
to the adopted setting.

In Section 3.4 and 3.5, nearest neighbor distributions and the general proof tech-
nique are presented. After that, we proceed to the development of rigorous analysis
close to boundaries and in the interior. As common, the theoretical proofs involve
general ideas that can find uses in other contexts as well.

3.2 Assumptions and Definitions

Because the boundaries X have a significant role in a higher order nearest neighbor
analysis, regularity assumptions need to be imposed on ∂X . To achieve this, some
basic concepts from differential geometry are useful.

A nonempty subset S ⊂ "n is called an (n − 1)-dimensional submanifold, if for
each x ∈ S there exists ε > 0 and a homeomorphism

φ : U → S ∩ B(x, ε)
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Figure 3.1: Main parts of Chapter 3.

with U an open subset of "n−1. Recall that a homeomorphism is a bijection
with both φ and φ−1 continuous. This means that the set S is in a sense n − 1
dimensional even if it is a subset of "n; as a standard example consider for example
the surface of a sphere. Because all submanifolds that will be encountered are n−1
dimensional, we simply refer to submanifolds without stating the dimensionality
explicitly.

A submanifold is said to be twice continuously differentiable, if the local parametriza-
tion φ can be chosen as twice continuously differentiable on U and the Jacobian
Jyφ has linearly independent columns for all y ∈ U .

Choose x ∈ S and x = φ(z) for some z ∈ "n−1. When the Jacobian Jzφ exists, we
may define a subspace Gx as the span of the columns of Jzφ. Gx is the tangent
plane at x; for our purposes, another convenient set is the shifted plane

Tx = x + Gx = {y ∈ "n : y = x + x̃ for some x̃ ∈ Gx}

in set aritmetic notation, which will be continuously invoked in this chapter. With
two overlapping submanifolds, we use the notation GS

x to specify that the subman-
ifold S is meant.

It is possible to show that the tangent plane is invariant with respect to the choice
of φ as it should be for the definition to make sense. The normal vector n(x) is
defined as the unit vector orthogonal to Gx. Notice that there are two possible
directions for the normal; this orientation problem will be solved in later sections.
The orientation is important as the half-planes

Ux = {x + y : y ∈ "n and yT n(x) ≤ 0} (3.3)

are used later. In any case the normal is continuous in the sense that regardless
of the orientation,

min{‖n(x) − n(xn)‖, ‖n(x) + n(xn)‖} → 0 (3.4)

when xn → x in the limit n → ∞.

In our work [38] we required that the boundary ∂X is a twice continuously dif-
ferentiable compact submanifold. Such an assumption works well because for any
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Figure 3.2: The set ∂0.1X \ N0.1 when X = (0, 1)2.

x ∈ ∂X the boundary can be locally approximated with the tangent plane Tx.
However, in addition to the exclusion of most unbounded sets (due to the compact-
ness requirement), many important sets have only a piecewise smooth boundary.
For example, the unit cube (0, 1)n has a boundary, which is non-smooth in the
intersection of any two faces.

Even if the unit cube does not have a completely smooth boundary, the set of
singularities is heuristically speaking small. For example, in the planar X = (0, 1)2

case, the set of singularities (call it N) consists of the four corner points of the
rectangle. Then if δ > 0 is small, the amount of points closer than δ to N is small
as seen from λ(∂δ(0, 1)2) = 4δ − 4δ2 and λ(Nδ ∩ (0, 1)2) = πδ2 (see Figure 3.2).
For n-dimensional hypercubes we can similarly say that λ(∂δ(0, 1)n) ≤ 2nδ and
λ(Nδ ∩(0, 1)n) ≤ n2δ2. Corresponding considerations hold in terms of surface area
(the Hausdorff (n − 1)-measure in "n):

Hn−1(Nδ ∩ ∂(0, 1)n) ≤ 2n2δ.

Because nearest neighbor distributions are of local nature, it is more or less in-
tuitive that once the amount of points close to the problematic points of non-
smoothness is small, they have a small effect on nearest neighbor distances. Con-
sequently, it happens that the proof techniques in [38] remain valid albeit with
some additional technicalities. The following assumption almost achieves the goal
of summarizing the small set of singularities property of the cube.

(A2) X ⊂ "n is an open and bounded set with n ≥ 2, ρ is the Euclidean distance
(ρ(x, y) = ‖x−y‖) and the boundary ∂X is an (n−1)-dimensional submani-
fold (not necessarily differentiable), which can be represented as the union of
l disjoint twice continuously differentiable submanifolds denoted by {Ci}l

i=1

and a closed set N . We require that

1. The Hausdorff measure (surface area) Hn−1(Nδ ∩ ∂X ) is bounded by

Hn−1(Nδ ∩ ∂X ) ≤ cδ

for some constant c (depending only on X ) and all 0 < δ < 1.

2. The volume of the set of points close to N is bounded by

λ(Nδ ∩ X ) ≤ cδ2,
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(a) (b)

Figure 3.3: (a) The face Ci denotes here the leftmost line of the rectangle excluding
the end points. Di completes Ci into a smooth compact submanifold. (b) Assump-
tion (A2) does not hold, because at the corner points the tangent planes on Ci and
Cj become parallel.

again for a constant c > 0 and 0 < δ < 1.

3. There exist compact twice differentiable submanifolds {Di}l
i=1 such that

Ci = Di∩∂X \N . Moreover, for any pair Di, Dj with i ,= j, the tangent
planes at the intersection of the two submanifolds are not parallel to
each other: GDi

x ,= G
Dj
x .

4. For each i and x ∈ Ci, there exists δ > 0 such that B(x, δ) ∩ Di ⊂ Ci.
This means that each Ci is open relative to Di.

The set X is assumed to be open as a technical detail. For the cube (0, 1)n it is
natural to choose

C2i = {x ∈ [0, 1]n : x(i) = 0 and 0 < x(j) < 1 when j ,= i}

and
C2i−1 = {x ∈ [0, 1]n : x(i) = 1 and 0 < x(j) < 1 when j ,= i}.

Then as explained before, points 1 and 2 hold for N = [0, 1]n \ (∪2n
i=1Ci) and point

4 holds as well.

Condition 3 is demonstrated in Figure 3.3(a) for the rectangle (0, 1)2. The as-
sumption that each piece of the boundary is a subset of some compact smooth
submanifold is useful, because it allows a smooth parametrization of ∂X even
at points of non-smoothness. Figure 3.3(a) shows an extension consisting of two
half-circles; the idea generalizes to the n-dimensional hypercube. Because the sub-
manifolds {Di}l

i=1 are allowed to intersect each other outside ∂X , their existence
is not such a strong assumption.

In Figure 3.3(b) we find an example where condition 3 in (A2) is not valid, because
the tangent planes of the intersecting faces Ci and Cj become parallel. To the eye,
it is most clear for the rightmost corner point; however, in fact the two other
intersections also involve tangent planes becoming parallel.
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For the cube (0, 1)n it is on the other hand clear that neighboring faces do not
become parallel on points of intersection as they are in fact orthogonal to each
other. Thus we have verified that (A2) holds for (0, 1)n; in addition, it is clear that
it also holds for sets with a smooth, compact boundary. Consequently, it allows
a larger class of sets than the setting in [38] even though the case of unbounded
probability distributions remains open. Moreover, (A2) is by no means elegant
and most likely it is possible to simplify it.

Even though (A2) guarantees a large degree of regularity, it is useful to have the
following at disposal as well. It might follow from (A2), but there is no rigorous
proof at the moment.

(A3) X ⊂ "n and
inf

x∈X ,0<r<1
λ(B(x, r) ∩ X )r−n > 0.

Often all the regularity provided by (A2) is not needed if an analysis of the bound-
ary effect is not the goal. Then, instead of (A2) and (A3) it may be sufficient to
work with (A3) and

A2’) X ⊂ "n is a closed set. Denoting by ∂rX the set ∂rX = (∂X )r ∩X , it holds
that

sup
0<r<1

r−1λ(∂rX ) < ∞.

In contrast to Chapter 2, it is essential in this chapter that (Xi)M
i=1 is i.i.d. with a

regular common density q. Here two kind of regularity of q is needed: the domain
must be regular and the function must be smooth on the domain. (A2)-(A3) ensure
the first whereas the second relates to Hölder continuity:

Definition 3.1. Assuming that X ⊂ "n and 0 < γ ≤ 1, the set of Hölder contin-
uous functions H(c, γ) is defined as the class of bounded scalar valued functions f
with the property

|f(x) − f(y)| ≤ c‖x − y‖γ (3.5)

for all x, y ∈ X . For 1 < γ ≤ 2, H(c, γ) is the set of scalar valued functions f
on X such that f is differentiable in the interior X 0 of X , f ∈ H(1, c) and the
gradient ∇f is Hölder continuous (as a vector valued function) on X 0 with the
exponent γ − [γ].

The following states the regularity condition on q:

(A4) The variables (Xi)M
i=1 are i.i.d. possessing a common density q w.r.t. the

Lebesgue measure λ on the closure X̄ with X ⊂ "n an open set and q ∈
H(c1, γ) for some 0 < γ ≤ 2 and c1 > 0. Moreover, we assume that q ≥ c2

on X for some constant c2 > 0.

The closure is taken as the domain of definition for q to ensure it to be well-defined
on ∂X .

The following definitions are needed:
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Figure 3.4: W (1.5) is computed as the area of the gray region.

Definition 3.2. The half-plane of points with a positive first coordinate is denoted
by H:

H = {(s, x) : s ∈ ", x ∈ "n−1 and s ≥ 0}.

Obviously, (s, x) is understood as a concatenation. W is defined as the volume of
the intersection between a ball of radius r centered at (1, 0) and H:

W (r) = λ(B((1, 0), r) ∩ H).

W (r) is used to model the behavior of ωx(r) (Equation (2.16)) close to the bound-
aries of X . In words, H denotes the set of points right from the y-axis and W (r)
is just the area of the intersection between the ball centered at (1, 0) and H. This
is demonstrated in Figure 3.4. It is obvious that W (r) = Vnrn when 0 < r < 1,
but for r > 1 the situation is more complicated as shown by

Example 3.1. When n = 3, the function W is given by

W (r) =
4

3
πr3

when 0 < r < 1 and

W (r) =
2

3
πr3 − 1

3
π + πr2

for r > 1.

3.3 Earlier Work and Main Results

An introduction to general random local geometry can be found in the book [47].
One can also follow individual references; a review of recent developments with
applications can be found in [50]. To understand the thesis, it is not necessary to
go deeply into that direction, but it is good to know that in [69] such theories were
used to compute asymptotic limits for average power-weighted nearest neighbor
distances. For example, the following was proven:
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Theorem 3.1. Suppose that the i.i.d. vectors (Xi)M
i=1 take values in a convex

polyhedron X ⊂ "n. Then if the common density q is bounded from below and
above on X , we have for any α > 0,

Mα/nE[dα
1,k] → V −α/n

n
Γ(k + α/n)

Γ(k)

∫

X
q(x)1−α/ndx (3.6)

as M → ∞.

Alternatively, the asymptotic limit (3.6) can also be established if (Xi)M
i=1 is i.i.d,

0 < α < n and
∫

#n

q(x)1−α/ndx < ∞

instead of the restrictive convexity and positivity requirements. Theorem 3.1 can
be viewed as the most general law of large numbers for nearest neighbor distances
providing the asymptotic limit when 0 < α < n and thus establishing the connec-
tion to information theory through Rényi entropies as discussed in more detail in
Chapter 5.

Similar generality has not been achieved for α > n; probably it is because in that
case

∫

#n

q(x)1−α/ndx

is often unbounded (e.g. Gaussians). Nevertheless the convexity condition in
Theorem 3.1 seems restrictive and can be relaxed to some degree as long as q is
bounded from below by a constant larger than zero.

Many possible ways to extend Theorem 3.1 to different directions exist. One can
for example prove central limit theorems (e.g. [48]) or try to work under as weak
assumptions as possible. Here the focus is on analyzing the rate of convergence
w.r.t. M of which [69] does not as such provide much information. [18] provides
an approximation in the order of magnitude notation together with imposing rel-
atively few restrictions on X :

Theorem 3.2. Suppose that (A2′), (A3) and (A4) hold with 0 < γ ≤ 1 in (A4).
Then, keeping any k, α > 0 and ρ > 0 fixed,

E[dα
1,k] = V −α/n

n
Γ(M)Γ(k + α/n)

Γ(M + α/n)Γ(k)

∫

X
q(x)1−α/ndx + o(M−α/n−γ/n+ρ), (3.7)

where the remainder term goes to zero faster than M−α/n−γ/n+ρ with respect to
M .

To interpret Theorem 3.2, recall Equation (2.20):

Γ(M)

Γ(M + α/n)
= M−α/n + O(M−α/n−1).

In the special case of bounded (from below and above) and smooth densities,
Theorem 3.2 improves on 3.1, because convexity is not needed anymore. It also
implies the asymptotic rate of convergence O(M−α/n−γ/n+ρ) to the limit and there
are good reasons to believe that the actual rate is in fact O(M−α/n−γ/n).
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Theorem 3.2 is a first-order approximation as it is based on approximating q locally
by a constant and neglecting the boundary effect. Of the various higher order
terms, it is of interest to ask which ones are dominant, and how much can be
computed in closed-form. The following theorem shows the perhaps surprising
result that in the presence of boundaries, it is the boundary effect that causes the
largest error in the approximation. Moreover, the related higher order term takes
a simple form in the final expansion.

Theorem 3.3. Suppose that (A2)-(A4) hold with 1 < γ ≤ 2 in (A4). Then for
fixed k,

E[dα
1,k] =V −α/n

n
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

∫

X
q(x)1−α/ndx

+ (D − V −α/n−1/n
n )

Γ(k + α/n + 1/n)Γ(M)

Γ(k)Γ(M + α/n + 1/n)

∫

∂X
q(x)1−α/n−1/ndS

+ O(M−γ/n−α/n log2+2α/n+4/n M), (3.8)

where the constant D is the integral (recall Definition 3.2)

D =
1

n

∫ 1

0
a−α−2W (a−1)−α/n−1/n−1W ′(a−1)da

with W ′ the derivative of W .

Theorem 3.3 appeared first time in our work [38]. However, as mentioned in Section
3.2, instead of (A2) it was assumed that ∂X is a compact twice differentiable
submanifold or a polytope; both are special cases of (A2). To the best of our
knowledge, comparable earlier results are few; one should mention the work in
[51], which can be used for a similar higher order expansion for minimal spanning
trees with the simplification X = [0, 1]2 and q = 1 on the unit square (uniform
distribution).

It is remarkable that the second term in the right side of Equation (3.8) captures
the boundary effect in a simple way as a surface integral. The surface integral is
rigorously understood to be taken w.r.t. the Hausdorff measure Hn−1 on ∂X , but
the identification

dS =
√

|(Jzφ)T Jzφ|dz

for a local parameterization φ can be used to compute such integrals.

The constant D can be represented by the change of variable y = a−1 and partial
integration:

D =
−1

α+ 1

∫ ∞

1
rα d(W (r)−α/n−1/n)

dr
dr =

1

α+ 1
W (1)−α/n−1/n

+
α

α+ 1

∫ ∞

1
rα−1W (r)−α/n−1/ndr ≥ V −α/n−1/n

n

α+ 1
(1 + α

∫ ∞

1
r−2dr)

= V −α/n−1/n
n .

In the last inequality, the fact W (r) ≤ Vnrn was employed. It follows that

D−V −α/n−1/n
n ≥ 0 in Equation (3.8) implying that the boundary effect increases
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nearest neighbor distances. It is difficult to associate D with a geometric inter-
pretation because it arises from analytical considerations, but at least D can be
computed numerically when necessary.

There is also an unspecified error term in Theorem 3.3. Most likely the correct
order of magnitude is M−γ/n−α/n without the logarithmic factor, but showing
it would make the proof more complicated and in any case the Big-Oh notation
guarantees small error only for large M . The small sample case is examined via
experiments when necessary.

Example 3.2. As a concrete example, let us analyze uniformly distributed points
in the unit ball with α = 1. In such a case q = V −1

3 and Example 3.1 together with
a numerical evaluation gives

D ≈ 0.42.

Setting k = 1, Equation (3.8) takes the form

E[d1,1] ≈Γ(4/3)M−1/3 + 3DV 2/3
3 Γ(5/3)M−2/3 − 3Γ(5/3)M−2/3

+ O(M−1 log4 M).

While the moments of d1,k are definitely very interesting, an equally interesting
quantity is log d1,k due to its close connection to the differential entropy ([30]).
The theory behind the expectation E[log d1,k] differs from E[dα

1,k] only in technical
details even though the extension was not done in [38]. A modification of Theorem
3.3 to fit into this case results in

Theorem 3.4. Suppose that Assumptions (A2)-(A4) hold with 1 < γ ≤ 2 in (A4).
Then for a fixed k,

E[log d1,k] =C1(M,k)
Γ(M)

Γ(M + 1/n)

∫

∂X
q(x)1−1/ndS − n−1

∫

X
q(x) log q(x)dx

+ C2(M,k) + O(M−γ/n log3+4/n M).

The variables C1(M,k) and C2(M,k) are (ψ refers to the digamma function)

C1(M,k) =
V −1/n

n Γ(k + 1/n) log Vn

nΓ(k)
+

V −1/n
n ψ(M + 1/n)Γ(k + 1/n)

nΓ(k)

+ D1(ψ(k + 1/n) − ψ(M + 1/n)Γ(k + 1/n)

Γ(k)
) − V −1/n

n ψ(k + 1/n)

n

+
D2Γ(k + 1/n)

Γ(k)

C2(M,k) =
1

n
(ψ(k) − ψ(M) − log Vn)

D1 =
1

n2

∫ 1

0
a−2W (a−1)−1/n−1W ′(a−1)da

D2 = − 1

n2

∫ 1

0
a−2W (a−1)−1/n−1W ′(a−1)(log W (a−1) + n log a)da.
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Informally, Theorem 3.4 is obtained from Theorem 3.3 by taking derivative w.r.t.
α at the point α = 0. But a rigorous derivation requires more work.

3.4 Nearest Neighbor Distributions

Denote by dωx(r) the Lebesgue-Stieltjes measure of ωx(r) (see e.g. [56]). Moreover,
we define

Sx,k(t) = {(x1, . . . , xk) ∈ "n×k : 0 < ‖x1 − x‖ < . . . < ‖xk − x‖ < t} (3.9)

for any fixed x ∈ "n and k > 0. In Chapter 2, we have analyzed nearest neighbor
distributions mostly based on geometric arguments. However, it turns out that
the nearest neighbor distribution has an expression, which allows an elaborate
analysis. The following theorem is of course by no means novel (see [18]).

Theorem 3.5. Suppose that the points (Xi)M
i=1 are i.i.d. with a common density

q. Then the distribution of the nearest neighbors of a point x ∈ "n is characterized
by (f is a bounded measurable function on "n×(k+1))

E[f(X1,XN [1,1], . . . ,XN [1,k])|X1 = x]

= k!

(

M − 1

k

)
∫

Sx,k(∞)
(1 − ωx(‖x1,k − x‖))M−k−1f

k
∏

i=1

q(x1,i)dx1,1, . . . , dx1,k.

The argument of f was dropped for notational compactness. For functions that
depend only on the k-th nearest neighbor distance,

E[f(d1,k)|X1 = x] = k

(

M − 1

k

)
∫ ∞

0
(1 − ωx(r))M−k−1ωx(r)k−1f(r)dωx(r).

Proof. Choose (x1,1, . . . , x1,k) ∈ Sx,k(∞). Then we have

P (N [1, 1] = 2, . . . , N [1, k] = k + 1|X1 = x,X2 = x1,1, . . . ,Xk+1 = x1,k)

= (1 − ωx(‖x1,k − x‖))M−k−1 (3.10)

as this is the probability that no other points lie inside the ball B(x, ‖x1,k − x‖).
Using Equation (3.10),

E[f
k
∏

j=1

I(N [1, j] = j + 1)|X1 = x,X2 = x1,1, . . . ,Xk+1 = x1,k]

=P (N [1, 1] = 2, . . . , N [1, k] = k + 1|X1 = x,X2 = x1,1, . . . ,Xk+1 = x1,k]

× f(x, x1,1, . . . , x1,k)

=(1 − ωx(‖x1,k − x‖))M−k−1f(x, x1,1, . . . , x1,k).

Because the sample is i.i.d, replacing the set of indices (2, . . . , k+1) with any other
set does not make a difference. Thus, using the tower rule of conditional expec-
tations (E[·] = E[E[·|F ]], see [56]) and the combinatorial fact that the number of
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different subsets of {2, . . . ,M} with cardinality k is
(

M − 1

k

)

,

we end up with

(k!)−1

(

M − 1

k

)−1

E[f |X1 = x] = E[f
k
∏

j=1

I(N [1, j] = j + 1)|X1 = x]

=

∫

Sx,k(∞)
E[f

k
∏

j=1

I(N [1, j] = j + 1)|X1 = x,X2 = x1,1, . . . ,Xk+1 = x1,k]

×
k
∏

j=1

q(x1,j)dx1,1, . . . , dx1,k

=

∫

Sx,k(∞)
(1 − ωx(‖x1,k − x‖))M−k−1f

k
∏

i=1

q(x1,i)dx1,1, . . . , dx1,k.

The second result is obtained by integrating out the first k − 1 coordinates.

Under (A3)-(A4), the upper tails of the nearest neighbor distribution approach
zero fast.

Lemma 3.1. If (A3)-(A4) hold, then for 0 < t < 1 and 0 < k < M ,

P (d1,k > t|X1) ≤ Mke−c(M−k−1)tn

for a constant c > 0, which depends only on X and q.

Proof. Using Equation (2.17), we may estimate

P (d1,k > t|X1) = P (ωX1(d1,k) > ωX1(t)|X1) ≤ Mk

∫ 1

ωX1 (t)
(1 − z)M−k−1dz.

Now, we apply the fact that 1− z ≤ e−z for 0 ≤ z ≤ 1 and the inequality (implied
by (A3)-(A4)),

ωX1(t) ≥ c1λ(B(X1, t) ∩ X ) ≥ c2t
n

for a constant c2 > 0 which depends only on X . Thus

P (d1,k > t|X1) ≤ Mke−c2(M−k−1)tn

.

From Lemma 3.1 it follows that for a fixed k and

tM = M−1/n log2/n M , (3.11)

it holds that
P (d1,k > M−1/n log2/n M |X1) ≤ Mk−c log M , (3.12)

which approaches zero faster than any polynomial w.r.t. M .
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Figure 3.5: In the interior X \∂0.1X , q can be expanded inside the ball B(0.2, 0.1),
but outside the region bounded by the dashed lines it is no longer the case.

3.5 A General Overview of the Proofs

If we set for example tM = M−1/n log2/n M , then under (A2)-(A4),

E[dα
1,k] = E[dα

1,kI(d1,k ≤ tM )] + O(M−β)

with β > 0 any fixed positive number. Thus cutting off nearest neighbor distances
at tM introduces a negligible error term. If x ∈ X \ ∂tMX , then under the cut-off
the quantity

E[dα
1,kI(d1,k ≤ tM )|X1 = x] (3.13)

depends only on the values of the density q in the ball B(x, tM ). Because B(x, tM ) ⊂
X , it is possible to approximate (see Figure 3.5)

q(y) = q(x) + (y − x)T∇xq + O(t2M ).

In Section 3.7 it is shown that because the error in the expansion is of order t2M , a
local linearization has a small effect on the expectations (3.13). On the other hand,
substituting a locally linear density into Theorem 3.5 leads to a simple closed-form
expression for the α-moments E[dα

1,k].

The linearization argument here is a modification of the analysis in [18] with the
difference that in [18] a locally constant approximation of q was used. While
the interior X \ ∂tMX is relatively easy to handle under sufficient smoothness,
difficulties arise when x ∈ ∂tMX , because then B(x, tM ) is no longer contained in
X and q cannot be linearized.

As is often the case, to solve the difficulties associated with boundaries, it is useful
to consider a simplified case, namely the planar boundary. To do that, we set
X = [0, 1] × [−1/2, 1/2]n−1 and

x = (s, 0, . . . , 0) (0 < s < tM ). (3.14)

Then we ask whether
E[dα

1,k|X1 = (s, 0, . . . , 0)]

has some closed-form expression. Unfortunately, this does not seem to be the case
because the boundary cut-off introduces a source of non-linearity. To solve the
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A(x,r)

x

Figure 3.6: The set A(x, r).

problem, the trick is recalling that X1 does not have to stay fixed. It is shown in
Section 3.8.1 that surprisingly

∫ tM

0
E[dα

1,kI(d1,k ≤ tM )|X1 = (s, 0, . . . , 0)]ds (3.15)

does have a closed-form expression. In fact, this observation is the most central
idea of the chapter; the rest is mostly an application of literature together with
additional technicalities.

The main source of technicalities arises from the transition to general X and q from
the uniform distribution. In that process, we would like to end up with integrals
of the form (3.15). One approach is to define for each x ∈ ∂X \N (the singularities
N have to be excluded) and r > 0

A(x, r) = {x − sn(x) : s ∈ (0, r]}, (3.16)

see Figure 3.6. n(x) refers here to the outer normal of the set pointing outwards of
X ; formally the existence of such a normal is shown in Section 3.6.1. The idea is to
associate to each A(x, r) a line in the unit cube through a linearization argument;
after that q is linearized as well and the problem can be reduced to the uniform
unit cube case.

Does every point in ∂tMX belong to some A(x, tM ) if (A2) is valid and M large?
When points close to the set of singularities N are excluded, an affirmative answer
is given. In fact, it is shown in Section 3.8.2 that under (A2)-(A4),

∫

∂tM
X

E[dα
1,kI(d1,k ≤ tM )|X1 = x]q(x)dx

=

∫

X∩[∪y∈∂X\N A(y,tM )]
E[dα

1,kI(d1,k ≤ tM )|X1 = x]q(x)dx + O(t2+α
M ),

(3.17)

when q ∈ H(c, γ) with γ ≥ 1. Each point in the set X ∩ [∪y∈∂X\NA(y, tM )] can
be written as

y = x − rn(x)

for some r > 0 suggesting a natural parametrization. In Section 3.6 it is shown
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that
∫

X∩[∪y∈∂X\N A(y,tM )]
E[dα

1,kI(d1,k ≤ tM )|X1 = x]q(x)dx

=

∫

∂X\N

∫ tM

0
E[dα

1,kI(d1,k ≤ tM )|X1 = x − rn(x)]q(x − rn(x))drdS

+ O(t2+α
M ).

To simplify further, we utilize

∫ tM

0
E[dα

1,kI(d1,k ≤ tM )|X1 = x − rn(x)]q(x − rn(x))dr

≈ q(x)

∫ tM

0
E[dα

1,kI(d1,k ≤ tM )|X1 = x − rn(x)]dr (3.18)

as a good approximation under (A4). If we now compare to the uniform case of
Equation (3.15), we see that the integral in (3.18) has the same form except that
q cannot be said to be locally uniform and the boundary is not planar. However,
it is possible to use

q(y) = q(x) + O(tM ) when y ∈ B(x, 2tM ) ∩ X

to show that for each x ∈ ∂X , the points (Xi)M
i=1 can be thought to be approxi-

mately uniformly distributed inside B(x, 2tM )∩X . In addition, as shown in Figure
3.6, the boundary ∂X can be linearized around x. Together with a linearization of
q and ∂X , it is then shown in Section 3.8.2 that (3.18) reduces to the case of uni-
form points in the unit cube. Of the two arguments, linearization of the boundary
is more difficult to handle formally and the proofs in Section 3.6 take more effort.

The chapter proceeds now to the geometric proofs in Section 3.6. In Section 3.7
we analyze the interior X \∂tMX and after that in Section 3.8 the boundary effect
is analyzed first for the unit cube and then in the general case.

3.6 Geometry of the Boundaries

As discussed in Section 3.5, the purpose is using the sets

A(x, r) = {x − sn(x) : s ∈ (0, r]} (3.19)

to reparametrize ∂rX , but before that it is necessary to fix the direction of the
normal n(x). As mentioned earlier, we would like n(x) to point away from X .
Then intuitively one would suppose that A(x, r) ⊂ X , while A(x,−r) ⊂ XC for
any small positive r. But rigorously it is not evident that the direction can be
fixed this way and considerable effort is taken in Section 3.6.1 to establish the
orientation when x is not too close to N .

Despite the difficulties, the orientation can be fixed and the following reparametriza-
tion result is proven in Section 3.6.2:
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Figure 3.7: The set X (inside the circular arc) can be locally approximated by Ux

(grey area).

Lemma 3.2. Suppose that (A2) holds. For any function f : "n → " with 0 ≤
f ≤ 1 and a constant c1 > 0 large enough, we have for 0 < r < 1

∫

∂rX
f(x)dx =

∫

∂X\Nc1r

∫ r

0
f(x − r̃n(x))dr̃dS + O(r2), (3.20)

where the outer integral is the surface integral over ∂X . The remainder term O(r2)
can be bounded by c2r2 with the constant c2 depending only on X and c1, but not
on f .

Lemma 3.2 will be applied to the function

f(x) = E[dα
1,kI(d1,k ≤ tM )|X1 = x]q(x).

Choose two small numbers r1, r2 > 0, x ∈ ∂X and any y ∈ A(x, r1). Then if
∂X is locally smooth, it is reasonable to assume that the boundary can be well
approximated with a plane inside the ball B(y, r2). As a consequence, under our
convention that n(x) points outward, it would seem intuitive that inside B(y, r2),
X is very similar to the half-plane Ux of Equation (3.3) as demonstrated in Figure
3.7. A formalization of this idea in Section 3.6.1 in terms of volumes is the second
main result of this section:

Lemma 3.3. Assume that (A2) holds. Then there exists constants c1, c2 > 0
(depending only on X ) such that for any 0 < δ < 1, 0 < r1, r2 < c1δ and x ∈
∂X \ Nδ, if we fix y = x − r1n(x) and define the sets Ξ1 = B(y, r2) ∩ X and
Ξ2 = B(y, r2) ∩ Ux, then we have

λ(Ξ1 \ Ξ2) + λ(Ξ2 \ Ξ1) ≤ c2(r
n+1
1 + rn+1

2 ). (3.21)

Later on, it turns out that it is exactly the volumes of the intersections that matter
when simplifying the general case to the uniform distribution.

3.6.1 Linearization

The first step in establishing the main results in Lemmas 3.2 and 3.3 is showing
that for some constant c > 0, n(x) can be fixed to ensure that A(x, r) ⊂ X when
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r > 0 is small and x ∈ ∂X \ Ncr. We proceed through four intermediate steps,
which provide useful technical results. The following lemma is an application of
the derivative of inverse functions.

Lemma 3.4. Suppose that D ⊂ "n is an (n-1)-dimensional twice continuously dif-
ferentiable submanifold and choose any x ∈ D. Then there exists a local parametriza-
tion φ : U → B(x, ε) ∩ D and a constant cx > 0 such that if (xi)∞i=1 ⊂ D is a
sequence converging to x, then it is possible to choose an integer i0 > 0 with

‖φ−1(xi) − φ−1(x)‖ ≤ cx‖xi − x‖

for i > i0.

Proof. Choose a twice continuously differentiable parametrization φ : U → B(x, ε)∩
D with φ(0) = x. Because U is an open set, there exists δ1 > 0 such that the closure
B(0, δ1) is a subset of U . Notice that

(Jyφ)T Jyφ

is a continuous matrix valued function with eigenvalues strictly above zero for
each fixed y ∈ U . By continuity of the Jacobian, this implies that there exists a
constant c > 0 such that

inf
y∈B(0,δ1),‖z‖=1

‖(Jyφ)z‖ ≥ c. (3.22)

Because φ is a homeomorphism, φ(B(0, δ1)) contains the set B(x, δ2)∩D for some
δ2 > 0 and consequently φ−1(xi) ∈ B(0, δ1) for some i0 and all i > i0. Thus by
Equation (3.22) and the mean value theorem, for some ξ ∈ B(0, δ1) it holds that

‖xi − x‖ = ‖φ(φ−1(xi)) − φ(φ−1(x))‖
= ‖Jξφ(φ−1(xi) − φ−1(x))‖ ≥ c‖φ−1(xi) − φ−1(x)‖

finishing the proof if we take c = c−1
x .

Consider a local parametrization φ : U → B(x, ε) ∩ D of a continuously differen-
tiable submanifold D. The tangent plane at the point x = φ(u) is determined by
the span of the Jacobian Juφ. If x̃ is close to x, then by Lemma 3.4 ũ = φ−1(x̃) is
also close to u and

x̃ = x + Juφ(ũ − u) + O(‖ũ − u‖2)

= x + Juφ(ũ − u) + O(‖x̃ − x‖2) (3.23)

implying that the component of x̃ − x orthogonal to the plane Gx has a length of
order ‖x̃ − x‖2, because the sum of the first two terms in the right side of (3.23)
belongs to Tx. But the length of the projection is in fact given by |n(x)T (x̃ − x)|,
showing that

n(x)T (x̃ − x) = n(x)T Juφ(ũ − u) + O(‖x̃ − x‖2) = O(‖x̃ − x‖2).

While the logic works around a fixed point x, we would like to extend it to hold
for any pair (x, x̃) ∈ D ×D. If D is assumed to be a compact set, then a proof to
this direction is possible.
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Lemma 3.5. Suppose that D is a twice continuously differentiable (n-1)-dimensional
compact submanifold. Then for any sequence (x1,i, x2,i)∞i=1 ⊂ D × D with ‖x1,i −
x2,i‖ → 0 and x1,i ,= x2,i,

sup
i>0

|n(x1,i)T (x1,i − x2,i)|
‖x1,i − x2,i‖2

< ∞. (3.24)

Proof. Let us make the counterassumption, that Equation (3.24) goes to infinity
for the sequence (x1,i, x2,i)∞i=1. By compactness, without losing generality it may
be assumed that

(x1,i, x2,i) → (x, x)

for some x ∈ D. Choose φ : U → D ∩ B(x, ε) as a local parametrization around x
and set (for large i)

uj,i = φ−1(xj,i) (j = 1, 2).

By Lemma 3.4,
u1,i, u2,i → φ−1(x)

and using the fact that (Ju1,iφ)T n(x1,i) = 0, we have

n(x1,i)T (x1,i − x2,i)

‖x1,i − x2,i‖2
= n(x1,i)

T Ju1,iφ(u1,i − u2,i) + O(‖u1,i − u2,i‖2)

‖Jφ−1(x)φ(u1,i − u2,i) + o(‖u1,i − u2,i‖)‖2

= O(1)

leading to a contradiction.

The following lemma is invoked twice in the forthcoming analysis. It shows that
if a ball B(x, r) is not too close to N with x ∈ C1 (recall (A2) for the notation),
then B(x, r) ∩ D1 = B(x, r) ∩ C1. We already know by condition 4 in (A2) that
for any small r > 0 and fixed x this happens, but it is of interest to show that the
threshold under which the inclusion is valid does not get arbitrarily small.

Lemma 3.6. Suppose that (A2) holds and choose one of the submanifolds {Ci}l
i=1.

Then there exists a constant c > 0 such for all 0 < r < δ/5 < c and x ∈ Ci \ Nδ

B(x, r) ∩Di = B(x, r) ∩ Ci.

Proof. It seems easiest to proceed by a counterassumption: assume that for some
sequence (xi, yi, ri, δi)∞i=1 it holds that

1. For each i > 0, xi ∈ C1 \ Nδi and yi ∈ D1 \ C1.

2. δi → 0 in the limit i → ∞ and 0 < ri < δi/5.

3. ‖xi − yi‖ < ri.
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The contradiction is established by examining a path between xi and yi to ex-
ploit the fact that such a path contains a point in N by (A2). To construct an
appropriate path between the two points, a local parametrization on D1 is used.

By compactness of D1, it may be assumed that xi → x for some x ∈ D1 and a
local parametrization φ : U → B(x, ε) ∩ D1 can be found. When i is large, both
xi and yi are in the range of φ and it makes sense to define ui = φ−1(xi) and
∆ui = φ−1(xi) − φ−1(yi). Consider

ti = sup{0 ≤ t ≤ 1 : φ(ui + t∆ui) ∈ C1}

and zi = φ(ui + ti∆ui). zi /∈ C1 by condition 4 in (A2), but also zi ∈ D1 ∩ ∂X
by closedness. Consequently, by condition 3, zi ∈ N and it remains to show that
‖xi − zi‖ < 4ri. Lemma 3.4 indicates that (ui,∆ui) → (φ−1(x), 0) = (u, 0) with
u = φ−1(x) and by a Taylor expansion

ri > ‖xi − yi‖ = ‖(Juiφ)∆ui + O(‖∆ui‖2)‖ = ‖(Juφ)∆ui + o(‖∆ui‖)‖

≥ 1

2
‖(Juφ)∆ui‖

when i > i0 for some threshold i0 > 0. Consequently also

‖xi − zi‖ = ‖ti(Juφ)∆ui + o(ti‖∆ui‖)‖
≤ 2‖(Juφ)∆ui‖ ≤ 4‖xi − yi‖ < 4ri. (3.25)

A contradiction with the counterassumption is established, because zi ∈ N , while
xi ∈ ∂X \ N5ri .

Consider two points on different faces, say x ∈ C1 and y ∈ C2. For ‖x − y‖ to be
small, it would have to be that the compact submanifolds D1 and D2 are close to
each other as well. However, it is stated in (A2) that D1 and D2 intersect inside
∂X only in the set N , where they have tangent planes non-parallel to each other.
For this reason, it is expected that x and y cannot be too close to each other unless
they are close to N .

The heuristic discussion is demonstrated in Figure 3.8, where the point z is a point
of non-smoothness. The lower bound ‖x− y‖ ≥ min{‖x− z‖, ‖y − z‖} shows that
x and y can be made arbitrarily close to each other only if their distance to z
approaches zero.

Lemma 3.7. Suppose that (A2) holds and choose integers i ,= j. Then there exists
a constant c > 0 depending only on X such that for all 0 < δ < 1, x ∈ Ci \Nδ and
y ∈ Cj \ Nδ,

‖x − y‖ ≥ cδ.

Proof. The proof is divided into three parts, of which the second one is the longest.

1. Counterassumption
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Figure 3.8: The distance between x and y is bounded from below by ‖x − y‖ ≥
min{‖x − z‖, ‖y − z‖}.

The counterassumption states that there exists a sequence (xi, yi)∞i=1 and a strictly
increasing sequence of integers (ji)∞i=1 such that

ji‖xi − yi‖ → 0

when i → ∞, while xi ∈ C1 \ Nj−1
i

and yi ∈ C2 \ Nj−1
i

(C1 and C2 may be fixed

without compromising the generality of the proof). By compactness, we may
assume (by taking an appropriate subsequence) that (xi, yi) → (x, x) for some
x ∈ D1 ∩ D2 ∩ ∂X and consequently by (A2) x ∈ N . Without losing generality,
the choice x = 0 is made.

2. For some strictly increasing sequence of integers (ik)∞k=1, ρ(xik ,D1 ∩ D2) =
O(k−1j−1

ik
).

Let us choose two local parametrizations, φ1 : U1 → D1 ∩ B(0, ε) and φ2 : U2 →
D2 ∩ B(0, ε) with φ1(0) = φ2(0) = 0. By invoking (A2) for large i, there exists a
vector g ∈ "n−1 of unit norm such that

(J0φ2)g /∈ GD1
0 (3.26)

with GD1
0 the tangent plane of D1 at 0. Set ui = φ−1

1 (xi), vi = φ−1
2 (yi) and define

the functions fi around (0, 0) ∈ "n−1 ×" by

fi(ũ,α) = φ1(ui + ũ) − φ2(vi + αg).

In the following, it is shown that for any positive number c > 0, fi has a zero point
in the ball B(0, cj−1

i ) ⊂ "n for any large i (clearly fi is defined in the ball once i is
large). To understand why the zero points are useful, observe that if fi(ũi,αi) = 0
for some (ũi,αi) ∈ B(0, cj−1

i ), then φ1(ui + ũi) = φ2(vi + αig) and consequently
φ1(ui + ũi) ∈ D1 ∩ D2. Moreover, because c can be arbitrary, there exists an
increasing sequence of integers (ik)∞k=1 such that (ũik ,αik) ∈ B(0, k−1j−1

ik
) with

f(ũik ,αik) = 0 for k > 0 showing that ρ(xik ,D1 ∩D2) = O(k−1j−1
ik

).

Fix any c > 0. In order to show that eventually fi has a zero point in B(0, cj−1
i ),

observe that

J(0,0)fi = [Juiφ1,−(Jviφ2)g] = [J0φ1,−(J0φ2)g] + O(‖vi‖ + ‖ui‖); (3.27)
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this holds because the parametrizations are twice continuously differentiable. One
notices that both matrices (J0,0fi)(J0,0fi)T and (J0,0fi)T (J0,0fi) have eigenvalues
bounded from below by a constant c2

f > 0 independent of i and the choice of c
assuming that i ≥ i0, where the threshold i0 depends on c. In fact, [J0φ1,−(J0φ2)g]
is independent of i and non-singular by Equations (3.26) and (3.27) implying that
the non-negative eigenvalues of the positive definite matrices (J0,0fi)T (J0,0fi) (and
(J0,0fi)(J0,0fi)T ) can be bounded from below once the remainder term in (3.27)
is made small enough in the limit i → ∞.

Now, let (ũ0,i,α0,i) be the point that minimizes ‖fi‖2 on B(0, 1
2cj−1

i ) (such a point
exists even if not necessarily unique). We assume first that ‖fi(ũ0,i,α0,i)‖ > 0.
With the definition (ũ0,i is understood as a row vector so a transpose is taken)

hi =

(

ũT
0,i

α0,i

)

we have for large i,

‖fi(ũ0,i,α0,i)‖ = ‖(J0,0fi)hi +fi(0, 0)+O(‖ũ0,i‖2 +α2
0,i)‖ = ‖(J0,0fi)hi +o(j−1

i )‖,
(3.28)

because
fi(0, 0) = ‖φ1(ui) − φ2(vi)‖ = ‖xi − yi‖ = o(j−1

i )

by the counterassumption in the first step of the proof. The remainder depends
on the choice of c, but more importantly it goes to zero faster than j−1

i .

Moreover, the minimizing point must be at the boundary of B(0, 1
2cj−1

i ), as the
gradient of ‖fi‖2 is

2fi(ũ0,i,α0,i)
T Jũ0,i,α0,ifi = 2fi(ũ0,i,α0,i)

T J0,0fi

+ 2fi(ũ0,i,α0,i)
T (Jũ0,i,α0,ifi − J0,0fi)

= 2fi(ũ0,i,α0,i)
T J0,0fi + O(j−1

i ‖fi(ũ0,i,α0,i)‖),

which cannot be zero if fi(ũ0,i,α0,i) is non-zero and i large, because

‖fi(ũ0,i,α0,i)
T J0,0fi‖2 = fi(ũ0,i,α0,i)

T (J0,0fi)(J0,0fi)
T fi(ũ0,i,α0,i)

≥ c2
f‖fi(ũ0,i,α0,i)‖2

and thus no local minimum of fi may exist in B(0, 1
2cj−1

i ). On the other hand, if
hi is at the boundary, then

‖(J0,0fi)hi‖ ≥ 1

2
cfcj−1

i

and by Equation (3.28), ‖fi(ũ0,i,α0,i)‖ ≥ 1
4cfcj−1

i (say) for i large enough. Con-
sequently the minimizing point cannot be at the boundary either and it must be
that ‖fi(ũ0,i,α0,i)‖ = 0 once i passes some threshold (which depends on c).

3. Contradiction:
We have proven in step 2 that there exists a sequence (zk)∞k=1 ⊂ D1∩D2 such that
‖zi − xik‖ = o(j−1

ik
k−1). But because xik ∈ ∂X \ Ncj−1

ik

, this contradicts Lemma

3.6 as by that result, B(xik , j−1
ik

/5)∩D1 ⊂ C1 for large k whereas zk ∈ D1 \C1.
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Recall that there is two possible orientations for the normal n(x) at the boundary
∂X . Now the orientation problem can be solved. The following result is not only
useful in this regard, but it also states that the sets A(x, r) in Equation (3.19)
tend to be disjoint for different points x.

Lemma 3.8. Suppose that (A2) holds. Then, there exists a constant 0 < c < 1
(depending only on the set X ) such that for all 0 < δ < 1,

A(x, r) ∩ A(y, r) = ∅

when y ,= x, x, y ∈ ∂X \Nδ and |r| < cδ. Moreover, when |r| < cδ, the orientation
of n(x) can be chosen in such a way that A(x, r) ⊂ X and A(x,−r) ⊂ X̄C .

Proof. Lemma 3.7 ensures that we may always choose 0 < c < 1 in such a way
that if x ∈ Ci \ Nδ and y ∈ Cj \ Nδ with i ,= j, then A(x, r) ∩ A(y, r) = ∅ for all
0 < r < cδ and 0 < δ < 1. Thus, we may restrict ourselves to the case x, y ∈ C1.

Let us make the counterassumption that there exist sequences (xi, yi)∞i=1 ⊂ C1×C1

and (r1,i, r2,i)∞i=1 → (0, 0) such that

xi − yi = r1,in(xi) − r2,in(yi)

and xi ,= yi. Then we would have

1 =
r1,in(xi)T (xi − yi)

‖xi − yi‖2
− r2,in(yi)T (xi − yi)

‖xi − yi‖2

leading to a contradiction, because by Lemma 3.5 the right side should go to zero.
Thus the first part of the proof is complete.

We know also that if x ∈ ∂X \ Nr, then A(x, r) must either be a subset of X or
its complement X̄C because otherwise it would contain points from ∂X \ N . To
see that this would be contradictory, one should observe that the first part of the
proof holds for the sets A(x, r) ∪ {x} as well.

Let us make the counterassumption that

A(x, r) ∪ A(x,−r) ⊂ X̄C

for some x ∈ C1 \ Nδ and 0 < r < cδ.

As a vague heuristic idea, such a situation could occur only if X somehow resembles
the set X in Figure 3.9 at the cross-point of four faces, which of course does not
make sense if n(x) is assumed to be well-defined. In order to implement this
consideration, choose any 0 < |t| < |r|, define the pair of points (z1,t, z2,t) by

zl,t = x + (−1)ltn(x) (l = 1, 2)

and choose ε > 0 in such a way that B(zl,t, ε) ⊂ X̄C (this is possible because X̄C

is an open set). By (A3) there exists a sequence (xi)∞i=1 ⊂ X approaching x (when
i → ∞). Then for any t > 0, there exists an integer it such that the set

{xit − sn(x) : s ∈ [0, t]} ∪ {xit + sn(x) : s ∈ [0, t]} (3.29)
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Figure 3.9: n(x) is not defined in any of the corner points including the cross-point
of the four faces.

contains two distinct points (z̃1,t, z̃2,t) on C1 approaching (x, x) when t → 0. This
follows from the fact that for it large enough, the set (3.29) intersects both B(z1,t, ε)
and B(z2,t, ε) with xit ∈ X thus containing points from X and X̄C . Consequently,
(3.29) must also include points in ∂X and with the choice of c at the beginning,
such points are in C1.

We have arrived into a contradiction with Lemma 3.5 because by definition

|n(x) · (z̃1,t − z̃2,t)

‖z̃1,t − z̃2,t‖2
| =

1

‖z̃1,t − z̃2,t‖

and

| (n(x) − n(z̃1,t)) · (z̃1,t − z̃2,t)

‖z̃1,t − z̃2,t‖2
| ≤ ‖n(x) − n(z̃1,t)‖

1

‖z̃1,t − z̃2,t‖
the latter being asymptotically neglible, because we may choose the normals in
such a way that

‖n(x) − n(z̃1,t)‖ → 0

as t → 0.

To finish, we must examine the opposite case

A(x, r) ∪ A(x,−r) ⊂ X .

In this case, we may find a sequence (xi)∞i=1 ⊂ X̄C approaching x. As in the
previous step, it can be seen that again

{xi − sn(x) : s ∈ [0, t]} ∪ {xi + sn(x) : s ∈ [0, t]}

contains at least two distinct points from ∂X for arbitrarily small t > 0 when i is
large enough. Analogously to the previous case, this leads to a contradiction.

From now on, the outer direction of n(x) that ensures A(x,−r) ⊂ X̄C is always
chosen. Next the proof of the linearization argument of Lemma 3.3 is given.

Proof. (Proof of Lemma 3.3)
Let us make the counterassumption that for any 0 < c1 < 1, there exists a sequence

(xi, yi, r1,i, r2,i, δi)
∞
i=1
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Figure 3.10: The set Gi (grey region).

with r1,i, r2,i → 0, 0 < r1,i, r2,i < c1δi < 1, xi ∈ ∂X \ Nδi and yi = xi − r1,in(xi)
such that the left side of inequality (3.21) exceeds c2r

n+1
1,i + c2r

n+1
2,i for any c2 > 0

when i is large enough. We may assume that xi ∈ D1 for i > 0 and xi → x with
x ∈ D1 by choosing an appropriate subsequence (fixing D1 is only a notational
convention). Then there exists a local parametrization φ : U → B(x, ε) ∩D1.

For each i > 0, choose an arbitrary point zi ∈ B(xi, r1,i + r2,i) ∩D1. In the limit
i → ∞, the formula for the derivative of inverse functions yields

φ−1(zi)−φ−1(xi) = (Jφ−1(xi)φ)−1(zi−xi)+O(‖zi−xi‖2) = O(‖zi−xi‖), (3.30)

where we used (Jφ−1(xi)φ)−1 → (Jφ−1(x)φ)−1 in the limit i → ∞. When i is large
enough, the fact that B(xi, r1,i + r2,i) ⊂ B(x, ε), a Taylor expansion and (3.30)
yield

zi = xi + Jφ−1(xi)φ(φ−1(zi) − φ−1(xi)) + O(‖zi − xi‖2).

The first sum in the right side is a point on the tangent plane Txi ; thus the distance
between zi and the set Txi is

ρ(zi, Txi) = O(‖zi − xi‖2) (3.31)

in the sense that there exists a point in Txi whose distance to zi is of magnitude
O(‖zi − xi‖2). Set di = supz∈∂X∩B(xi,r1,i+r2,i) ρ(z, Txi). Because each zi is arbi-
trary in the ball B(xi, r1,i + r2,i), we may say that when c1 is small in order for
Lemma 3.7 to hold,

di = sup
z∈C1∩B(xi,r1,i+r2,i)

ρ(z, Txi) ≤ sup
z∈D1∩B(xi,r1,i+r2,i)

ρ(z, Txi) = O(r2
1,i + r2

2,i).

(3.32)
Define the sets (the sum of a vector and a set being defined in the standard way)

Gi = ∪−di≤r≤di [Txi + rn(xi)].

Gi is demonstrated in Figure 3.10. Then,

∂X ∩ B(yi, r2,i) ⊂ Gi ∩ B(xi, r1,i + r2,i) (3.33)

and Equation (3.32) implies that

λ(Gi ∩ B(xi, r1,i + r2,i)) = O(rn+1
1,i + rn+1

2,i ). (3.34)
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We may divide B(yi, r2,i) \ Gi into the sets

A1 = (B(yi, r2,i) \ Gi) ∩ Uxi

and
A2 = (B(yi, r2,i) \ Gi) ∩ UC

xi
,

both of which are open and convex. Lemma 3.8 implies that for i large enough
(again assuming that c1 is sufficiently small),

yi −
1

2
r2,in(xi) ∈ A1 ∩ X .

Thus A1 ∩X is non-empty and consequently A1 must be a subset of X because it
does not contain points from ∂X (as implied by Equation (3.33)). For by convexity,
if A1 ∩ XC ,= ∅, then A1 would contain a boundary point as well. On the other
hand, by Lemma 3.8 and the same argument as before, A2 is in XC when i is large
enough. Thus, inevitably

A2 ∩ X = ∅.
We may conclude that for any large i,

A1 = A1 ∩ X = (A1 ∩ X ) ∪ (A2 ∩ X )

= ((B(yi, r2,i) ∩ Uxi ∩ X ) \ Gi) ∪ ((B(yi, r2,i) ∩ UC
xi

∩ X ) \ Gi)

= (B(yi, r2,i) ∩ X ) \ Gi

and Equation (3.34) leads to a contradiction with the counterassumption at the
beginning finishing the proof.

3.6.2 The Set ∂rX

We examine the set of points close to the boundary ∂X defined in Equation (2.5)
rigorously. The idea behind the sets A(x, r) becomes evident once it is proven that
each point in ∂rX belongs to one of such sets.

Lemma 3.9. If (A2) holds, then there exists a positive number c2 > 0 such that
for all c1 > c2, there is a constant c3 > 0 such that

λ(∂rX \ ∪x∈∂X\Nc1r
A(x, r)) + λ(∪x∈∂X\Nc1r

A(x, r) \ ∂rX ) ≤ c3r
2

for 0 < r < 1.

Proof. We show that any sequence approaching ∂X eventually belongs to ∂rX
as long as the elements of the sequence do not get too close to N . Set (xi)∞i=1

as a sequence with di = ρ(xi, C1) → 0 and xi ∈ X \ Nc1di for some constant
c1 > 17. By compactness, we may assume that xi → x ∈ D1. The proof proceeds
by an application of the implicit function theorem to show that eventually xi ∈
∪y∈∂X\Nc1di

A(y, di).

Choose a local parametrization φ : U → D1 ∩ B(x, ε) (φ(0) = x) at the point x
and define the injective mapping g : U × [−δ1, δ1] → "n (the proof of Lemma 3.8
shows injectivity for small δ1 > 0) by

g(u, r) = φ(u) − rn(φ(u)).
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The normal is understood as that of D1, because φ(u) may well be outside ∂X
(the orientation of the normal is not relevant here). If it could be shown that the
range of g contains an open set with x in it, then xi would eventually belong to
that open set when i is large and it would hold that

xi = g(ui, ri) = φ(ui) − rin(φ(ui))

for some pair (ui, ri) ∈ U × [−δ1, δ1] leaving us the proofs of ri ≤ di and φ(ui) ∈
∂X \ N 1

2 c1di
. Namely, if the latter two hold, then Lemma 3.8 shows that in the

limit i → ∞,
xi ∈ ∪y∈∂X\N 1

2
c1di

A(y, di)

when c1 is large enough.

Possibly the easiest way to proceed is by examining the derivative of g at the
origin. Let (vi(φ(u)))n−1

i=1 be an orthonormal basis for the tangent space at the
point φ(u) obtained by Gram-Schmidt orthonormalization of the columns of Juφ.
Then, each vi(φ(u)) is a continuously differentiable function on U . For u close to
0, we obtain

n(φ(u)) =
n(x) −

∑n−1
i=1 〈n(x), vi(φ(u))〉 vi(φ(u))

‖n(x) −
∑n−1

i=1 〈n(x), vi(φ(u))〉 vi(φ(u))‖
.

Clearly n(φ(u)) and consequently g is continuously differentiable around the origin,
because the denominator is bounded away from zero when u is close enough to 0.
Moreover, the Jacobian of g at (0, 0) is

J(0,0)g = [J0φ,−n(x)] ,

which is non-singular rendering the inverse function theorem valid. By the inverse
function theorem,

g(B((0, 0), δ2))

is open for any small δ2 > 0 and it contains x. Consequently, as mentioned before
there exists an integer i such that xi belongs to the range of g.

Let (ui, ti) be the pair with g(ui, ti) = xi; then the inverse function theorem also
implies that (ui, ti) → 0. For any 0 < δ3 < 1, we may choose a point yi ∈ C1 with
‖xi − yi‖ ≤ (1 + δ3)di and by Lemma 3.5,

(1 + δ3)
2d2

i ≥ ‖xi − yi‖2 ≥ t2i + ‖φ(ui) − yi‖2 − 2ti(φ(ui) − yi)
T n(φ(yi))

= t2i + ‖φ(ui) − yi‖2 + O(ti‖φ(ui) − yi‖2).

Specifically, there exists i0 > 0 such that for all i > i0 the remainder term is
at most half in absolute value compared to ‖φ(ui) − yi‖2 regardless of how δ3 is
chosen. This implies that ti ≤ (1 + δ3)di and setting δ3 → 0 with i fixed, we have
ti ≤ di.

Before proceeding, we still need to verify that φ(ui) ∈ C1 as well (it could be
outside ∂X ). To see this, for each i choose yi ∈ C1 with ‖xi − yi‖ < 2di. Then

‖φ(ui) − yi‖ ≤ ‖φ(ui) − xi‖ + ‖xi − yi‖ < 3di
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and also yi ∈ ∂X\N15di (recall that c1 > 17) proving by Lemma 3.6 that eventually
φ(ui) ∈ C1, because φ(ui) ∈ B(yi, 3di) ∩D1.

To summarize, when c1 is large enough, then for any choice (xi)∞i=1 with di =
ρ(xi, ∂X ) → 0 and xi ∈ ∂X \Nc1di , xi belongs to the set ∪x∈∂X\N 1

2
c1di

A(x, di) for

i ≥ i0, where i0 is a positive integer. In other words, for small r

∂rX \ Nc1r ⊂ ∪x∈∂X\N 1
2

c1r
A(x, r). (3.35)

It is also true that the inclusion

∪x∈∂X\Nc1r
A(x, r) ⊂ ∂rX (3.36)

can be assumed to be valid in the small r region. It remains to show that

∪x∈Nc1r∩∂X\N 1
2

c1r
A(x, r)

and Nc1r ∩ X have small volumes. The latter holds by condition 2 in (A2):

λ(Nc1r ∩ X ) = O(r2).

Lemma 3.8 ensures that A(x, r) ⊂ X whenever x ∈ ∂X \ N 1
2 c1r and

∪x∈∂X\N 1
2

c1r
A(x, r) \ ∪x∈∂X\Nc1r

A(x, r) ⊂ Nc1r ∩ X .

Again by by condition 2 in (A2) the set in the right side has a measure of order
O(r2).

Lemma 3.8 implies that the sets A(x, r) and A(z, r) are disjoint when x ,= z and
they also (mostly) cover ∂rX . For these two reasons, the reparametrization

y = x − tn(x)

becomes possible for y ∈ ∂rX , x ∈ ∂X and 0 ≤ t ≤ r. One arrives at the result in
Lemma 3.2 as proven next.

Proof. (Proof of Lemma 3.2)
To begin with, let us fix a constant c > 0 and choose any positive number r > 0.
Let x0 ∈ ∂X be a point on one or more of the smooth submanifolds {Di}l

i=1, say
on D1. Then, there exists a local parametrization φ : U → B(x0, δ0) ∩ D1 with
U a bounded open set and we may define V = φ−1(B(x0, δ0) ∩ ∂X ∩ D1 \ Ncr).
Instead of examining the whole integral (3.20), at this point we restrict ourselves
to a local neighborhood:

∫

∪x∈B(x0,δ0)∩∂X∩D1\Ncr A(x,r)
f(y)dy. (3.37)

Assuming that c is initially large enough and r sufficiently small, g(u, t) = φ(u)−
tn(φ(u)) can be taken as an injection on V × [−r, r] by Lemma 3.8 and it has the
Jacobian

J(u,t)g = [Juφ− tJun(φ(u)),−n(φ(u))] . (3.38)
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The Jacobian is important, because its determinant appears after the change of
variables. To simplify the expression (3.38), notice that all submatrices in the
expression can be assumed to be bounded and we may use (for the l2-matrix
norm)

sup
‖D‖,‖E‖≤1

|det(D + εE) − det(D)| = O(ε)

when ε approaches zero to conclude that in absolute value, the determinant of
J(u,t)g is

|det(J(u,t)g)| = |det([Juφ,−n(φ(u))])| + O(t) =
√

det((Juφ)T Juφ) + O(t)

allowing us to get rid of the term Jun(φ(u)). Under the change of variables y =
φ(u) − tn(φ(u)), Equation (3.37) takes the form

∫

∪x∈B(x0,δ0)∩∂X∩D1\Ncr A(x,r)
f(y)dy

=

∫

V

∫ r

0
f(φ(u) − tn(φ(u)))

√

det((Juφ)T Juφ)dtdu + O(r2)

=

∫

B(x0,δ0)∩∂X∩D1\Ncr

∫ r

0
f(x − tn(x))dtdS + O(r2); (3.39)

the remainder term goes to zero at least as fast as r2 (with x0 and δ0 fixed). In
the last equality, the standard definition of surface integrals was invoked.

Even though the local considerations are already convincing, a generalization of
(3.39) to the whole set is required. By compactness, each submanifold D1 can be
covered with a finite number of sets of the form D1 ∩B(xi, δi) with corresponding
local parametrizations φi. If we set Si = B(xi, δi) ∩ ∂X ∩D1 \ Ncr, then one can
examine each ball separately by replacing f with

fi(x) = I(x /∈ ∪y∈Si\∪
i−1
k=0Sk

A(y, r))f(x)

to take into account the overlap between the sets. By proceeding through all the
submanifolds {Dj}l

j=1 we are able to cover the whole set ∂X \ Ncr (the number
of sets in the cover is independent of r and c) and for the resulting functions
f1, . . . , fs,

∫

∂rX
f(y)dy =

∫

∪x∈∂X\Ncr A(x,r)
f(y)dy + O(r2)

=
s
∑

i=0

∫

∪
x∈Si\∪

i−1
k=0

Sk
A(x,r)

f(y)dy + O(r2)

=
s
∑

i=0

∫

Si

∫ r

0
fi(x − tn(x))dtdS + O(r2)

=
s
∑

i=0

∫

Si\∪
i−1
k=0Sk

∫ r

0
f(x − tn(x))dtdS + O(r2)

=

∫

∂X

∫ r

0
f(x − tn(x))dtdS + O(r2).

Lemmas 3.7-3.9 and the local analysis in the first part of the proof were applied
in the three first equalities, whereas (A2) establishes the last one.
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3.7 The Interior

It was shown in Lemma 3.1 that when considering E[dα
1,k|X1], the cut-off

E[dα
1,kI(d1,k ≤ tM )|X1]

is possible if we set
tM = M−1/n log2/n M (3.40)

as the difference between the thresholded and original expectations approaches
zero fast. After introducing the cut-off, X \∂tMX can be considered as the interior
points of X . The idea is that in this set, the boundaries can be neglected and a
linearization of q is possible. In this sense, heuristically speaking X \∂tMX contains
the easy points.

We define the function

gM (x, r) = 1 if x ∈ X \ ∂tMX and 0 < r < tM ;

gM (x, r) = 0 otherwise. (3.41)

The random variable gM (X1, d1,k) ensures that X1 is in the interior and d1,k does
not exceed tM .

Recall Equation (2.17), which says that

P (ωX1(d1,k) > z|X1) =
k−1
∑

j=0

(

M − 1

j

)

zj(1 − z)M−j−1 (3.42)

regardless of q. One immediately sees from Equation (3.42) that if d1,k could be
replaced by ωX1(d1,k)1/n, then the problem of estimating the moments dα

1,k would
reduce into a relatively simple integral. In fact, taking into account the cut-off, we
have

Lemma 3.10. If (A2)-(A4) hold, then for any bounded function 0 ≤ f ≤ 1 and
M > 2k,

E[f(X1)ωX1(d1,k)α/ngM (X1, d1,k)]

=
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

∫

X\∂tM
X

f(x)q(x)dx + R

with
|R| ≤ Mke−ctn

M M

for a constant c > 0 independent of M .

Proof. From Lemma 3.1 we know that when x ∈ X \ ∂tMX ,

E[f(X1)ωX1(d1,k)α/n(1 − gM (X1, d1,k))|X1 = x] ≤ P (d1,k > tM |X1 = x)

≤ Mke−cMtn
M .
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On the other hand, by Theorem 2.3,

E[f(X1)ωX1(d1,k)α/n|X1] = E[ωX1(d1,k)α/n|X1]f(X1)

=
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
f(X1).

Using Lemma 3.10 it is possible to evaluate

E[dα
1,kgM (X1, d1,k)]:

Lemma 3.11. Suppose that (A2)-(A4) hold for some 1 ≤ γ ≤ 2 and set tM
according to Equation (3.40). Then there exists a constant c1 (depending on X , q
and k, but not on M) such that we have the estimate

|E[dα
1,kgM (X1, d1,k)] − V −α/n

n
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

∫

X\∂tM
X

q(x)1−α/ndx|

≤ c1M
−γ/n−α/n log2γ/n+2α/n M . (3.43)

Proof. By algebraic manipulation,

dα
1,kgM = V −α/n

n q(X1)
−α/n(Vnq(X1)d

n
1,k)α/ngM

= V −α/n
n q(X1)

−α/nωX1(d1,k)α/n(
Vnq(X1)dn

1,k − ωX1(d1,k)

ωX1(d1,k)
+ 1)α/ngM .

(3.44)

The arguments of gM were dropped for notational convenience. The Hölder con-
tinuity of q implies that

|
Vnq(X1)dn

1,k − ωX1(d1,k)

ωX1(d1,k)
|gM ≤ c1c

−1
2 tMgM <

1

2
, (3.45)

where c1 is the Hölder constant of q and c2 is the lower bound. By the mean value
theorem

|(1 + x)α/n − 1 − α

n
x| ≤ 2α/n+2α

n
|α
n
− 1|x2

when 0 < x < 1/2, which together with Equation (3.45) can be applied for esti-
mating the expression (3.44):

(
Vnq(X1)dn

1,k − ωX1(d1,k)

ωX1(d1,k)
+ 1)α/ngM

= (1 +
αVnq(X1)dn

1,k − αωX1(d1,k)

nωX1(d1,k)
)gM + R1 (3.46)

with an error term bounded by (the constants are not the best possible due to
notational convenience)

|R1| ≤
41+α/nα|n − α|

n2
c2
1c

−2
2 t2M ≤ c3t

2
M ,
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where the constant c3 collects the terms in front of t2M . To assess the first term
on the right side of Equation (3.46), we observe that if X1 ∈ X \ ∂tMX , then by a
Taylor expansion

ωX1(d1,k)gM = Vnq(X1)d
n
1,kgM +

∫

B(X1,d1,k)
(x − X1)

T∇X1qdx gM + R2 (3.47)

with
|R2| ≤ c4t

n+γ
M

for some c4 > 0. Moreover, by symmetry
∫

B(X1,d1,k)
(x − X1)

T∇X1qdx = 0 (3.48)

and thus by Equation (3.47),

|
Vnq(X1)dn

1,k − ωX1(d1,k)

ωX1(d1,k)
|gM ≤ V −1

n c−1
2 c4t

γ
M . (3.49)

Because q is bounded, we may also write that

ωX1(d1,k) ≤ c5d
n
1,k (3.50)

for some constant c5 > 0 depending only on q and n. Putting these considerations
together, we derive from Equation (3.44) using (3.46), (3.49) and (3.50) that

dα
1,kgM = V −α/n

n q(X1)
−α/nωX1(d1,k)α/ngM

+
α

n
V −α/n

n q(X1)
−α/nωX1(d1,k)α/n

Vnq(X1)dn
1,k − ωX1(d1,k)

ωX1(d1,k)
gM

+ V −α/n
n q(X1)

−α/nωX1(d1,k)α/ngMR1

= V −α/n
n q(X1)

−α/nωX1(d1,k)α/ngM + R3

with
|R3| ≤ c6t

γ+α
M .

The proof is finalized by an application of Lemma 3.10:

E[q(X1)
−α/nωX1(d1,k)α/ngM ] =

Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

∫

X\∂tM
X

q(x)1−α/ndx + R4

with
|R4| ≤ λ(X )Mke−ctn

M M ≤ λ(X )e−ck log2 M+k log M ,

which decays to zero faster than any M−β (β > 0).

If γ < 1, then the symmetry argument in Equation (3.48) is not useful as the
gradient does not exist in that case. Nevertheless the error in the expansion is
of order tγM , which however, converges to zero too slowly in comparison with the
terms arising from the boundary effect. For this reason, 1 < γ ≤ 2 is necessary to
make our proof technique to work.

The analogue of Lemma 3.11 for the logarithm is
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Lemma 3.12. If (A4) holds, then almost surely for any a ≥ 0,

E[ωX1(d1,k)a logωX1(d1,k)|X1] =
Γ(M)

Γ(M + a)
(ψ(k + a) − Γ(k + a)ψ(M + a)

Γ(k)
),

where ψ(·) denotes the digamma function.

Proof. Define the function f(ε) by

f(ε) = E[ωX1(d1,k)a+ε|X1] =
Γ(k + a + ε)Γ(M)

Γ(k)Γ(M + a + ε)
.

If a > 0, then the derivative of f at ε = 0 is E[ωX1(d1,k)a logωX1(d1,k)|X1], because
the derivative can be taken inside the integral. The claim is then proved by the
definition of digamma functions via derivatives of gamma functions.

Using Lemma 3.12, an analysis for the logarithmic distances in the interior can be
established in a similar way as for the α-moments. The proof is nearly the same,
but the final formula is different.

Lemma 3.13. Suppose that (A2)-(A4) hold for some 1 ≤ γ ≤ 2 and set tM
according to Equation (3.40). Then there exists a constant c (depending on X and
q, but not on M and k) such that we have the estimate

|nE[gM (X1, d1,k) log d1,k]

− ψ(k) + ψ(M) + log Vn +

∫

X\∂tM
X

q(x) log q(x)dx|

≤ cM−γ/n log2γ/n M . (3.51)

Proof. When gM = 1, we may write

n log d1,k = logωX1(d1,k)− log q(X1)− log Vn + log(1 +
dn
1,kq(X1)Vn − ωX1(d1,k)

ωX1(d1,k)
).

Again, we apply the mean value theorem, this time to the function log(1+x) ≈ x:

gM log(1 +
dn
1,kq(X1)Vn − ωX1(d1,k)

ωX1(d1,k)
) = gM

dn
1,kq(X1)Vn − ωX1(d1,k)

ωX1(d1,k)
+ R (3.52)

and recalling the symmetry argument (3.49),

|R| ≤ c1t
γ
M (3.53)

for an appropriate constant c1 > 0. We still have to show that E[logωX1(d1,k)|X1]
is close to E[I(d1,k ≤ tM ) logωX1(d1,k)|X1], that is,

|E[I(d1,k > tM ) logωX1(d1,k)|X1]|
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is small. This is not too hard as by Lemma 3.1,

|E[I(d1,k > tM ) logωX1(d1,k)|X1]| ≤ −P (d1,k > tM |X1) logωX1(tM )

≤ −e−c2k log2 M+k log M logωX1(tM )

for some c2 > 0, which as stated in the proof of Lemma 3.11 is neglible compared
to the other sources of estimation error, because

| logωX1(tM )| ≤ log c3 − n log tM

for some constant c3 > 0.

In fact, Equation (3.51) comes from (3.43) by taking the derivative w.r.t. α if the
error terms are not considered.

3.8 Nearest Neighbors Close to the Boundaries

In Section 3.7 it turned out that when points close to the boundaries of X are
excluded, it is possible to cope with relatively few regularity conditions. For points
close to the boundaries the situation looks very different as q can no longer be
approximated by a Taylor expansion. Nevertheless a transition to the unit cube
is possible by simultaneous linearization of the boundary and the density q as
demonstrated in Figure 3.11. As an important point, the same linearization is
used for all the points on the dashed line A(x1, r). The argument is formalized
in Section 3.8.2 by utilizing the geometric analysis of Section 3.6 as sketched in
Section 3.5.

Under the assumption of uniform points (Xi)M
i=1 on [0, 1] × [−1/2, 1/2]n−1, in

Section 3.8.1 the expectations E[dα
1,k|X1 = (s, 0, . . . , 0)] are considered. Even

though the nearest neighbor distributions of Section 3.4 do not seem to allow any
simple representation of

E[dα
1,k|X1 = (s, 0, . . . , 0)],

it turns out that somewhat surprisingly,

∫ tM

0
E[dα

1,kI(d1,k ≤ tM )|X1 = (s, 0, . . . , 0)]ds

can be estimated with a high accuracy. This trick then applies straightforwardly
in Section 3.8.2.

3.8.1 The Unit Cube

Recalling the function W in Definition 3.2, we have the following important lemma.
The proof is based on the use of Fubini’s theorem for interchanging the order of
integration.
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Figure 3.11: From general X , linearization allows a transition to the uniform
distribution on the cube with sidelength s = q(x1)−1/n and the translated point
y2 = (q(x1)−1/nr, 0, . . . , 0) with the length of the second dashed line given by
q(x1)−1/nr.

Lemma 3.14. Let us define the constant

D =
1

n

∫ 1

0
a−α−2W (a−1)−α/n−1/n−1W ′(a−1)da.

If the variables (Xi)M
i=1 are uniform on the cube [0, 1] × [−1/2, 1/2]n−1, we have

for any α > 0, tM = M−1/n log2/n M and M > 2k,
∫ tM

0
E[I(d1,k ≤ tM )dα

1,k|X1 = (s, 0, . . . , 0)]ds = V −α/n
n

Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
tM

+ (D − V −α/n−1/n
n )

Γ(k + α/n + 1/n)Γ(M)

Γ(k)Γ(M + α/n + 1/n)
+ R.

The remainder term is bounded by

|R| ≤ Mke−
1
4 Vntn

M M (D + V −α/n
n + V −α/n−1/n

n ).

Proof. Recalling the nearest neighbor distribution in Theorem 3.5, we obtain
∫ tM

0
E[I(d1,k ≤ tM )dα

1,k|X1 = (s, 0, . . . , 0)]ds

= k

(

M − 1

k

)
∫ tM

0

∫ tM

0
rαω(s,0)(r)

k−1(1 − ω(s,0)(r))
M−k−1 dω(s,0)(r)ds

= k

(

M − 1

k

)
∫ tM

0

∫ tM

0
t(s, r)drds. (3.54)

Because
ω(s,0)(r) = snW (

r

s
),

we have
t(s, r) = rαsn−1ω(s,0)(r)

k−1(1 − ω(s,0)(r))
M−k−1W ′(

r

s
).

The integral (3.54) can be divided into two parts by considering sets with s > r
and s < r separately. Because W (r) = Vnrn when r < 1, it is true that for s > r,

W ′(
r

s
) =

nVnrn−1

sn−1
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and

I1 = k

(

M − 1

k

)
∫ tM

0

∫ tM

r
t(s, r)dsdr

= nV k
n k

(

M − 1

k

)
∫ tM

0

∫ tM

r
rα+kn−1(1 − Vnrn)M−k−1dsdr

= nV k
n k

(

M − 1

k

)
∫ tM

0
rα+kn−1(tM − r)(1 − Vnrn)M−k−1dr.

By making the change of variable y = Vnrn, I1 can be written as

I1 =V −α/n
n tMk

(

M − 1

k

)
∫ Vntn

M

0
yα/n+k−1(1 − y)M−k−1dy

− V −α/n−1/n
n k

(

M − 1

k

)
∫ Vntn

M

0
yα/n+1/n+k−1(1 − y)M−k−1dy.

The integrals from 0 to VntnM can be extended to integrals from 0 to 1 at the
expense of an error term roughly bounded by

|R1| ≤ Mk(V −α/n
n + V −α/n−1/n

n )

∫ 1

Vntn
M

yα/n+k−1(1 − y)M−k−1dy

≤ Mk(V −α/n
n + V −α/n−1/n

n )e−Vntn
M (M−k−1).

Applying the connection to the beta function as in Equation (2.18), we obtain the
final form of I1:

I1 = V −α/n
n tM

Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
− V −α/n−1/n

n
Γ(k + α/n + 1/n)Γ(M)

Γ(k)Γ(M + α/n + 1/n)

+ R1.

Next we proceed to the slightly more difficult case r > s. One possible approach
is to make the change of variable (s, r) = (ar, r) to obtain

I2 = k

(

M − 1

k

)
∫ tM

0

∫ r

0
t(s, r)dsdr = k

(

M − 1

k

)
∫ 1

0

∫ tM

0
t(ar, r)rdrda

= k

(

M − 1

k

)
∫ 1

0
akn−1W (a−1)k−1W ′(a−1)

×
∫ tM

0
rα+nk(1 − anW (a−1)rn)M−k−1drda

=
k

n

(

M − 1

k

)
∫ 1

0
a−α−2W (a−1)−α/n−1−1/nW ′(a−1)

×
∫ anW (a−1)tn

M

0
yα/n+1/n+k−1(1 − y)M−k−1dyda.

Intuitively, the half-plane can cut at most half of a ball; thus, W (a−1) ≥ 1
2Vna−n

implying

anW (a−1)tnM >
1

2
VntnM
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and consequently

I2 = Dk

(

M − 1

k

)
∫ 1

0
yα/n+1/n+k−1(1 − y)M−k−1dy + R2

= D
Γ(k + α/n + 1/n)Γ(M)

Γ(k)Γ(M + α/n + 1/n)
+ R2

the error term being bounded by

|R2| ≤ DMk

∫ 1

1
2 Vntn

M

yα/n+1/n+k−1(1 − y)M−k−1dy ≤ DMke−
1
2 Vntn

M (M−k−1).

The calculations for the logarithm are rather similar, but unfortunately slightly
more technical.

Lemma 3.15. If the variables (Xi)M
i=1 are uniform on the cube [0, 1]×[−1/2, 1/2]n−1,

we have for any α > 0, M > 2k and tM = M−1/n log2/n M ,

∫ tM

0
E[I(d1,k ≤ tM ) log d1,k|X1 = (s, 0, . . . , 0)]ds

= C1
Γ(M)

Γ(M + 1/n)
+ tMC2

with

C1 =
V −1/n

n Γ(k + 1/n) log Vn

nΓ(k)
+

V −1/n
n ψ(M + 1/n)Γ(k + 1/n)

nΓ(k)

+D1(ψ(k + 1/n) − Γ(k + 1/n)ψ(M + 1/n)

Γ(k)
) − V −1/n

n ψ(k + 1/n)

n

+
D2Γ(k + 1/n)

Γ(k)
(3.55)

C2 =
1

n
(ψ(k) − ψ(M) − log Vn) (3.56)

D1 =
1

n2

∫ 1

0
a−2W (a−1)−1/n−1W ′(a−1)da (3.57)

D2 = − 1

n2

∫ 1

0
a−2W (a−1)−1/n−1W ′(a−1)(log W (a−1) + n log a)da. (3.58)

Proof. As in Equation (3.54),

∫ tM

0
E[I(d1,k ≤ tM ) log d1,k|X1 = (s, 0, . . . , 0)]ds

= k

(

M − 1

k

)
∫ tM

0

∫ tM

0
t(s, r)drds,
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but this time

t(s, r) = sn−1ω(s,0)(r)
k−1(1 − ω(s,0)(r))

M−k−1W ′(
r

s
) log r.

Continuing in the same fashion as in the proof of Lemma 3.14, we obtain

I1 = k

(

M − 1

k

)
∫ tM

0

∫ tM

r
t(s, r)dsdr

= nV k
n k

(

M − 1

k

)
∫ tM

0

∫ tM

r
rkn−1(1 − Vnrn)M−k−1 log r dsdr

= nV k
n k

(

M − 1

k

)
∫ tM

0
rkn−1(tM − r)(1 − Vnrn)M−k−1 log r dr.

By making the change of variable y = Vnrn, I1 can be written as

I1 =tMk

(

M − 1

k

)
∫ Vntn

M

0
yk−1(1 − y)M−k−1 log(V −1/n

n y1/n)dy

− V −1/n
n k

(

M − 1

k

)
∫ Vntn

M

0
yk+1/n−1(1 − y)M−k−1 log(V −1/n

n y1/n)dy.

The integral is extended up to 1 from VntnM ; this results in an error term R1

bounded by
|R1| ≤ −cMke−Vn(M−k−1)tn

M log tM ,

where c does not depend on M . Possibly the easiest way to analyze I1 is via
observing that by taking the derivative of Equation (2.17), we have

P (ωX1(d1,k) ∈ [z, z + dz]) = k

(

M − 1

k

)

zk−1(1 − z)M−k−1dz, (3.59)

which is equivalent to saying that for bounded measurable functions f ,

E[f(ωX1(d1,k))] = k

(

M − 1

k

)
∫ 1

0
f(z)zk−1(1 − z)M−k−1dz.

Using Lemma 3.12 and Equation (3.59), we obtain

k

(

M − 1

k

)
∫ 1

0
yk+a−1(1 − y)M−k−1 log y dy = E[ωX1(d1,k)a logωX1(d1,k)]

=
Γ(M)

Γ(M + a)
(ψ(k + a) − Γ(k + a)ψ(M + a)

Γ(k)
). (3.60)

By collecting all the terms and applying Equation (3.60) we calculate

I1 = − tM
n

log Vn +
tM
n

(ψ(k) − ψ(M)) +
V −1/n

n log Vn

n

Γ(k + 1/n)Γ(M)

Γ(k)Γ(M + 1/n)

−V −1/n
n

n
ψ(k + 1/n)

Γ(M)

Γ(M + 1/n)
+

V −1/n
n

n
ψ(M + 1/n)

Γ(k + 1/n)Γ(M)

Γ(k)Γ(M + 1/n)

=
tM
n

(ψ(k) − ψ(M) − log Vn) + (
Γ(k + 1/n)

Γ(k)
log Vn − ψ(k + 1/n)

+
ψ(M + 1/n)Γ(k + 1/n)

Γ(k)
)

V −1/n
n Γ(M)

nΓ(M + 1/n)
.
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We move to examine the term I2 corresponding to r > s, which now takes the
form

I2 = k

(

M − 1

k

)
∫ tM

0

∫ r

0
t(s, r)dsdr = k

(

M − 1

k

)
∫ 1

0

∫ tM

0
t(ar, r)rdrda

= k

(

M − 1

k

)
∫ 1

0
akn−1W (a−1)k−1W ′(a−1)

×
∫ tM

0
rnk(1 − anW (a−1)rn)M−k−1 log r drda

=
k

n2

(

M − 1

k

)
∫ 1

0
a−2W (a−1)−1/n−1W ′(a−1)

×
∫ anW (a−1)tn

M

0
yk+1/n−1(1 − y)M−k−1(log y − log(anW (a−1)))dyda.

Again there is no problem in extending anW (a−1)tnM to 1. The terms dependent
on a are denoted by D1 and D2:

D1 =
1

n2

∫ 1

0
a−2W (a−1)−1/n−1W ′(a−1)da

D2 = − 1

n2

∫ 1

0
a−2W (a−1)−1/n−1W ′(a−1)(log W (a−1) + n log a)da.

Moreover, the integrals over y are already calculated in Equation (3.60). Thus

I2 = D1(ψ(k+1/n)− Γ(k + 1/n)ψ(M + 1/n)

Γ(k)
)

Γ(M)

Γ(M + 1/n)
+D2

Γ(M)Γ(k + 1/n)

Γ(M + 1/n)Γ(k)
.

3.8.2 Smooth Sets

The following lemma connects sampling and the total variation distance allowing
a transition between two measures. The proof is taken from [43].

Lemma 3.16. Suppose that (Xi)M
i=1 is i.i.d. with respect to a probability density

q. Assume now that q̃ is another density function; the L1-distance between the
densities is

‖q − q̃‖1 =

∫

#n

|q(x) − q̃(x)|dx.

Then, there exists (formally by extending the underlying probability space (Ω,F , P ))
another i.i.d. sample (X̃i)M

i=1 (distributed according to q̃) such that

P ((X̃i)
M
i=1 = (Xi)

M
i=1) ≥ 1 − 1

2
M‖q − q̃‖1.
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Proof. If we set [q(x) − q̃(x)]+ as q(x) − q̃(x) when q(x) ≥ q̃(x) and 0 otherwise,
then it holds that

a =
1

2

∫

#n

|q(x) − q̃(x)|dx =

∫

#n

[q(x) − q̃(x)]+dx

= 1 −
∫

#n

min{q(x), q̃(x)}dx.

On "n ×"n, we define the two probability measures Q1 and Q2 by
∫

#n×#n

f(x, y)dQ1 = (1 − a)−1

∫

#n

f(x, x)min{q(x), q̃(x)}dx

and
∫

#n×#n

f(x, y)dQ2 = a−2

∫

#n

[q(x) − q̃(x)]+[q(y) − q̃(y)]+f(x, y)dxdy.

We set
Q = (1 − a)Q1 + aQ2.

Each pair (Xi, X̃i) is sampled w.r.t. Q. By integrating out w.r.t. x and y respec-
tively, it can be verified that the marginal distributions of Q match with q and q̃.
Moreover,

Q(Xi ,= X̃i) ≤ a =
1

2

∫

#n

|q(x) − q̃(x)|dx

as required. Finally, the union bound ensures that

Q((Xi)
M
i=1 ,= (X̃i)

M
i=1) ≤

M
∑

i=1

Q(Xi ,= X̃i) ≤
1

2
M

∫

#n

|q(x) − q̃(x)|dx.

Lemma 3.16 is now applied to generalize the unit cube analysis. A(x, tM ) of
Equation (3.16) replaces the line {(s, 0, . . . , 0) : 0 < s < tM} for the cube. A double
linearization is performed: the theory in Section 3.6 to linearize the boundary and
a Taylor expansion to ensure the local linearity of q.

Lemma 3.17. Assume that (A2)-(A4) hold with γ ≥ 1 in (A4). Moreover, choose
tM = M−1/n log2/n M and x ∈ ∂X \ Nc1tM , where c1 > 1 is such that Lemma 3.8
holds, that is, A(x, tM ) ⊂ X , A(x,−tM ) ⊂ XC and A(x, tM ) ∩A(y, tM ) = ∅ when
y ∈ ∂X \ Nc1tM with x ,= y. Then for any α > 0,

∫ tM

0
E[I(d1,k ≤ tM )dα

1,k|X1 = x − sn(x)]q(x − sn(x))ds

=V −α/n
n

Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

∫ tM

0
q(x − sn(x))1−α/nds

+ q(x)1−α/n−1/n(D − V −α/n−1/n
n )

Γ(k + α/n + 1/n)Γ(M)

Γ(k)Γ(M + α/n + 1/n)
+ R

with
|R| ≤ c2M

−α/n−2/n log2+2α/n+4/n M

for some constant c2 (depending only on q, X and k). D was defined in Lemma
3.14.
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Proof. By rotation and translation, we may assume without losing generality that

x = (0, 0, . . . , 0)

and similarly n(x) = (−1, 0, . . . , 0). Given y = x − sn(x), the notation Ξ1 refers
to B(y, tM ) ∩ Ux and Ξ2 denotes B(y, tM ) ∩ X as in Lemma 3.3. Define a new
density q̃ by setting

q̃(z) = q(x)I(z ∈ Ξ1)

for z ∈ B(y, tM ) and

q̃(z) =
(1 − q(x)λ(Ξ1))q(z)

1 − P (X1 ∈ Ξ2)

otherwise. Lemma 3.3 and Assumption (A4) ensure the existence of constants
c1, c2 > 0 such that

∫

B(y,tM )
|q̃(z) − q(z)|dz ≤ c1Vntn+1

M + q(x)λ(Ξ1 \ Ξ2) + q(x)λ(Ξ2 \ Ξ1)

≤ c2t
n+1
M . (3.61)

Moreover, for tM small enough to ensure P (X1 ∈ Ξ2) ≤ 1/2, we have

|1 − 1 − q(x)λ(Ξ1)

1 − P (X1 ∈ Ξ2)
| ≤ c3t

n+1
M .

This implies the inequality
∫

#n

|q̃(z) − q(z)|dz ≤ c4t
n+1
M

for some constant c4 > 0. By the coupling argument (Lemma 3.16), there exists

an i.i.d. sample (X̃(1)
i )M

i=1 distributed according to the density q̃ such that for each
i > 1,

P (Xi ,= X̃(1)
i ) ≤ c4t

n+1
M

and consequently

P ((Xi)
M
i=2 ,= (X̃(1)

i )M
i=2) ≤

M
∑

i=2

P (Xi ,= X̃(1)
i ) ≤ c4Mtn+1

M .

The new sample has a convenient uniformity property in the neighborhood of y.

Taking X1 = X̃(1)
1 independent of (Xi, X̃

(1)
i )M

i=2 leads to the formula

|E[I(d1,k ≤ tM )dα
1,k|X1 = y] − E[I(d̃1,k,1 ≤ tM )d̃α

1,k,1|X̃
(1)
1 = y]| ≤ 2c4Mtn+α+1

M ,
(3.62)

because on the event (Xi)M
i=2 = (X̃(1)

i )M
i=2 the nearest neighbor distances are the

same for both samples. The notation d̃1,k,1 refers to the k-nearest neighbor in the

sample (X̃(1)
i )M

i=1.

Using the notation ∆ = [0, q(x)−1/n]×[−q(x)−1/n/2, q(x)−1/n/2]n−1, we introduce

a third sample, (X̃(2)
i )M

i=1:

When X̃(1)
i ∈ B(y, tM ), set X̃(2)

i = X̃(1)
i .

Otherwise sample X̃(2)
i from the uniform distribution on ∆ \ B(y, tM ).



76 3. Asymptotic Results for Nearest Neighbors

Conditionally on X̃(1)
1 = y, the variable d̃α

1,k,1gM (d̃1,k,1) (see Equation (3.41) for
the definition of gM ) depends only on points in the ball B(y, tM ). Thus

E[I(d̃1,k,1 ≤ tM )d̃α
1,k,1|X̃

(1)
1 = y] = E[I(d̃1,k,2 ≤ tM )d̃α

1,k,2|X̃
(2)
1 = (s, 0)], (3.63)

the term in right side was estimated in Lemma 3.14, even though it is important
to observe that the cube here is not of unit length (but the side length is bounded
from below and above because of assumption (A5)). In fact,

q(x)α/n

∫ tM

0
E[I(d̃1,k,2 ≤ tM )d̃α

1,k,2|X̃
(2)
1 = (s, 0)]ds = V −α/n

n
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
tM

+ q(x)−1/n(D − V −α/n−1/n
n )

Γ(k + α/n + 1/n)Γ(M)

Γ(k)Γ(M + α/n + 1/n)
+ O(t2+α

M ).

(3.64)

This result is obtained by employing a change of variables to transform the con-
ditional expectation in (3.64) into a conditional expectation w.r.t. the sample

(q(x)1/nX̃(2)
i )M

i=1, which is uniform on the unit cube [0, 1]n. Finally, we observe
that

E[I(d1,k ≤ tM )dα
1,k|X1 = y]|q(y) − q(x)| ≤ c5t

1+α
M

with c5 the Lipschitz constant of q on X , which shows that

∫ tM

0
E[I(d1,k ≤ tM )dα

1,k|X1 = x − sn(x)]q(x − sn(x))ds

= q(x)

∫ tM

0
E[I(d1,k ≤ tM )dα

1,k|X1 = x − sn(x)]ds + O(t2+α
M ).

Moreover, the term q(x)1−α/ntM in Equation (3.64) can be replaced by an integral
at the expense of an error term of order O(t2+α

M ).

The logarithmic case is again very similar, even if the resulting formula is more
complicated.

Lemma 3.18. Assume that (A2)-(A4) hold with γ ≥ 1 in (A4). Moreover, choose
tM = M−1/n log2/n M and x ∈ ∂X \Nc1tM , where c1 > 1 is chosen similarly as in
Lemma 3.17. Then

∫ tM

0
E[I(d1,k ≤ tM ) log d1,k|X1 = x − sn(x)]q(x − sn(x))ds

= C1q(x)1−1/n Γ(M)

Γ(M + 1/n)
+ C2

∫ tM

0
q(x − sn(x))ds

− n−1

∫ tM

0
q(x − sn(x)) log q(x − sn(x))ds + R

with
|R| ≤ c2M

−2/n log3+4/n M

for a constant c2 > 0, which depends only on q, X and k. The definitions of C1

and C2 are found in Lemma 3.15.
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Proof. We take x as the origin. The proof of Lemma 3.17 holds for the logarithm
almost as such. However, the error terms and final conclusion are a bit different.

Let us define the samples (X̃(1)
i )M

i=1 and (X̃(2)
i )M

i=1 similarly as in the previous
proof. We make the preliminary observation that by Assumption (A3), there exist
a constant c1 such that for t > 0,

P ( − log d1,k > t) ≤ P (ωX1(d1,k) < c1e
−t)

≤ 1 −
k−1
∑

j=0

(

M − 1

j

)

c1e
−jt(1 − c1e

−t)M−j−1 = O(Me−t)

and using this it can be shown that for a constant c2 > 0,

|E[I(d1,k ≤ tM ) log d1,k|X1 = y] − E[I(d̃1,k,1 ≤ tM ) log d̃1,k,1|X̃(1)
1 = y]|

≤ c2Mtn+1
M log M

the only difference to Equation (3.62) being the term log M . Another difference
comes from the fact that

E[I(d1,k ≤ tM ) log d1,k|X1 = y]|q(y) − q(x)| = O(tM log M)

and by Lemma 3.15, analogously to Equation (3.64)
∫ tM

0
E[I(d̃1,k,2 ≤ tM ) log(q(x)1/nd̃1,k,2)|X̃(2)

1 = (s, 0)]ds

= C1q(x)−1/n Γ(M)

Γ(M + 1/n)
+ tMC2 + O(t2M ).

We also need
∫ tM

0
E[I(d̃1,k,2 ≤ tM ) log d̃1,k,2|X̃(2)

1 = (s, 0)]ds = −tMn−1 log q(x)

+

∫ tM

0
E[I(d̃1,k,2 ≤ tM ) log(q(x)1/nd̃1,k,2)|X̃(2)

1 = (s, 0)]ds.

The terms q(x) log q(x)1/ntM and q(x)tM can be written as line-integrals at the
expense of an additional error term of order O(t2M ).

3.9 Proofs of the Main Theorems

Proof. (Proof of Theorem 3.3)
Lemma 3.1 implies the bound

P (d1,k > tM ) = P (ωX1(d1,k) > ωX1(tM ))

≤ Mk(1 − ωX1(tM ))M−k−1 ≤ Mke−ctn
M M

for a constant c > 0 independent of M and

E[dα
1,k] = E[dα

1,kI(d1,k ≤ tM )] + O(Mke−ctn
M M )

= E[dα
1,kI(d1,k ≤ tM )] + O(e−k log2 M ).
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The remainder goes to zero faster than any polynomial of M . Furthermore, re-
calling the notation of Equation (3.41),

E[dα
1,kI(d1,k ≤ tM )] = E[dα

1,kgM ] + E[dα
1,kI(d1,k ≤ tM ,X1 ∈ ∂tMX )].

We apply Lemma 3.2 and Lemma 3.17 to the function

f(x) = E[dα
1,kI(d1,k ≤ tM )|X1 = x]:

E[dα
1,kI(d1,k ≤ tM ,X1 ∈ ∂tMX )] =

∫

∂tM
X

f(x)dx

=

∫

∂X

∫ tM

0
E[I(d1,k ≤ tM )dα

1,k|X1 = x − sn(x)]q(x − sn(x))dsdS + O(tα+2
M )

= V −α/n
n

Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

∫

∂X

∫ tM

0
q(x − sn(x))1−α/ndsdS

+ (D − V −α/n−1/n
n )

Γ(k + α/n + 1/n)Γ(M)

Γ(k)Γ(M + α/n + 1/n)

∫

∂X
q(x)1−α/n−1/ndS

+ O(M−2/n−α/n log2+2α/n+4/n M)

= V −α/n
n

Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

∫

∂tM
X

q(x)1−α/ndx

+ (D − V −α/n−1/n
n )

Γ(k + α/n + 1/n)Γ(M)

Γ(k)Γ(M + α/n + 1/n)

∫

∂X
q(x)1−α/n−1/ndS

+ O(M−2/n−α/n log2+2α/n+4/n M).

We apply Lemma 3.11 as well:

E[dα
1,kgM ] =V −α/n

n
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

∫

X\∂tM
X

q(x)1−α/ndx

+ O(M−2/n−α/n log2α/n+4/n M).

The proof is finished by summing the two formulas.

Proof. (Proof of Theorem 3.4)
The proof is analogous to the previous one. Observe that for some constant c > 0,

|E[I(d1,k > tM ) log d1,k]| ≤ Mke−ctn
M M (c−1 + | log tM |).

We decompose

E[I(d1,k ≤ tM ) log d1,k] = E[gM log d1,k] + E[I(d1,k ≤ tM ,X1 ∈ ∂tMX ) log d1,k]

and set

f(x) = E[I(d1,k ≤ tM ) log d1,k|X1 = x].

By (A3)-(A4), the term dn
1,k/ωX1(d1,k) is bounded from below and above; conse-

quently f/ log M is a bounded function by Lemma 3.12 independently of M (ψ(M)
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is of order log M). Thus Lemmas 3.2 and 3.18 can be applied:

E[I(d1,k ≤ tM ,X1 ∈ ∂tMX ) log d1,k]

=

∫

∂X

∫ tM

0
E[I(d1,k ≤ tM ) log d1,k|X1 = x − sn(x)]q(x − sn(x))dsdS

+ O(t2M log M) = C1
Γ(M)

Γ(M + 1/n)

∫

∂X
q(x)1−1/ndS + C2

∫

∂tM
X

q(x)dx

− n−1

∫

∂tM
X

q(x) log q(x)dx + O(M−2/n log3+4/n M).

For the interior term, we refer to Lemma 3.13:

E[gM log d1,k] = n−1ψ(k) − n−1ψ(M) − n−1 log Vn

− n−1

∫

X\∂tM
X

q(x) log q(x)dx + O(M−γ/n−α/n log3+4/n M).



Chapter 4

Variance Bounds

In Chapter 3 an asymptotic analysis of the moments E[dα
1,k] was performed. Usu-

ally the theoretical expectation is not available, and the expectation is estimated
by

1

M

M
∑

i=1

dα
i,k; (4.1)

for the logarithmic distance the same role is taken by

1

M

M
∑

i=1

log di,k. (4.2)

For completeness of the analysis, it is of interest to ask, whether the average is
close to the expected value. Let us define the sample

(Zi)
M
i=1 = (Xi, Yi)

M
i=1

with each Zi ∈ "n+1 (and Xi ∈ "n, so Yi ∈ " is taken as a scalar) and the
variables

h(Zi, ZN [i,1], . . . , ZN [i,k]),

where the nearest neighbors are calculated in the sample (Xi)M
i=1 as in Chapter 3

with the function h bounded. Then the average

1

M

M
∑

i=1

h(Zi, ZN [i,1], . . . , ZN [i,k]) (4.3)

appropriately generalizes Equation (4.1). Taking (4.3) as the quantity of interest,
we derive two theorems that apply to (4.1) and (4.2) bounding the variance of the
two averages.

To understand what is to be expected from a variance bound, take (Wi)M
i=1 as

independent random variables and choose a measurable function g. Then it is
simple to compute

Var[
M
∑

i=1

g(Wi)] =
M
∑

i=1

Var[g(Wi)], (4.4)
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which is linear w.r.t. M under the i.i.d. assumption. This easily provable addi-
tivity of variance is a fundamental result in probability theory with far reaching
impact on our understanding of science in general. However, the terms in the
sum (4.3) are not independent with each other due to the dependency on nearest
neighbors. Nevertheless Equation (4.4) generalizes as the inequality

Var[
M
∑

i=1

h(Zi, ZN [i,1], . . . , ZN [i,k])] ≤ cM (4.5)

for some constant c independent of M ([2, 71] and [49]). While the reader can
follow the references to find out that many results from random geometry apply
straightforwardly with nearest neighbors as a special case, the results are of asymp-
totic nature and they give the constant c only for large M . The more concrete
approach taken in [16] has the advantage of being optimized for nearest neighbor
graphs with finite M instead of going to the limit M → ∞. Moreover, the proofs
require only a bounded fourth moment whereas the moment conditions encoun-
tered in random geometry are much more restrictive.

To avoid ties, the following assumption is used:

A5) (Zi)M
i=1 = (Xi, Yi)M

i=1 is a sample of independent vectors with the variables
(Xi)M

i=1 having their realizations in a set X for which Assumption (A1) in
Chapter 2 holds. Moreover, for all i, j, l > 0 with j ,= l and j ,= i,

P (‖Xi − Xj‖ ,= ‖Xi − Xl‖) = 1.

The distance on X (i.e. ρ) is set as the Euclidean metric.

Motivated by the work in [16], it is shown that

Theorem 4.1. (Law of Large Numbers for Nearest Neighbor Statistics) Suppose
that (A5) holds. Let h(z1, z1,1, . . . , z1,k) be a measurable function (taking values in
") and define the random variables

hi = h(Zi, ZN [i,1], . . . , ZN [i,k]),

where the nearest neighbors are calculated in the sample (Xi)M
i=1. Assume that

each hi is bounded by some constant ‖h‖∞. Then for M > k,

Var[
M
∑

i=1

hi] ≤ ‖h‖2
∞(1 + 2kL(n))(1 + 2k)M .

The constant L(n) is defined in Section 4.2.

In comparison to [16], the bound is tighter w.r.t. k, but depends on the bound on
hi. Due to the latter deficit, the application to (4.1) and (4.2) is not trivial, but if
the probability of large nearest neighbor distances is small, it is possible to extend
the proof of Theorem 4.1 straightforwardly into
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Corollary 4.1. Suppose that (A3)-(A5) hold and |hi| ≤ dα
i,k for some α > 0.

Then we have the bound

Var[
M
∑

i=1

hi] ≤ (1 + 2kL(n))(1 + 2k)M1−2α/n log4α/n M + O(M−β),

where β > 0 is an arbitrary positive number fixed a priori. As another special case,
we also have

Var[
M
∑

i=1

log di,k] ≤ 4(1 + 2kL(n))(1 + 2k)M log4 M + O(M−β).

In words, because each term E[dα
i,k] tends to be of order M−α/n, the average

(4.1) is indeed close to the expectation for large M the fluctuations being of order
M−1/2 log2/n M times the magnitude of the terms (measured by the standard
deviation).

If 0 < 2α ≤ n, a more practical inequality than that in Theorem 4.1 is possible
by using the theory in Chapter 2 as in the following bound, the logarithmic factor
does not appear. This result is of some independent interest, because it does not
require the existence of a fourth moment as in [16], but exploits the fact that a
sum of the distances dα

i,k is bounded deterministically.

Theorem 4.2. Suppose that (A5) holds and X ⊂ [0, 1]n. Furthermore, we assume
that for any distinct indices (j, j1, . . . , jk),

√

E[h(Zj , Zj1 , . . . , Zjk)2|(Xi)M
i=1] ≤ ‖Xj − Xjk‖α a.s.

for some constant α > 0. Then if 0 ≤ 2α ≤ n, we have the bound

Var[
M
∑

i=1

hi] ≤ 23+2α(kL(n) + 1)(k + 1)1+2α/nnαM1−2α/n.

4.1 The Efron-Stein Inequality

The Efron-Stein inequality is a special case of a concentration inequality (see [57])
the purpose of which are to generalize the variance formula for the empirical mean
of independent random variables to more general functions. The result can be
stated for any independent sample (Zi)M

i=1 as

Theorem 4.3. Let (Zi)M
i=1 be a set of independent random variables and

f(Z1, . . . , ZM )

a function of this sample. Moreover, for 1 ≤ i ≤ M , let

fi(Z1, . . . , Zi−1, Zi+1, . . . , ZM )
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be a measurable function of (Zi)M
i=1 excluding Zi. Then

Var[f ] ≤ 1

M

M
∑

i=1

E[(f − fi)
2].

Proof. The proof can be found e.g. in [57].

Intuitively, Theorem 4.3 applies when f is stable in the sense of approximate
invariance with respect to small perturbations.

4.2 How Many Points Can Share the Same Near-

est Neighbor?

Related to Theorem 4.3, it is important to verify the stability of nearest neighbor
graphs with respect to removal of samples. Fortunately, such an analysis is well-
known in the literature on computational geometry and the proof in [47] is repeated
here.

The set of indices corresponding to points in (Xi)M
i=1 that have Xi among their k

nearest neighbors is defined by

Ki,k = {1 ≤ j ≤ M : j ,= i,N [j, l] = i for some 1 ≤ l ≤ k}.

In this section, our main goal is to bound the cardinality |Ki,k|.

(A5) imposes the condition p = 2 on the norm, which is not necessary (p > 1
works just as well, see [16]), but sufficient for the purposes of the thesis.

For a unit vector e, the cone of degree 30◦ is defined by

C(e) = {x ∈ "n : xT e ≥ ‖x‖ cos 30◦}. (4.6)

The constant L(n) is defined as the smallest positive integer with

"n = ∪L(n)
i=1 C(ei)

for some unit vectors e1, . . . , eL(n). In words, L(n) bounds the number of cones of
degree 30◦ needed to cover the space "n. For example, L(1) = 2 and L(2) = 6
(see Figures 4.1(a) and 4.1(b)).

Theorem 4.4. Suppose that (A5) holds. Then for any k > 0, 1 ≤ i ≤ M and
1 ≤ k < M , the cardinality |Ki,k| is bounded by kL(n).

Proof. Fix the point Xj and a vector e with ‖e‖ = 1. The non-centered cone is
defined by

CXj (e) = {x ∈ "n : (x − Xj)
T e ≥ cos 30◦‖x − Xj‖}.
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n=1

(a)

n=2

(b)

Figure 4.1: The plane can be divided into six cones (4.6), and the real axis consists
of two cones. The angle between the lines on the plane is 60◦.

Notice that for z, y ∈ CXj (e), we have the geometrically intuitive bound

(z − Xj)
T (y − Xj) ≥

1

2
‖z − Xj‖‖y − Xj‖. (4.7)

Let us now make the counterassumption that there exists k + 1 points (Xji)
k+1
i=1 ⊂

CXj (e) with Xj among their k nearest neighbors. By (A2), it holds that ‖Xjk+1 −
Xj‖ > ‖Xjk −Xj‖ > . . . > ‖Xj1 −Xj‖. Then inequality (4.7) implies that for any
1 ≤ i ≤ k,

‖Xjk+1 − Xji‖2 ≤ ‖Xjk+1 − Xj‖2 + ‖Xji − Xj‖2 − ‖Xjk+1 − Xj‖‖Xji − Xj‖
< ‖Xjk+1 − Xj‖2

the last inequality being strict. Thus we may conclude that Xj cannot be among
the k nearest neighbors of the point Xjk+1 leading to a contradiction.

To finish the proof one should notice that the space "n can be covered with L(n)
cones of degree 60◦. Each point in the sample falls into one of these cones and it
follows that Xj can be among the k nearest neighbors of at most kL(n) points.

Theorem 4.4 implies a concrete bound on |Ki,k| with an exponential growth w.r.t.
n. To see this, we note that each of the 2n quadrants of "n is a cone of degree
90◦ verifying that L(n) ≥ 2n. Let e1, . . . , eL(n) be unit vectors such that the sets
C(ei) cover "n. For e1 and e2 we have eT

1 e2 ≤ cos 60◦ and

‖e1 − e2‖2 ≥ 2 − eT
1 e2 ≥ 2 − 2 cos 60◦ = 1.

It follows that the balls B(ei, 1/2) are disjoint and also subsets of the ball B(0, 2).
A volume argument then implies that

L(n) ≤ 4n.

A much sharper bound is in fact possible, because the balls B(ei, 1/2) are disjoint
and touch B(0, 1/2) rendering the analysis into an examination of kissing numbers
[7]. Without going deeply into the matter, L(n) is bounded by the kissing number
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of the space "n for which upper bounds for dimensions n = 1, . . . , 24 have been
tabulated. This also shows that a closed-form formula for L(n) is probably not
possible. It should be mentioned that kissing numbers were encountered also in
[13].

On the other hand, it is interesting that on expectation |Ki,k| tends to be close to
k as indicated by the following theorem.

Theorem 4.5. Let (ai)M
i=1 be a sequence of numbers. Then for any 0 < k ≤ M ,

the equality
M
∑

i=1

∑

j∈Ki,k

aj = k
M
∑

i=1

ai

holds.

Proof. Define the sets

Ci,l = {1 ≤ j ≤ M : j ,= i,N [j, l] = i}.

Then
M
∑

i=1

∑

j∈Ki,l

aj =
k
∑

l=1

M
∑

i=1

∑

j∈Ci,l

aj .

Moreover,
Ci1,l ∩ Ci2,l = ∅

when i1 ,= i2 (a point has only one l-th nearest neighbor) and

∪1≤i≤MCi,l = {1, . . . ,M} (each point has a l-th nearest neighbor).

Thus
M
∑

i=1

∑

j∈Ci,l

aj =
M
∑

i=1

ai

and the claim follows.

4.3 Proofs of the Variance Bounds

Proof. (Proof of Theorem 4.1) The argument is based on the use of the Efron-Stein
inequality. Let us construct a new sample (Z̃i)1≤i≤M,i %=l by removing a variable

Zl and define h̃(l)
i by calculating h(Z̃i, Z̃Ñ [i,1], . . . , Z̃Ñ [i,k]) on this modified set of

variables. Then in terms of indicator functions

|hi − h̃(l)
i | ≤ 2‖h‖∞I(i ∈ Kl,k)

when i ,= l and by Theorem 4.4,

(
M
∑

i=1

hi −
M
∑

i=1,i %=l

h̃(l)
i )2 ≤ ‖h‖2

∞(1 + 2|Kl,k|)2

≤ ‖h‖2
∞(1 + 2kL(n))(1 + 2|Kl,k|).
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Using Theorem 4.5 we obtain the final result

M
∑

l=1

(
M
∑

i=1

hi −
M
∑

i=1,i %=l

h̃(l)
i )2 ≤ ‖h‖2

∞(1 + 2kL(n))(1 + 2k)M .

Proof. (Proof of Corollary 4.1) By Lemma 3.1,

P (di,k > M−1/n log2/n M) ≤ elog M−c1 log2 M

for some constant c1 > 0 and (A3)-(A4) imply that

Var[
M
∑

i=1

hi] ≤ Var[
M
∑

i=1

hiI(di,k ≤ M−1/n log2/n M)] + c2M
2ec3 log M−c3 log2 M

for some c2 and c3 independent of M . Theorem 4.1 applies directly to the first
term in the right side.

For the logarithmic distance, it holds for some constant c4 > 0 that

P (| log di,k| > log2 M) = P (di,k < e− log2 M ) ≤ c4M
k−log M

by Theorem 3.5 and Assumption (A5). Again, this expression approaches zero
faster than any polynomial w.r.t. M and the proof is completed similarly as in
the previous case.

Proof. (Proof of Theorem 4.2) Let us again construct a new sample (Z̃i)1≤i≤M,i%=l

by removing a variable Zl. Then by our assumptions we have E[h2
i |(Xi)M

i=1] ≤
d2α

i,k and E[(h̃(l)
i )2|(Xi)M

i=1] ≤ d2α
i,k+1. An application of the formula (

∑M
i=1 ai)2 ≤

M
∑n

i=1 a2
i and the fact that (c + d)2 ≤ 3c2 + 3d2 gives

E[(
M
∑

i=1

hi −
∑

1≤i≤M,i %=l

h̃(l)
i )2|(Xi)

M
i=1]

≤ (
∑

j∈Kl,k∪{l}

dα
j,k +

∑

j∈Kl,k

dα
j,k+1)

2

≤ 3(|Kl,k| + 1)
∑

j∈Kl,k∪{l}

d2α
j,k + 3(|Kl,k| + 1)

∑

j∈Kl,k

d2α
j,k+1

≤ 3(kL(n) + 1)
∑

j∈Kl,k∪{l}

d2α
j,k + 3(kL(n) + 1)

∑

j∈Kl,k

d2α
j,k+1.

Thus by Corollary 2.1 and Theorem 4.5,

M
∑

l=1

E[(
M
∑

i=1

hi −
∑

1≤i≤M,i %=l

h̃(l)
i )2|(Xi)

M
i=1]

≤ 3(kL(n) + 1)(k + 1)(
M
∑

i=1

d2α
i,k +

M
∑

i=1

d2α
i,k+1)

≤ 23+2α(kL(n) + 1)(k + 1)1+2α/nnαM1−2α/n

and the Efron-Stein inequality finishes the proof.



Chapter 5

Entropy Estimation

5.1 Introduction

In Chapters 2-4 general theoretical principles related to random local functions
and especially nearest neighbor distances were discussed. In the remaining two
chapters, two important applications in statistical estimation are discussed. In fact,
the idea for boundary corrected expansions in Chapter 3 arose from the need for
improved entropy estimators that would better address the curse of dimensionality.

Given a random variable X, it is natural to ask ‘How random is X?’. One of the
milestones in statistics of the previous century was the development of information
theory ([58]), which defines a theoretically well-founded measure of randomness.
In general, based on intuitive axioms, the correct way to measure randomness of
X is the quantity

−
∫

X
q(x) log q(x)dx,

where q is the density of X. This is not surprising as it has been known for a
long time that the logarithmic entropy measures disorder in equilibrium statistical
mechanics. On the other hand, it was shown in [54], that under slightly weaker
assumptions, one ends up with a whole family of entropies:

1

1 − β
log

∫

X
q(x)βdx,

where β > 0 (we assume 0 < β < 1). The logarithmic entropy then arises in the
limit β → 1. While the other entropies are theoretically less satisfying, they are
still useful to measure randomness in many applications even if not necessarily
optimal. Especially the case β = 0.5 is useful due to its relation to the Hellinger
distance (see e.g. [70]) between q and the uniform distribution.

In this chapter, the task of computing the entropy of X using an i.i.d. sample
(Xi)M

i=1 is discussed. This is an important problem as in practice q is usually not
known in closed form whereas a sample of realizations is available.

87
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Figure 5.1: The randomness of the random variables taking values in the unit circle
is small compared to a uniform case, which also shows in the nearest neighbor
distances.

In general, a random variable with a low entropy tends to concentrate in a small
portion of the space implying that the nearest neighbor distances should also be
small. This is demonstrated in Figure 5.1, where clearly the random variables in
Figure 5.1(a) are much less random being located in a one dimensional submanifold
and the corresponding nearest neighbor distances are small as well. In terms
of information, the points on the circle can be explained with one variable and
thus contain less information. Somewhat surprisingly, the connection between
randomness and nearest neighbor distances is exact in the asymptotic limit of
infinite sample size; to be precise, we recall from Chapter 3 that

Mα/nE[dα
1,k] → V −α/n

n
Γ(k + α/n)

Γ(k)

∫

X
q(x)1−α/ndx

in the limit M → ∞.

In this chapter, it is shown that taking the boundary effect into account helps
to understand the validity of the relation for finite sample sizes. Moreover, it is
shown how estimation accuracy can be improved by a weighted estimator. The
simulations at the end of the chapter demonstrate the improved accuracy for the
bias corrected estimators. However, it also turns out that the logarithmic differ-
ential entropy estimator has problems with estimation variance leaving room for
further research.

5.2 The Estimation Problem

Suppose that Assumption (A4) holds and the sample (Xi)M
i=1 is i.i.d. with a

common density q. Then as stated previously, Rényi entropies are defined by the
formula

Hβ [q] =
1

1 − β
log(

∫

X
q(x)βdx) (5.1)
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for β ≥ 0; the celebrated differential entropy is the special case β → 1:

−
∫

X
q(x) log q(x)dx. (5.2)

At first sight, the task of estimating these quantities seems challenging, as q is not
known and should somehow be inferred from data. To this end, one can of course
consider building a density estimate q̂ of q and using the approximation in place
of q to estimate the integral (5.1) or (5.2) arriving at a widely investigated branch
of research (references include [11, 23, 27]).

While entropy estimation by performing an intermediate step of density estimation
is an approach that comes easily to mind, one quickly gets the impression that the
curse of dimensionality and free parameters tend to be problems to these methods
[3]. To address this issue, one can adopt a sophisticated density estimation scheme
(e.g. local linear estimators as in [33]) or look for other techniques. From a
theoretical point of view introducing local linearity is attractive; on the other
hand, it is likely that practical problems with robustness arise.

Interestingly, if one is interested only in entropy and not in the density q itself,
the intermediate density estimation step is not necessary. In fact, from the results
in random geometry (e.g. [47, 48, 50]), one finds quicky that the total length of
many random graphs is related to the Rényi entropy (5.1). This deep connection
has been exploited e.g. in [8] and [26] to derive robust graph theoretic entropy
estimators. The goal of this chapter is to analyze and improve the estimators in
the special case of nearest neighbor distances.

5.3 Rényi Entropy and Nearest Neighbors

We start from the limit in Chapter 3:

V α/n
n

Γ(k)

Γ(k + α/n)
Mα/nE[dα

1,k] →
∫

X
q(x)1−α/ndx (when M → ∞) (5.3)

for a fixed α > 0. The connection to the Rényi entropy (5.1) is obvious. As
mentioned earlier, such an asymptotic relation between the two things is not just
a property of nearest neighbor distances, but a similar limit arises for many other
functionals in random geometry even if the constant in front of

∫

X q(x)1−α/ndx
varies. The practical advantages of using nearest neighbor distances include most
importantly simplicity and understandability.

The simplest (even though not the only) way to use Equation (5.3) is formally

H1−α/n[q] ≈ Ĥ1,1−α/n[q] =
n

α
log(

V α/n
n Γ(k)

Γ(k + α/n)
Mα/n−1

M
∑

i=1

dα
i,k). (5.4)

In this estimator, one may choose k = 1, which usually works well. One observes
that if β > 1 in (5.1), then it must be that α < 0. While this choice is fully possible
(see [34]), the restriction 0 < β < 1 is imposed here.
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Instead of this estimator, to stay consistent with Theorem 3.3, we use

n

α
log(V α/n

n
Γ(M + α/n)Γ(k)

Γ(M)Γ(k + α/n)
M−1

M
∑

i=1

dα
i,k) (5.5)

as using Γ(M +α/n)/Γ(M) instead of Mα/n is a minor choice due to the approx-
imation

Γ(M + α/n)/Γ(M) = Mα/n + Mα/n−1

of Lemma 2.4. In [34], the asymptotic consistency of the estimator was proven
in a general setting. Here, our goal is not to analyze such proofs, but rather to
show an inherent problem of the method: it suffers rather badly from the curse
of dimensionality due to its reliance on distances. Theorem 3.3 characterizes the
bias in the following way:

Theorem 5.1. Suppose that (A2)-(A4) hold with 1 ≤ γ ≤ 2 in (A4). Then for a
fixed k,

V α/n
n

Γ(k)Γ(M + α/n)

Γ(k + α/n)Γ(M)
M−1+1/n

M
∑

i=1

dα
i,k − M1/n

∫

X
q(x)1−α/ndx

→ Γ(k + α/n + 1/n)

Γ(k + α/n)
(D − V −α/n−1/n

n )

∫

∂X
q(x)1−α/n−1/ndS

when M → ∞. The constant D was defined in Theorem 3.3. As a consequence,

lim inf
M>0

M1/n|E[Ĥ1,1−α/n[q]] − n

α
log

∫

X
q(x)1−α/ndx| > 0.

Proof. The first claim follows from Theorem 3.3. For the second one, we can use
the approximation

log a − log b = log(1 +
a − b

b
) =

a − b

b
+ O(

(a − b)2

b2
).

The error expansion is unique compared to earlier work in the sense that it com-
plete characterizes the error up to the first order. The result is in agreement with
the rate of convergence in [18]. The bias depends on the surface integral

∫

∂X
q(x)1−α/n−1/ndS,

which is non-zero in the presence of boundaries (see Example 3.2). This motivates
the conclusion that convergence is slow already for n = 3. If we could derive an
estimator that has a bias that goes to zero faster than M−1/n with respect to M ,
then at least for large M such an estimator would improve accuracy and hopefully
significantly alleviate the curse of dimensionality. This is done in next section.
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5.3.1 Boundary Corrected Estimators

There seem to be various slightly different possibilities for addressing the problem
at the boundary. The proposal here, introduced by us in [39], is to estimate

∫

X
q(x)1−α/ndx

by using a linear combination of the quantities

δM,l,α =
1

M

M
∑

i=1

dα
i,l

for different values of l. Fixing α > 0 and k ≥ 2, the weights (wl)k
l=1 are chosen in

such a way that
k
∑

l=1

wl
Γ(l + α/n)

Γ(l)
= V α/n

n
Γ(M + α/n)

Γ(M)
(5.6)

and
k
∑

l=1

wl
Γ(l + α/n + 1/n)

Γ(l)
= 0. (5.7)

Such a choice is always possible when k ≥ 2 and it depends only on α, k, n and M .
If k > 2, the solution is not unique and the convention of choosing the sequence
with the smallest possible l2-norm is adopted. With these choices, the boundary
corrected estimator of H1−α/n[q] is

Ĥ2,1−α/n[q] =
n

α
log(

k
∑

l=1

wlδM,l,α). (5.8)

Example 5.1. As an example, if k = 5,n = 3 and α = 1, then inside the logarithm
in (5.8) we would have

1.65δM,1,1 + 1.12δM,2,1 + 0.41δM,3,1 − 0.34δM,4,1 − 1.10δM,5,1.

The weights are the l2-norm minimizing solution of Equations (5.6) and (5.7),
which in this case read as

5
∑

l=1

wl
Γ(l + 1/3)

Γ(l)
=

(

4

3π

)1/3 Γ(M + 1/3)

Γ(M)

5
∑

l=1

wl
Γ(l + 2/3)

Γ(l)
= 0.

The benefit of weighting is best clarified by

Theorem 5.2. If (A2)-(A4) hold with 1 ≤ γ ≤ 2 in (A4), then for a fixed k ≥ 2

k
∑

l=1

wlE[δM,l,α] −
∫

X
q(x)1−α/ndx = O(M−γ/n log2+2α/n+4/n M).
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Proof. In the order of magnitude notation, |wl| = O(Mα/n). Theorem 3.3 implies
that

wlE[dα
1,l] = wlV

−α/n
n

Γ(l + α/n)Γ(M)

Γ(l)Γ(M + α/n)

∫

X
q(x)1−α/ndx

+ wl(D − V −α/n−1/n
n )

Γ(l + α/n + 1/n)Γ(M)

Γ(l)Γ(M + α/n + 1/n)

∫

∂X
q(x)1−α/n−1/ndS

+ O(M−γ/n−α/n log2+2α/n+4/n M).

When the sum over l is taken, the second term in the approximation vanishes,
whereas the first one becomes

∫

X
q(x)1−α/ndx.

The idea behind the boundary corrected estimator is now visible. The weights
(wl)k

l=1 ensure the disappearance of the error due to the boundaries, which im-
proves the rate of convergence by a factor of M−1/n. From the general point of
view, it is remarkable that a weighting scheme obtains a cancellation of error; such
a principle could possibly be applied in other estimation problems as well.

In general, the improvement in terms of bias comes with a more or less increased
variance. The following theorem shows that if n > 4, then we can say at least that
standard deviation tends to approach zero faster than bias when M → ∞. On the
other hand, for dimensions smaller than 5, standard deviation is in principle the
dominant part for large M after the boundary correction, even though in practice
probabilistic deviations tend not to cause problems in that regime. Recall that the
constant L(n) was defined in Section 4.2 and grows exponentially with respect to
n.

Theorem 5.3. If the assumptions of Theorem 4.2 hold with n ≥ 2, then for a
fixed k ≥ 2 and 0 ≤ α ≤ n/2,

Var[
k
∑

l=1

wlδM,l,α] ≤ 23+2α(
k
∑

l=1

w2
l )(kL(n) + 1)(k + 1)1+2α/nnαM−1−2α/n.

Proof. By the Cauchy-Schwarz inequality [56],

|
k
∑

l=1

wld
α
i,l| ≤

√

√

√

√

k
∑

l=1

w2
l

√

√

√

√

k
∑

l=1

d2α
i,l ≤ dα

i,k

√

√

√

√k
k
∑

l=1

w2
l .

Theorem 4.2 can be applied straightforwardly:

Var[
k
∑

l=1

wlδM,l,α] ≤ 23+2α(
k
∑

l=1

w2
l )(kL(n) + 1)(k + 1)2+2α/nnαM−1−2α/n.
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The restriction 0 < α ≤ n/2 was avoided in Theorem 4.2 under (A3) and (A4);
that result could have been applied as well.

The variance bound in Theorem 5.3 is not tight in terms of constants, but the
dependency on

∑k
l=1 w2

l suggests the intuitive fact, that large weights should be
avoided. Finding a tight asymptotic expansion for variance is a topic of future
research that could lead to a more optimal choice for the weights (wl)k

l=1.

5.4 Differential Entropy

The differential entropy is more widely used than other Rényi entropies as it often
arises naturally from information theoretic considerations. For this reason, non-
parametric estimation of differential entropy has been widely investigated. The
related derivations differ from those in the previous two sections only in technical
details.

The state-of-the-art nearest neighbor estimator is analogous to Ĥ1,1−α/n:

−
∫

X
q(x) log q(x)dx ≈ log Vn − ψ(1) + ψ(M) +

n

M

M
∑

i=1

log di,1, (5.9)

where ψ is the digamma function (extension to k > 1 is trivial). The main reference
on this topic is [30]; the multivariate estimator has gained popularity ever since
probably due to its simplicity (no free parameters) and robustness. The method
appears often in the literature on the estimation of mutual information (see e.g.
[31] and [15]).

Analogously to previous section, we can say the following about the bias.

Theorem 5.4. Suppose that Assumptions (A2)-(A4) hold with 1 ≤ γ ≤ 2 in (A4).
Then for a fixed k,

M1/n| n

M
E[

M
∑

i=1

log di,k] − nC2(M,k) +

∫

q(x) log q(x)dx| → ∞,

when M → ∞.

Proof. This is a direct consequence of Theorem 3.4, because ψ(M) grows to infinity
in the limit M → ∞.

Even though the bias goes infinity in the limit M → ∞, such convergence is slow
due to the fact that ψ grows approximately logarithmically. In any case, the most
important thing is that the rate of convergence of the estimator (5.9) cannot exceed
M−1/n in the presence of a boundary cut-off. Analogously to the Rényi entropy
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case, we choose the weights (wl)k
l=1 in such a way that

k
∑

l=1

wlC1(M, l) = 0 (5.10)

k
∑

l=1

wl = n. (5.11)

Again the weights can be found if k > 2.

The following straightforward application of Theorem 3.4 demonstrates the bound-
ary correction.

Theorem 5.5. Suppose that (A2)-(A4) hold with 1 ≤ γ ≤ 2 in (A4). If the
weights (wl)k

l=1 are chosen according to Equations (5.10)-(5.11),

k
∑

l=1

wlE[log d1,l] −
k
∑

l=1

wlC2(M, l) = −
∫

X
q(x) log q(x)dx

+ O(M−γ/n log3+4/n M).

Consequently, the proposed estimator takes the form

−
∫

X
q(x) log q(x)dx ≈ 1

M

k
∑

l=1

M
∑

i=1

wl log di,l −
k
∑

l=1

wlC2(M, l). (5.12)

To the best of our knowledge, no corresponding work exists in the literature on
nearest neighbor entropy estimation with the exception [39]. A similar variance
bound as in Theorem 5.3 could be proven here; one simply replaces dα

i,k with
log di,k.

From the practical point of view, instead of (5.10) it is easiest to choose (wl)k
l=1

to satisfy

k
∑

l=1

wlψ(l + 1/n) = 0 (5.13)

k
∑

l=1

wl
Γ(l + 1/n)

Γ(l)
= 0, (5.14)

which automatically implies that
∑k

l=1 wlC1(M, l) = 0. This way, the computation
of D1 and D2 in Theorem 3.4 is avoided, even though finding them is mainly a
technical matter at least in lower dimensions.

Example 5.2. As an example, if n = 3 and k = 13, then in Equation (5.12) we
would use approximately

(w1, . . . ,w13) = (−2.28, 0.63, 1.53, 1.73, 1.61, 1.33,

0.94, 0.50, 0.025,−0.48,−0.99,−1.51,−2.05).
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Figure 5.2: The norm
√

∑n+10
l=1 w2

l , where the weights are calculated according to

Equations (5.13)-(5.14).

The weights are the solution of Equations (5.13) and (5.14), which now take the
form

13
∑

l=1

wlψ(l + 1/3) = 0 (5.15)

13
∑

l=1

wl
Γ(l + 1/3)

Γ(l)
= 0 (5.16)

under the constraint
∑13

l=1 wl = 3. Again, taking the solution with the smallest
l2-norm provides an easy way to choose among the possible solutions.

Unfortunately, the boundary correction has a drawback in this case. Namely, if one
computes the weights according to Equations (5.11) and (5.13)-(5.14), it becomes

quickly evident that the norm
√

∑k
l=1 w2

l grows fast. This is demonstrated in
Figure 5.2 for the choice k = n + 10. On the other hand, the experimental section
shows that things are better than expected in practice, especially for a large sample
size. The same problem arises for the other Rényi entropy estimators as well even
though the experimental results seem more favorable to them. On a deeper level,
the growth of the weights is a manifestation of the curse of dimensionality.

5.5 Simulations

5.5.1 Rényi Entropy

The simulations concern the estimation of

n log

∫

X
q(x)1−1/ndx

corresponding to β = 1 − 1/n in Equation (5.1). The dimensionality n is varied
from 3 to 6 and we choose the weights (wl)k

l=1 to fulfil Equations (5.6) and (5.7).
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The choice k = n + 1 is made even if it is likely a suboptimal one. The estimator
of Equation (5.5) is compared to the boundary corrected statistic (5.8).

In the first set of simulations, the methods are tested with uniformly distributed
points in the cube [0, 1]n letting M increase up to 9000 in steps of 300. As can be
easily verified, the real value is zero:

H1−1/n(q) = 0.

The uniform distribution can be viewed as the distribution with maximal random-
ness in the unit cube. The results of the simulations are drawn in Figure 5.3. As
a measure of accuracy, the absolute deviation

E[|H1−1/n(q) − Ĥi,1−1/n(q)|]

is computed by averaging over 1000 realizations (i = 1, 2).

Figure 5.3 shows that here the proposed method is more accurate for all sample
sizes, especially in terms of percentages. From Figure 5.4 we see that while stan-
dard deviation is larger, the increase is not too high and the trade-off is favourable
to the bias corrected estimator.

As a second experiment, to assess performance with a more complicated distribu-
tion, the simulations were repeated with the truncated Gaussian distribution on
the unit ball. In this case, the variables (Xi)M

i=1 are samples from the multivari-
ate normal distribution restricted to the unit ball. The experiment involves both
boundaries and correlation between components. The results are drawn in Figure
5.5. Again, the real value was computed in closed form and the estimates were
compared to it. The results are rather similar to the uniform case in the sense
that the standard deviation in Figure 5.6 did increase, but not too much.

5.5.2 Differential Entropy

The experiments for the differential entropy were done in the same way as for
the Rényi entropy. The results with uniform data are drawn in Figures 5.7 and
5.8, whereas those for truncated Gaussian data are shown in Figures 5.9 and 5.10.
Instead of letting k vary with n, the choice k = 30 was used all the time.

From Figures 5.7 and 5.9, it is seen that the boundary correction works well for
dimensions n = 3 and n = 4, whereas after that problems appear due to the
weight increase problem. It can be concluded that the boundary correction for the
differential entropy is mainly useful in applications with a large number of samples
available (e.g. information compression and related topics). From Figures 5.8 and
5.10 it is seen that the problem is due to the increased variance brought by the
weighting. In Chapter 7 we suggest a possible improvement.
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Figure 5.3: Rényi entropy: Mean absolute deviation for the experiment with uni-
form data. The dashed line corresponds to the boundary corrected estimator.
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Figure 5.4: Rényi entropy: Standard deviation for the experiment with uniform
data. The dashed line corresponds to the boundary corrected estimator.
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Figure 5.5: Rényi entropy: Mean absolute deviation for the experiment with trun-
cated Gaussian data. The dashed line corresponds to the boundary corrected
estimator.
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Figure 5.6: Rényi entropy: Standard deviation for the experiment with truncated
Gaussian data. The dashed line corresponds to the boundary corrected estimator.
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Figure 5.7: Differential entropy: Mean absolute deviation for the experiment with
uniform data. The dashed line corresponds to the boundary corrected estimator.
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Figure 5.8: Differential entropy: Standard deviation for the experiment with uni-
form data. The dashed line corresponds to the boundary corrected estimator.
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Figure 5.9: Differential entropy: Mean absolute deviation for the experiment with
truncated Gaussian data. The dashed line corresponds to the boundary corrected
estimator.
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Figure 5.10: Differential entropy: Standard deviation for the experiment with
truncated Gaussian data. The dashed line corresponds to the boundary corrected
estimator.



Chapter 6

Residual Variance
Estimation

6.1 A Review of the Problem

While literature on the topic of residual variance estimation is rather scarce, in the
statistics community the topic is better known as noise variance estimation and
quite a lot of research has been done under that name. However, noise variance
estimation usually involves the assumption that the data (Xi, Yi)M

i=1 consists of
i.i.d. random variables generated by

Y = m(X) + r, (6.1)

where r is zero-mean noise independent of X. Then the residual (noise) variance
is V = E[r2]. When speaking of residual variance estimation, the independence
assumption on r is not made and instead the definitions m(X) = E[Y |X] and
r = Y − E[Y |X] are imposed. Formally Equation (6.1) still holds, but in general
r may not be independent of X.

The most straightforward approach to residual variance estimation is to build an
approximation m̂ to the optimal function m and then estimate

V ≈ V̂ = E[(Y − m̂(X))2] = E[(m(X) − m̂(X))2] + V .

The drawback of this type of an approach is clear: the first step involves building
a regression estimate to m, which is to be avoided. In fact, the classical results
in [62] imply that for any regression estimator, there exists a sequence (mM ) such
that each function in the sequence has the same Lipschitz constant and

lim inf
M→∞

M2/(2+n)E[(mM (X) − m̂M (X))2] > 0,

where m̂M is the approximation of mM with M samples. In words: the optimal
rate of convergence achievable for Lipschitz continuous functions is M−2/(2+n)

unless prior information is available. Such a rate is not satisfying as in [10] it was

105
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shown that in residual variance estimation, error of order M−1/2 is achievable for
n ≤ 4.

A better idea is to estimate V directly without the intermediate step of approxi-
mating m. As an example, for n = 1 difference based methods are known to obtain
low biases ([68, 55, 20]). Other (excluding nearest neighbor based methods) di-
rect approaches include the use of U-statistics ([46]) and in general various kernel
estimators ([24]).

Unfortunately, most of the direct methods have not been shown to stay consistent if
the independence of r from X is dropped. Once the homoscedasticity assumption
is removed, possibly the most succesful branch of research has been estimators
based on the use of nearest neighbors, which is the focus of this chapter.

The residual variance estimation problem should not be confused with estimating
the whole variance function (see e.g. [5, 45] and [6])

g(x) = E[(Y − E[Y |X])2|X = x],

which is a considerably more difficult task and not necessary in many applications.
Of course, methods for the estimation of g yield V as a special case, but this
is an overly complicated approach. Moreover, multivariate variance estimation
with random design is a relatively unexplored topic as most work concentrates on
univariate models or a fixed design limiting the scope of the methods.

6.2 Nearest Neighbor Approaches

Possibly the simplest nearest neighbor residual variance estimator is given by the
1-NN estimator

V ≈ 1

2M

M
∑

i=1

(Yi − YN [i,1])
2, (6.2)

where N [i, 1] is computed in the sample (Xi)M
i=1. An early reference on the method

is [61]. Later on, the 1-NN estimator has been found to be useful especially in
machine learning and data-analysis ([1, 12, 37]) for tasks such as input and model
structure selection.

To clarify the logic behind the estimator, let us assume that the sample (Xi, Yi)M
i=1

is generated by the model (6.1) with independent noise r. Now it is reasonable to
assume that the points Xi and XN [i,1] are close to each other when the number of
samples is large enough and we may approximate heuristically

V ≈ 1

2M

M
∑

i=1

(ri − rN [i,1])
2.

Using the assumption that the variables (ri)M
i=1 are independent of the input vari-

ables (Xi)M
i=1 and each other, it holds that E[rirN [i,1]] = 0 and one may further-

more write

E[V ] ≈ 1

2M

M
∑

i=1

E[r2
i ] +

1

2M

M
∑

i=1

E[r2
N [i,1]] = E[r2],
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which is the residual variance.

Based on these considerations, clearly it is possible to prove that the estimator
(6.2) is consistent when the output noise r is independent of X. Of course, the
rate of convergence may be slow and various generalizations have been proposed.
Of these, possibly the most important is the Gamma test ([13, 61]) and the local
linear estimator in [60].

A natural question is, if consistency of (6.2) and its extensions hold also in a more
general setting. While currently no proof exists, it seems likely that convergence
indeed holds for heteroscedastic noise, because the distribution of the random
variable XN [i,1] approaches that of Xi in the limit M → ∞. Nevertheless it
is not guaranteed that such convergence is fast, which motivated us to look for
alternatives to the 1-NN method.

One extension is to allow kM > 1 by

V ≈ 1

(1 + k−1
M )M

M
∑

i=1

(Yi −
1

kM

kM
∑

j=1

YN [i,j])
2, (6.3)

where the assumption kM/M → 0 as M → ∞ is essential for consistency. However,
even though it is possible to show that the approximation (6.3) is able to give
consistent estimates under general assumptions (a large body of research exists
on k-NN estimators, see e.g. [9, 28]), it is not without problems. One practical
difficulty is the choice of kM , which is not obvious, as for example cross-validation
inevitably increases variance.

It is of course possible to approximate m with a local polynomial or a neural net-
work model instead of a simple locally constant approximator. But that would
probably not be a particularly elegant solution and would not utilize the possibil-
ities brought by increased complexity in a particularly good way. An alternative
solution based on modified nearest neighbor graphs was introduced in [10]. The
method there has rather similar properties to those of (6.2), but is not affected by
heteroscedasticity.

In this chapter we analyze a slightly simpler method based on modifying the ap-
proximator (6.2) as

V̂M =
1

M

M
∑

i=1

(Yi − YN [i,1])(Yi − YN [i,2]). (6.4)

The idea appeared first time in [14] and was later analyzed in [17, 41, 36]. More-
over, a generalization to higher order moments was provided in [17]. To understand
the logic behind the method, assume that the function m is continuous. Then the
heuristic approximation m(XN [i,k]) − m(Xi) ≈ 0 and conditional independence
yield

V ≈ 1

M

M
∑

i=1

E[(ri − rN [i,1])(ri − rN [i,2])] = E[
1

M

M
∑

i=1

r2
i ], (6.5)

which is the residual variance. Moreover, it can be seen that the quality of the
estimate depends only on the smoothness of m and therefore the estimator does
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not have problems with heteroscedastic noise. This is the first benefit of using a
product of differences: the problematic terms rN [i,1] and rN [i,2] vanish from the
expectation.

Even though the ability to solve the residual variance estimation problem in a
general context was a major motivating factor behind the product estimator, in
this regard it does not bring any particular advantage over the solution in [10].
However, as the main result of the chapter it is shown that (6.4) achieves an
improvement in the rate of convergence. So in effect, while the method can be mo-
tivated as a solution for heteroscedastic noise, it actually has unexpected benefits
over the 1-NN method without significant disadvantages.

6.3 Analysis of The Product Estimator

Our analysis is divided into two parts: first worst-case bounds are demonstrated
under relatively weak assumptions leading to a similar rate of convergence as in
[17]. The proof technique is a typical application of the theory in Chapter 3 and
similar derivations work in other fields of non-parametric statistics as well; the
geometric nearest neighbor bounds lead to rather simple proofs. Secondly, we take
a look on what happens when sufficient regularity is present.

6.3.1 General Bounds on the Bias

Often in nonparametric statistics, estimation bias tends to be large, whereas vari-
ance is less of a problem. The most straightforward way to bound the systematic
error of the estimator (6.4) is to invoke the Hölder continuity of m and the bounds
derived in Chapter 3. The argument based on the continuity of m is common in
non-parametric statistics and a good starting point here.

Theorem 6.1. Suppose that (Xi, Yi)M
i=1 is i.i.d. with each variable Xi taking

values in a space X ; moreover, it is assumed that the assumptions of Theorem 2.1
hold. Moreover, we assume that E[Y 2

1 ] < ∞ and that the conditional expectation

m(x) = E[Y1|X1 = x]

belongs to H(cm, γm) with 0 < γm ≤ 1 (the Hölder continuity in Definition 3.1
generalizes trivially to any metric space). Then for n = 2γm and M ≥ kCn, the
inequality

|E[V̂M ] − V | ≤ 2Cnc2
m

M
(2 + log(

M

2
)) (6.6)

holds and for n > 2γm,

|E[V̂M ] − V | ≤ c2
mn

n − 2γm
(
2Cn

M
)2γm/n − 4γmc2

mC2γm/n
n

(n − 2γm)M
+

2c2
mC2γm/n

n

M
. (6.7)

The constant Cn was defined in Theorem 2.1.
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Proof. Notice that

E[(Yi − YN [i,1])(Yi − YN [i,2])] = E[(m(Xi) − m(XN [i,1]))(m(Xi) − m(XN [i,2]))]

+ E[(ri − rN [i,1])(m(Xi) − m(XN [i,2]))] + E[(ri − rN [i,1])(ri − rN [i,2])]

+ E[(m(Xi) − m(XN [i,1]))(ri − rN [i,2])]. (6.8)

Because ri = Yi − E[Yi|Xi], it holds by the basic properties of conditional expec-
tations that

E[rirN [i,2]] = E[rN [i,1]rN [i,2]] = E[rN [i,1]ri] = 0.

For example,

E[rN [i,1]rN [i,2]] = E[E[rN [i,1]rN [i,2]|(Xi)
M
i=1]]

= E[
M
∑

j1=1

M
∑

j2=1

E[rj1rj2 |(Xi)
M
i=1]I(N [i, 1] = j1)I(N [i, 2] = j2)]

= E[
M
∑

j1=1

M
∑

j2=1

E[rj1 |(Xi)
M
i=1]E[rj2 |(Xi)

M
i=1]I(N [i, 1] = j1)I(N [i, 2] = j2)] = 0.

In the two last equalities we used the fact that the variables (ri)M
i=1 are condi-

tionally independent and mean zero given (Xi)M
i=1 due to the assumption that

(Xi, Yi)M
i=1 is i.i.d. Observe also that the term with j1 = j2 is neglected as

I(N [i, 1] = j1)I(N [i, 2] = j1) is always zero.

Similarly

E[(ri − rN [i,1])(m(Xi) − m(XN [i,2])) + (m(Xi) − m(XN [i,1]))(ri − rN [i,2])]

is equal to zero. On the other hand,

|
M
∑

i=1

(m(Xi) − m(XN [i,1]))(m(Xi) − m(XN [i,2]))| ≤
M
∑

i=1

c2
md2γm

i,2 ,

which can be bounded by Theorem 2.1. What remains of Equation (6.8) after
averaging over i is the residual variance.

The rate of convergence depends on the instrinsic dimensionality of the set X .
Avoiding the multiplier log M when n = 2γm seems difficult under the assumptions
that were made. A slightly tighter and more concrete bound on the bias is possible
if the packing dimension of X is n with X ⊂ "n:

Theorem 6.2. Suppose that (Xi, Yi)M
i=1 is i.i.d. and X ⊂ [0, 1]n. Moreover, we

assume that m ∈ H(cm, γm) with 0 < γm ≤ 1. Then for n ≥ 2, the inequality

|E[V̂M ] − V | ≤ c2
m(

2n+1nn/2

M
)2γm/n (6.9)

holds. If n ≥ 3 and the assumptions of Theorem 2.2 hold, then

|E[V̂M ] − V | ≤ (
2n+1λ(X )

VnM
)2γm/n + o(M−2γm/n), (6.10)

where the remainder o(M−2γm/n) approaches zero faster than M−2γm/n.
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Proof. The proof is similar to that of Theorem 6.1 with the difference that Corol-
lary 2.1 and Theorem 2.2 are invoked instead of Theorem 2.1.

Interestingly, the rate M−2γm/n is essentially the same as that obtained in [10] and
it also agrees with [17]. It is known to be the best possible for the 1-NN estimator
of Equation (6.2) with homoscedastic noise as has been demonstrated for γm = 1:

Remark 6.1. Assume that the sample (Xi)M
i=1 is i.i.d. and uniformly distributed

on the unit cube [0, 1]n. Moreover, the variables (Yi)M
i=1 are assumed to be linearly

related to the inputs:
Yi = wT Xi

for some vector w ∈ "n. Then using the lower bound of Section 2.4, it was shown
in [35] that

E[(Yi − YN [i,1])
2] ≥ 1

n
‖w‖2V −2/n

n
Γ(M)

Γ(M + 2/n)

showing that by using the squared difference, M−2/n is the best rate of convergence
that can be achieved.

6.3.2 The Bias Under Sufficient Regularity

As the main contribution of this chapter, it is shown next that worst-case consid-
erations give a wrong view of the practical rate of convergence.

Lemma 6.1. Suppose that (A2’), (A3) and (A4) hold with 0 ≤ γ ≤ 1 in (A4).
Let H : "n → "n×n be a matrix valued function with ‖H(x)‖ ≤ 1 for all x ∈ X .
Then for M > 2k and fixed j2 > j1,

|E[(XN [1,j1] − X1)
T H(X1)(XN [1,j2] − X1)]| ≤ cM−2/n−γ/n log2+6/n M ,

where c is a constant independent of M .

Proof. Define h = (XN [1,j1] − X1)T H(X1)(XN [1,j2] − X1). We set

tM = M−1/n log2/n M .

The expectation decomposes into three parts (recall gM from Equation (3.41)):

E[h] = E[gM (X1, d1,k)h] + E[I(X1 ∈ ∂tMX , d1,k ≤ tM )h]

+ E[I(d1,k > tM )h]. (6.11)

By Lemma 3.1,
|E[I(d1,k > tM )h]| ≤ c−1Mke−ctn

M M

for a constant c > 0 independent of M . On the other hand, by Assumption (A2’)

λ(∂tMX ) = O(tM )

and
|E[I(X1 ∈ ∂tMX , d1,k ≤ tM )h]| = O(t3M ).
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The first term in the right side of (6.11) is the most important factor in the
decomposition.

Choose x ∈ X \∂tMX ; by definition B(x, tM ) ⊂ X . Let us define the density q̃x(y)
by setting

q̃x(y) = q(x)

when y ∈ B(x, tM ) and

q̃x(y) =
1 − q(x)λ(B(x, tM ))

1 − P (X1 ∈ B(x, tM ))
q(y)

when y /∈ B(x, tM ). Then by assumption (A4),

∫

X
|q(y) − q̃x(y)|dy ≤ ctn+γ

M

for an appropriate constant c. By Lemma 3.16 we find an i.i.d. sample (X̃i)M
i=2

such that P ((X̃i)M
i=2 ,= (Xi)M

i=2) ≤ cMtn+γ
M . Moreover, we choose X̃1 = X1

(independent of (X̃i)M
i=2) and denote by C the event (X̃i)M

i=2 = (Xi)M
i=2.

The new sample (X̃i)M
i=2 is uniform around x, whereas it differs from the original

one only with a small probability. Let us now denote by d̃1,k the k-th nearest
neighbor distance in the new sample; h̃ is defined in a corresponding way. Then,

E[I(C)gM (X1, d1,k)h|X1 = x] = E[I(C)gM (X̃1, d̃1,k)h̃|X̃1 = x]. (6.12)

Moreover,

|E[I(CC)gM (X1, d1,k)h|X1 = x]| ≤ t2MP (CC) ≤ cMtn+γ+2
M , (6.13)

and the same holds of course also with respect to (X̃i)M
i=1.

Thus, the sample (X̃)M
i=1 gives nearly the same expectation as (Xi)M

i=1 and an
application of Theorem 3.5 yields

E[gM (X̃1, d̃1,k)h̃|X̃1 = x] = k!

(

M − 1

k

)
∫

Sx,k(tM )
(1 − ω̃x(‖x1,k − x1‖))M−k−1×

× (x1,1 − x)T H(x)(x1,2 − x)
k
∏

i=1

q̃x(x1,i)dx1,1, . . . , dx1,k. (6.14)

But Equation (6.14) is zero because q̃x is locally constant, whereas h is antisym-
metric w.r.t. the replacement of XN [1,1] − X1 with −XN [1,1] + X1.

Theorem 6.3. In addition to m ∈ H(cm, γm) (1 < γm ≤ 2) and E[Y 2
1 ] < ∞,

assume that the inputs (Xi)M
i=1 are i.i.d. with a common density q satisfying (A2’),

(A3) and (A4) with 0 ≤ γ ≤ 1 in (A4). Then for some constant c (depending on
X , m and the density q),

|E[V̂M ] − V | ≤ cM−1/n−γm/n + cM−2/n−γ/n log2+6/n M .
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Proof. Recall that of the terms in Equation (6.8), only the first one in the right
side poses difficulties. Firstly we notice that

E[(m(XN [1,2]) − m(X1))(m(XN [1,1]) − m(X1))]

= E[(XN [1,2] − X1)
T∇X1m(∇X1m)T (XN [1,1] − X1)] + O(M−1/n−γm/n),

because for example

|(XN [1,2] − X1)
T (∇X1m −∇XN[1,1]

m)(∇X1m)T (XN [1,1] − X1)| ≤ c1d
2+γm
1,2 ,

where c1 is some constant depending on m. In fact,

E[dγm
1,2 ] = E[ωX1(d1,2)

2/n+γm/n(
d1,2

ωX1(d1,2)1/n
)2+γm ] ≤ c2E[ωX1(d1,2)

2/n+γm/n]

≤ c3M
−2/n−γm/n

by (A2) and (A3). Now it is possible to apply Lemma 6.1:

|E[(XN [1,2] − X1)
T∇X1m(∇X1m)T (XN [1,1] − X1)]| ≤ c4M

−2/n−γ/n log2+6/n M

with c4 some constant.

6.3.3 Bounding the Variance

The variance of the residual variance estimate V̂M can be bounded straightfor-
wardly using Theorem 4.1:

Theorem 6.4. (A General Variance Bound). Assume that (Xi, Yi)M
i=1 is i.i.d.

with |Y1| ≤ 1. The variance of V̂M is bounded by

Var[V̂M ] ≤ 80(1 + 4L(n))

M
.

Proof. Because the output variables (Yi)M
i=1 are assumed to be bounded by 1, it

holds that that |(Yi−YN [i,1])(Yi−YN [i,2])| ≤ 4. Consequently Theorem 4.1 implies
that

Var[
M
∑

i=1

(Yi − YN [i,1])(Yi − YN [i,2])] ≤ 80(1 + 4L(n))M .

In general, by a comparison to the bounds on estimation bias in Theorem 6.3,
it is seen that usually variance is negligible in the limit M → ∞ if n > 6. For
example, Theorem 6.3 shows that in the presence of sufficient regularity, bias of
order M−3/n can be achieved, which is more than the order M−1/2 for statistical
fluctuations in the case n > 6.

The following bound is not optimal with respect to the constants, but it demon-
strates the fact that when the residual is on average small, the variance of the
estimator may be smaller than simpler proof techniques would indicate.
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Theorem 6.5. Suppose that (Xi, Yi)M
i=1 is i.i.d. with |Y1| ≤ 1; moreover X ⊂

[0, 1]n with n ≥ 2. We assume that m ∈ H(cm, γm), where γm ≥ 1. If the
definition

σ4
4 = sup

x∈X
E[r4

1|X1 = x]

is made, then the variance of V̂M is bounded by

Var[V̂M ] ≤ 32(1 + 2L(n))σ4
4

M
+ O(σ2

4M−1−2/n) + O(M−1−min{4/n,1}),

where the remainder terms are viewed with σ4 and M as the free parameters and
everything else fixed.

Proof. We divide
∑M

i=1(Yi −YN [i,1])(Yi −YN [i,2]) into three parts I1 + I2 + I3 with

I1 =
M
∑

i=1

(ri − rN [i,1])(ri − rN [i,2])

I2 =
M
∑

i=1

(m(Xi) − m(XN [i,1]))(ri − rN [i,2])

+
M
∑

i=1

(ri − rN [i,1])(m(Xi) − m(XN [i,2]))

I3 =
M
∑

i=1

(m(Xi) − m(XN [i,1]))(m(Xi) − m(XN [i,2])).

By the smoothness of m and the bound on Y1, it holds that

|(m(Xi) − m(XN [i,1]))(m(Xi) − m(XN [i,2]))| ≤ (4 + c2
m)min{1, ‖Xi − XN [i,2]‖2}.

Because of this inequality, Theorem 4.2 implies that

Var[I3] = O(M−1−min{4/n,1}).

Similarly

E[(m(Xi) − m(XN [i,1]))
2(ri − rN [i,2])

2|(Xi)
M
i=1]

≤ (8σ2
4 + 2c2

mσ
2
4)min{1, ‖Xi − XN [i,2]‖2}.

Consequently, it holds that

Var[I2] = O(σ2
4M−1−2/n).

Finally, Theorem 4.2 can applied to I1, because

E[(ri − rN [i,1])
2(ri − rN [i,2])

2|(Xi)
M
i=1] ≤ 4σ4

4

and consequently

Var[I1] ≤
32(2L(n) + 1)σ4

4

M
.
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The previous result is rather rough and it is more interesting to ask, whether the
convergence

ME[(V̂M − 1

M

M
∑

i=1

r2
i )2] → 0

happens in the limit M → ∞. It is easy to be convinced that this would indicate
asymptotic optimality of the estimator if the residual variance is above zero. The
convergence question was considered by us in [36], but in that paper we were not
able to show that the basic product method is asymptotically optimal. The exact
asymptotic variance remains an open question at this point, but it can probably
be derived from the limit theory of random geometric graphs (e.g. [49]).

6.4 Extending to k > 1

To define the estimator V̂M we used only the first and second nearest neighbors.
However, extending the method so as to employ 2k nearest neighbors is rather
obvious and it is stated mathematically as

V̂M,k =
1

M(1 + k−1)

M
∑

i=1

(Yi −
1

k

k
∑

j=1

YN [i,2j])(Yi −
1

k

k
∑

j=1

YN [i,2j−1]).

Theoretically, it is possible to show the following consistency result (see [36], the
theorem is stated here in a simplified form):

Theorem 6.6. If n ≤ 4, then

lim sup
M→∞

E[M(V̂M,k − 1

M

M
∑

i=1

r2
i )2] = O(k−1),

where the remainder term depends only on k and the dimensionality n.

In fact, the bias considerations in Section 6.3.2 indicate that Theorem 6.6 holds
also for n = 5. The result implies that by increasing k with k/M small, V̂M,k ap-
proaches the minimum variance estimator at least in L2-sense. However, obviously
increasing k also increases the systematic error (bias) of the estimator and thus
one has to compromise between variance and bias.

Details on the bounds for the case k > 1 are found in our paper [36]. Because
in most practical problems the benefit of using k > 1 is small and brings the
additional difficulty of choosing k, fixing k = 1 is usually recommended.

6.5 Simulations

The 1-NN estimator (6.2) is compared to the product estimator in the presence of
heteroscedastic noise. The task is to assess the practical impact of the faster rate
of convergence for the latter method.
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Figure 6.1: Results for the model in Equation (6.15) with uniformly distributed X.
The dashed line in a) corresponds to the 1-NN estimator. The related logarithmic
curve for the product estimator is in b) and that for 1-NN in c). The least squares
fits (dashed lines) in b) and c) have slopes −0.48 and −0.5 respectively.

6.5.1 Linear Problems

In the first simulation example, the observations are related to the inputs by

Y = X(1) + 3X(2) + sin(4πX(1))ε, (6.15)

where (X(1),X(2)) is sampled from the uniform distribution on [0, 1]2 and ε ∼
N(0, 1) is independent Gaussian noise. The variance of the residual is in this case
0.5. The experiment is repeated 100 times with the number of samples ranging
from 100 to 9000 and the mean absolute deviation (the absolute value of the
difference between the estimate and the real value) from the real noise variance is
calculated.

The results are drawn in Figure 6.1. To clarify the rate of convergence, we have
drawn the logarithm of the mean deviation with respect to log M .

In the second experiment, the higher dimensional model

Y = X(1) + X(2) + X(3) + X(4) + X(5) + X(6) + ε (6.16)
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Figure 6.2: Results for the model in Equation (6.16). The dashed line in a)
corresponds to the 1-NN estimator. The related logarithmic curve for the product
estimator is in b) and that for 1-NN in c). The dashed lines in b) and c) have
slopes −0.5 and −0.47 respectively.

was tested. The data consists of six dimensional vectors and in principle the
product estimator should have some advantage over the 1-NN estimator. However,
from the results in Figure 6.2 we can see that again this is not the case; apparently
here asymptotics show up only for very large values of M .

6.5.2 Non-linearities

While linear models are a good benchmark, the absence of second order terms in
the Taylor expansion makes estimation relatively easy. To examine the general
non-linear case, the same experiment as in Section 6.5.1 was performed with

Y = sin(2πX(1)) sin(2πX(2)) sin(2πX(3)) + 0.2 sin(4πX(1))ε, (6.17)

where X is uniformly distributed and ε is independent Gaussian noise. From
Figure 6.3 it can be seen that again there is no significant difference between the
product estimator and the 1-NN estimator.
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Figure 6.3: Results for the model in Equation (6.17). The dashed line in a)
corresponds to the 1-NN estimator. The related logarithmic curve for the product
estimator is in b) and that for 1-NN in c). The dashed lines in b) and c) correspond
to lines with slopes −0.47 and −0.45 respectively.

To assess the effect of dimensionality, we took the model

Y = (X(1))2 + 3X(2) + sin(4πX(1))ε (6.18)

and repeated the experiment as before. However, now the input was taken as
uniform on the cube [0, 1]6. Consequently, four noise variables were added. Figure
6.4 shows that the 1-NN estimator is more accurate in this case.
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Figure 6.4: Results for the model in Equation (6.18). The dashed line in a)
corresponds to the 1-NN estimator. The related logarithmic curve for the product
estimator is in b) and that for 1-NN in c). The dashed lines in b) and c) correspond
to lines with slopes −0.51 and −0.31 respectively.



Chapter 7

Conclusion and Open
Questions

7.1 The Boundary Correction

The Nearest Neighbor Distance Expansion

In Equation (1.5), we find an asymptotic characterization of the behavior of E[dα
1,k]

in the limit M → ∞: if the i.i.d. sample (Xi)M
i=1 takes values in a set X ⊂ "n,

then under sufficient regularity,

Mα/nE[dα
1,k] → V −α/n

n
Γ(k + α/n)

Γ(k)

∫

X
q(x)1−α/ndx (M → ∞) (7.1)

and also the rate of convergence is understood [18]. Equation (1.6) on the other
hand conjectures the possibility for a higher order expansion, which would better
approximate Mα/nE[dα

1,k] for finite sample sizes. To assess which sources of error
are dominant in such an expansion, it was shown in Chapter 3 that the major
source of deviation from the limit in (7.1) tends to come from the boundary ∂X .

When analyzing the boundary effect, at first sight it seems that highly non-linear
integrals arise rendering simplification attempts challenging. In Chapter 3 it was
shown that the problem can be circumvented if x in the conditional expectation

E[dα
1,k|X1 = x] (7.2)

is allowed to vary in certain sense. It then follows that the boundary effect enters
in a natural way:

E[dα
1,k] =V −α/n

n
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

∫

X
q(x)1−α/ndx

+ (D − V −α/n−1/n
n )

Γ(k + α/n + 1/n)Γ(M)

Γ(k)Γ(M + α/n + 1/n)

∫

∂X
q(x)1−α/n−1/ndS

+ O(M−γ/n−α/n log2+2α/n+4/n M), (7.3)
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where D depends on α and n (see Theorem 3.3). Unfortunately Assumptions (A2)
and (A4) are restrictive and leave the analysis of unbounded densities as an open
problem. It is probable that some new phenomena arise in this case.

Secondly, the possibility of moving to even higher orders in one way or another
should be investigated; some attempts to this direction have been made in [59]
albeit in the context of classification. It is not necessarily so useful to have the
exact form of the constants in the expansion as long as the dependency on k and
M is understood.

Implications in Statistical Estimation

While the expansion (7.3) is of theoretical interest in its own right, it also has
implications in the theory of statistical estimation. In the context of entropy esti-
mation, an error analysis was established in Chapter 5 characterizing the dominant
error term for the standard nearest neighbor estimator of Equation (1.8):

H1−α/n(X) ≈ n

α
log(

V α/n
n Γ(k)

Γ(k + α/n)
Mα/n−1

M
∑

i=1

dα
i,k). (7.4)

Moreover, it turned out that the boundary effect vanishes under an appropriate
weighted average of different estimates and the improved accuracy is demonstrated
through simulations as well.

While the proposed weighting takes the form

M−1+α/n
M
∑

i=1

l
∑

k=1

wkdα
i,k

for some weights depending on l, n and α (see Example 5.1), it might turn out
that

M−1+α/n
M
∑

i=1

(
l
∑

k=1

wkdi,k)α

works out as well and yields a lower variance in some cases. Especially for differ-
ential entropy estimation, it would be of interest to consider estimators using the
quantity

M
∑

i=1

log(
l
∑

k=1

wkdi,k)

as an attempt to reduce the increase in variance, while preserving the low bias.

From the more general point of view, similar ideas apply not only to variance but
also in general for statistical testing and estimation in those cases where nearest
neighbor distributions might turn out to be useful. It would be interesting to go
through statistical literature and find out where nearest neighbor based estimators
are applicable in some natural way and what are their properties.
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7.2 Nearest Neighbor Bounds

The nearest neighbor upper and lower bounds of Chapter 2 are a potentially useful
tool because of their non-asymptotic and general nature. Among others, it was
proven that under the i.i.d. assumption on (Xi)M

i=1

V −α/n
n,p E[M(X1)

−α/n]
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
≤ E[dα

1,k] ≤ (
2nnn/2k

M
)α/n,

where M(x) is the maximal function of the common density q. Standard tools
from measure theory were then applied in order to relate the lower bound to the
Lp-norms of q. Moreover, a geometric boundary analysis provides also the bound

E[dα
i,k] ≤ (

2nλ(X )k

Vn,pM
)α/n + o(M−α/n)

as long as X is not a fractal and stays sufficiently regular. Moreover, it was shown
that upper bounds can also be derived using the instrinsic dimensionality of X
even though in that case some tightness seems to be lost. For an unexplored topic
of research, observe that the upper bounds were of geometric nature; whether
introducing some probabilistic structure would lead to sharper inequalities is an
open question.

Some applications were discussed including the analysis of high dimensional spaces
and convergence analysis in non-parametric statistics. In addition to these, be-
cause nearest neighbor distances relate closely to the geometric properties of the
underlying space, one might want to explore, whether unexplored applications in
the analysis of metric spaces and discrete geometry could be found, see e.g. [44].
We also mention in [40] that the bounds might be useful in addressing important
problems in random sequential adsorption [63].

7.3 Residual Variance Estimation

The theoretical properties of the product estimator

1

M

M
∑

i=1

(YN [i,2] − Yi)(YN [i,1] − Yi) (7.5)

were analyzed in Chapter 6 and shown to be attractive, though other good alter-
natives exist including the Gamma test. It was shown that while in general

E[(
1

2M

M
∑

i=1

(YN [i,1] − Yi)
2 − Var[r])2] ≥ c1M

−min{1,4/n}

for some constant c1 > 0 independent of M , under sufficient regularity we have

E[(
1

M

M
∑

i=1

(YN [i,2] − Yi)(YN [i,1] − Yi) − Var[r])2] ≤ c2M
−min{1,6/n} log2+6/n M
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for any n > 4 and some constant c2 > 0 independent of M , whereas for n ≤ 4

E[(
1

M

M
∑

i=1

(YN [i,2] − Yi)(YN [i,1] − Yi) − Var[r])2] ≤ c3M
−1

with c3 > 0 independent of M . In other words, the product estimator is less
sensitive to the curse of dimensionality than (6.2).

The proof technique exploits a local uniformity property of nearest neighbor distri-
butions, which possibly could find other uses as well e.g. in the design of statistical
estimators. It would also be important to examine the effect of non-independent
sampling on convergence. It is likely that when the dependency between samples
is not too strong, consistency can be established; in fact, the author believes that
actually not even stationarity is necessary if an appropriate definition of residual
variance is used. Of course, problematic cases such as time series data exist and
the practicioners should be aware of potential difficulties.

While other unexplored theoretical topics can be found, such as deriving confidence
intervals and a locally linear extension of (7.5), promoting the practical use of the
methods is most important as was stated in [13]. In fact, it is surprising that
nearest neighbor based methods have not gained more popularity, as they have
a relatively low computational complexity and moreover, non-parametric residual
variance estimation is a natural generalization of linear correlation.
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[10] L. Devroye, L. Györfi, and D. Schäfer. The estimation problem of minimum
mean squared error. Statistics and Decisions, 21:15–28, 2003.

[11] Y. G. Dmitriev and F. P. Tarasenko. On the estimation of functionals of the
probability density and its derivatives. Theory of probability and its applica-
tions, 18(3):628–633, 1974.

123



124 BIBLIOGRAPHY
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Ecole d’Eté Probabilit.Saint-Flour. Springer, 1 edition, 2007.

[44] J. Matousek. Note on bi-lipschitz embeddings into normed spaces. Commen-
tationes Mathematicae Universitatis Carolinae, 33(1):51–55, 1992.

[45] H. G. Muller and U. Stadtmuller. On variance function estimation with
quadratic forms. Journal of Statistical Planning and Inference, 35(2):213–
231, 1993.

[46] H. G. Muller and U. Stadtüller. Estimation of heteroscedasticity in regression
analysis. Annals of Statistics, 15(2):610–625, 1987.

[47] M. Penrose. Random Geometric Graphs. Number 5 in Oxford Studies in
Probability. Oxford University Press, 2003.

[48] M. Penrose and A. R. Wade. Multivariate normal approximation in geometric
probability. Journal of Statistical Theory and Practice, 2:293–326, 2008.

[49] M. D. Penrose. Gaussian limits for random geometric measures. Electronic
Journal of Probability, 12(35):989–1035, 2007.

[50] M. D. Penrose. Laws of large numbers in stochastic geometry with statistical
applications. Bernoulli, 13(4):1125–1150, 2007.

[51] M. D. Penrose and A. R. Wade. On the total length of the random minimal
directed spanning tree. Advances in Applied Probability, 38(2):336–372, 2006.

[52] V. Pestov. On the geometry of similarity search: Dimensionality curse and
concentration of measure. Information Processing Letters, 73(1-2):47–51,
2000.

[53] C. E. Rasmussen. Gaussian Process for Machine Learning. MIT Press, 2006.

[54] A. Renyi. On measures of information and entropy. In Proceedings of the
4th Berkeley Symposium on Mathematics, Statistics and Probability, pages
547–561, 1961.

[55] J. Rice. Bandwidth choice for nonparametric regression. The Annals of Statis-
tics, 12(4):1215–1230, 1984.

[56] W. Rudin. Real and Complex Analysis. Higher Mathematics Series. McGraw-
Hill Science, 1986.

[57] O. Bousquet S. Boucheron and G. Lugosi. Advanced Lectures on Machine
Learning, chapter Concentration inequalities, pages 208–240. Lecture Notes
in Artificial Intelligence. Springer, 2004.

[58] C. E. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 27:379–423, 1948.



BIBLIOGRAPHY 127

[59] R. R. Snapp and S. S. Venkatesh. Asymptotic expansions of the k nearest
neighbor risk. Annals of statistics, 26(3):850–878, 1998.

[60] V. Spokoiny. Variance estimation for high-dimensional regression models.
Journal of Multivariate Analysis, 82(1):111–133, 2002.

[61] A. Stefánsson, N. Koncar, and A. J. Jones. A note on the Gamma test. Neural
Computing & Applications, 5(3):131–133, 1997.

[62] C. J. Stone. Optimal rates of convergence for nonparametric estimators. An-
nals of Statistics, 8(6):1348–1360, 1980.

[63] J. Talbot, G. Tarjus, P. R. Van Tassel, and P. Viot. From car parking to
protein adsorption: an overview of sequential adsorption processes. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 165(1-3):287–324,
2000.

[64] A. Tewari and A. M. Gokhale. A geometric upper bound on the mean first
nearest neighbour distance between particles in three-dimensional microstruc-
tures. Acta Materialia, 52(17):5165–5168, 2004.

[65] C. Tricot. Two definitions of fractional dimension. Mathematical Proceedings
of the Cambridge Philosophical Society, 91(1):57–74, 1982.

[66] A. W. van der Vaart and J. H. van Zanten. Rates of contraction of pos-
terior distributions based on Gaussian process priors. Annals of Statistics,
36(3):1435–1463, 2008.

[67] M. Verleysen. Machine learning of high-dimensional data: local artificial neu-
ral networks and the curse of dimensionality. Agregation in higher education
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