
Amauri Holanda de Souza Júnior

Regional Models and Minimal Learning
Machines for Nonlinear Dynamic System

Identification

Fortaleza

2014

Amauri Holanda de Souza Júnior

Regional Models and Minimal Learning Machines for
Nonlinear Dynamic System Identification

A thesis presented to the Graduate Program
of Teleinformatics Engineering at Federal Uni-
versity of Ceará in fulfillment of the thesis
requirement for the degree of Doctor of Phi-
losophy in Teleinformatics Engineering.

Federal University of Ceará

Center of Technology

Graduate Program of Teleinformatics Engineering

Supervisor: Guilherme Alencar Barreto

Fortaleza

2014

Amauri Holanda de Souza Júnior
Regional Models and Minimal Learning Machines for Nonlinear Dynamic

System Identification/ Amauri Holanda de Souza Júnior. – Fortaleza, 2014-
114 p. : il. (algumas color.) ; 30 cm.

Supervisor: Guilherme Alencar Barreto

Thesis (Doctorate) – Federal University of Ceará
Center of Technology
Graduate Program of Teleinformatics Engineering, 2014.

1. Palavra-chave1. 2. Palavra-chave2. I. Orientador. II. Universidade xxx. III.
Faculdade de xxx. IV. T́ıtulo

CDU 02:141:005.7

Amauri Holanda de Souza Júnior

Regional Models and Minimal Learning Machines for
Nonlinear Dynamic System Identification

A thesis presented to the Graduate Program of Teleinformatics Engineering
at Federal University of Ceará in fulfillment of the thesis requirement for
the degree of Doctor of Philosophy in Teleinformatics Engineering.

Approved. 31st of October, 2014:

Guilherme Alencar Barreto
Federal University of Ceará (UFC)

Fernando José Von Zuben
State University of Campinas (UNICAMP)

Roberto Kawakami Harrop Galvão
Technological Institute of Aeronautics (ITA)

Francesco Corona
Federal University of Ceará (UFC) / Aalto University

João Paulo Pordeus Gomes
Federal University of Ceará (UFC)

Fortaleza

2014

For my grandmother Raimunda Oliveira, in memoriam.

Abstract

This thesis addresses the problem of identifying nonlinear dynamic systems
from a machine learning perspective. In this context, very little is assumed to be
known about the system under investigation, and the only source of information
comes from input/output measurements on the system. It corresponds to the black-
box modeling approach. Numerous strategies and models have been proposed over
the last decades in the machine learning field and applied to modeling tasks in a
straightforward way. Despite of this variety, the methods can be roughly categorized
into global and local modeling approaches. Global modeling consists in fitting a
single regression model to the available data, using the whole set of input and output
observations. On the other side of the spectrum stands the local modeling approach,
in which the input space is segmented into several small partitions and a specialized
regression model is fit to each partition.

The first contribution of the thesis is a novel supervised global learning model,
the Minimal Learning Machine (MLM). Learning in MLM consists in building a
linear mapping between input and output distance matrices and then estimating the
nonlinear response from the geometrical configuration of the output points. Given its
general formulation, the Minimal Learning Machine is inherently capable to operate
on nonlinear regression problems as well as on multidimensional response spaces.
Naturally, its characteristics make the MLM able to tackle the system modeling
problem.

The second significant contribution of the thesis represents a different model-
ing paradigm, called Regional Modeling (RM), and it is motivated by the parsimonious
principle. Regional models stand between the global and local modeling approaches.
The proposal consists of a two-level clustering approach in which we first partition
the input space using the Self-Organizing Map (SOM), and then perform clustering
over the prototypes of the trained SOM. After that, regression models are built over
the clusters of SOM prototypes, or regions in the input space.

Even though the proposals of the thesis can be thought as quite general
regression or supervised learning models, the performance assessment is carried out
in the context of system identification. Comprehensive performance evaluation of the
proposed models on synthetic and real-world datasets is carried out and the results
compared to those achieved by standard global and local models. The experiments
illustrate that the proposed methods achieve accuracies that are comparable to, and
even better than, more traditional machine learning methods thus offering a valid
alternative to such approaches.

Key-words: Nonlinear System Identification, Learning Machines, Clustering, Su-
pervised Learning.

List of Figures

Figure 1 – The system identification pipeline. 16

Figure 2 – The two configurations for model’s operation. 21

Figure 3 – Artificial data created from Eq. (1.9). 23

Figure 4 – General structure of single-hidden layer feedforward networks. 31

Figure 5 – Taxonomy of divide-and-conquer approaches. Blue circles denote lo-

cal approximating methods whereas green circles represent modular

architectures. 35

Figure 6 – Neighborhoods: a) J kNN
x ={x1,x5,x6}, b) J ekNN

x ={x1,x3,x5,x6,x8},
c) J NN

x ={x1,x2,x3,x5,x6}, and d) J NNi
x ={x1,x2,x3,x5,x6,x7,x8,x9}. 40

Figure 7 – Output estimation. 47

Figure 8 – Use of the MLM for nonlinear system identification: external dynamics

approach. 52

Figure 9 – Selection of reference points through k-medoids. 52

Figure 10 –Selection of reference points through KS test for two different functions. 54

Figure 11 –The smoothed parity function: Data . 54

Figure 12 –The smoothed parity function: Figures of merit. 55

Figure 13 –The smoothed parity function: Output estimation with N = 212 and

M = 28. 56

Figure 14 –Synthetic example: MLM results. 57

Figure 15 –Synthetic example: MLM estimates. 57

Figure 16 –Synthetic example: MLM static behavior. 58

Figure 17 –Synthetic example: steps for the partitioning of the input space via

regional modeling. 65

Figure 18 –Synthetic example: RLM results. 66

Figure 19 –Synthetic example: RLM estimates. 66

Figure 20 –Narendra’s plant: time-series. 72

Figure 21 –Narendra’s plant: simulations on the validation set. 73

Figure 22 –Narendra’s plant: residual analysis for the MLM. 74

Figure 23 –Narendra’s plant: residual analysis for the ELM. 74

Figure 24 –Narendra’s plant: static behavior. 75

Figure 25 –pH dynamics: estimation/training data. 76

Figure 26 –pH dynamics: simulations on the validation set. 78

Figure 27 –pH dynamics: residual analysis for the MLM. 79

Figure 28 –pH dynamics: residual analysis for the RLM. 79

Figure 29 –Hydraulic actuator plant. 80

Figure 30 –Actuator plant: RMSE values on cross-validation per number of reference

points. 81

Figure 31 –Actuator plant: simulations on the validation set. 82

Figure 32 –Hydraulic actuator: residual analysis for the MLM. 83

Figure 33 –Hydraulic actuator: residual analysis for the RLM. 83

Figure 34 –Heater system: input and output time-series. 84

Figure 35 –Heater: simulations on the validation set. 85

Figure 36 –Heater: residual analysis for the RBF. 86

Figure 37 –Heater: residual analysis for the RLM. 86

Figure 38 –The Tai Chi symbol: Data. 106

Figure 39 –The Tai Chi symbol: Figures of merit. 107

Figure 40 –The Tai Chi symbol: Output estimation, with N = 212 and M = 28. . . 107

Figure 41 –MLM cross-validation performance on classification. Legends also con-

tain the total number of training samples. 110

Figure 42 –MLM cross-validation performance on regression. Legends also contain

the total number of training samples. 114

List of Tables

Table 1 – Averages on validation performance (RMSE): Narendra’s plant. 73

Table 2 – Averages on validation performance (RMSE): pH dynamics. 77

Table 3 – Averages on validation performance (RMSE): Actuator. 80

Table 4 – Averages on validation performance (RMSE): Heater. 84

Table 5 – Description of the datasets: input/output dimensionality and number of

training/test samples. 108

Table 6 – Test performance: accuracies (%), the corresponding standard deviations

and Wilcoxon signed-ranks test results (X: fail to reject, ×: reject). For

each dataset, the best performing models are in boldface. 109

Table 7 – Description of the datasets: input/output dimensionality and number of

training/test samples. 111

Table 8 – Test results: MSE, standard deviations (below the MSE) and Wilcoxon

signed-ranks test results (X: fail to reject, and ×: reject). The best

performing models are in boldface. 113

List of abbreviations and acronyms

AMSE Averages on Mean Squared Error

ANFIS Artificial Neuro-Fuzzy Inference System

APRBS Amplitude Pseudo Random Binary Signal

ARX AutoRegressive with eXogenous input

DB Davies-Bouldin

ekNN Enclosing k Nearest Neighbors

ELM Extreme Learning Machine

GP Gaussian Processes

ITL Information Theoretic Learning

KDE Kernel Dependency Estimation

kNN k Nearest Neighbors

KS Kolmogorov-Smirnov test

LL Lazy Learning

LLM Local Linear Map

LLR Local Linear Regression

LMS Least Mean Squares

LOO Leave-One-Out

LS Ordinary Least Squares

LWL Locally Weighted Learning

MIMO Multiple-Input Multiple-Output

MLM Minimal Learning Machine

MLP Multi-layer Perceptrons

MSE Mean Squared Error

NARX Nonlinear AutoRegressive with eXogenous input

NN Natural Neighbors

NNi Natural Neighbors Inclusive

OPELM Optimally Pruned Extreme Learning Machine

RBF Radial Basis Functions

RLM Regional Linear Models

RLS Recursive Least Squares

RM Regional Modeling

RMSE Root Mean Squared Error

SLFN Single-hidden Layer Feedforward network

SVM Support Vector Machines

SVR Support Vector Regression

SISO Single-Input Single-Output

SOM Self-Organizing Map

TS Takagi-Sugeno

VQ Vector Quantization

VQTAM Vector-Quantized Temporal Associative Memory

List of symbols

X Set of input data points used for estimation.

Y Set of output data points used for estimation.

N Number of data points used for estimation.

x(n) Input vector at sampling time n.

y(n) Output observation at sampling time n.

X Input space.

Y Output space.

β Parameters of linear models.

wi i-th weight vector in Self-Organizing Maps.

rm m-th reference input point (MLM).

tm m-th reference output point (MLM).

ml l-th hidden unit (SLFN).

pi i-th k-means prototype

M Number of reference points (MLM).

L Number of hidden units (SLFN).

Q Number of SOM prototypes.

K Used for k means, kSOM, kNN.

Contents

1 Introduction . 15
1.1 The system identification problem . 15

1.1.1 Data acquisition . 17

1.1.2 Model structure selection . 18

1.1.3 Parameter estimation . 19

1.1.4 Model validation . 20

1.1.5 A synthetic example . 22

1.2 Objectives of the thesis . 22

1.3 Chapter organization and contributions . 23

1.4 Publications . 25

2 Global and Local Learning Models for System Identification 27
2.1 Global modeling . 27

2.1.1 Least Squares and ARX models . 28

2.1.2 Single-hidden layer feedforward networks 30

2.1.2.1 MultiLayer Perceptrons 31

2.1.2.2 Extreme Learning Machines 32

2.1.2.3 Radial Basis Function Networks 33

2.2 Local modeling . 34

2.2.1 Modular architectures . 35

2.2.1.1 The Self-Organizing Map 35

2.2.1.2 The Local Linear Map . 36

2.2.2 Local approximating models . 37

2.2.2.1 The VQTAM Approach 37

2.2.2.2 The kSOM Model . 38

2.2.2.3 Local Linear Regression 40

2.3 Conclusions . 42

3 The Minimal Learning Machine . 43
3.1 Basic formulation . 45

3.2 Parameters and computational complexity 48

3.3 Links with Multiquadric Radial Basis Functions and Kernel Dependency

Estimation . 50

3.4 Application to system identification . 51

3.5 On the selection of reference points . 52

3.6 Illustrative examples . 53

3.6.1 The smoothed parity . 54

3.6.2 Synthetic example . 56

3.7 Concluding remarks . 57

4 Regional Modeling . 60
4.1 Regional modeling by clustering of the SOM 61

4.1.1 Illustrative example . 64

4.2 Outlier Robust Regional Models . 66

4.3 Related works . 68

4.4 Closing remarks . 69

5 Experiments . 70
5.1 Methodology . 70

5.2 Example: Narendra’s plant . 71

5.3 Example: pH dynamics . 76

5.4 Identification of a hydraulic actuator . 78

5.5 Identification of a heater with variable dissipation 82

5.6 Closing remarks . 85

6 Conclusions and Future Directions . 88
6.1 Future Directions on the Minimal Learning Machine 90

6.2 Future Directions on Regional Modeling 91

Bibliography . 93

APPENDIX A Clustering algorithms . 102
A.1 k-means algorithm . 102

A.2 k-medoids algorithm . 103

A.3 Cluster validity indexes . 104

A.3.1 Davies-Bouldin index . 104

APPENDIX B Minimal Learning Machine for Classification 105
B.1 Formulation . 105

B.2 Illustrative example . 106

B.3 Experiments . 108

B.3.1 Results . 109

APPENDIX C Minimal Learning Machine for Regression 111
C.1 Experiments . 111

C.1.1 Results . 112

15

Chapter 1

Introduction

Modeling takes a central role in engineering and science in general. Almost all

systems that someone can think of or imagine can be described by a mathematical

model (BILLINGS, 2013). Knowing a model that describes the diversity of behaviors that

a dynamic system can reveal — particularly the nonlinear ones — is essential, not only

for theoretic or applied research fields, but also for the process or control engineer who is

interested in understanding better the dynamics of the system under investigation. The

resulting model must approximate the actual system as faithfully as possible so that it

can be used for several purposes, such as simulation, predictive control or fault detection.

This is an introductory chapter where we state the system identification problem

to be addressed in this thesis in Section 1.1. In Section 1.2, we describe the objectives and

motivations of the thesis. The structure of the thesis and contributions are reported in

Section 1.3. Finally, in Section 1.4, the main scientific production during the Ph.D. course

is presented.

1.1 The system identification problem

Despite the variety of definitions for the word “system”, in this work a system

is considered to be an object in which different variables interact at various time and

space scales and that produces observable signals (KEESMAN, 2011). Many engineering

applications need a compact and accurate description of the dynamic of such systems. We

can accomplish that using the first principles of physics, mathematics, chemistry, biology,

etc. However, deriving those models is complex because highly specialized knowledge

about the system is needed, which may be lacking. The modeling approach based on pure

physical aspects of a system is called white-box modeling (SJÖBERG et al., 1995).

An alternative way of describing dynamic systems is by finding a mathematical

Chapter 1. Introduction 16

description of a dynamic system from empirical data or measurements in the system. This

is usually referred to as the black-box modeling approach (SJÖBERG et al., 1995), and it

is the topic of this thesis. In cases where some partial a prior knowledge about the system

is available while modeling it, such an approach stands between white-box and black-box

modeling and it is said to be gray-box modeling (SOHLBERG, 2003).

A system is dynamic when its output at any time depends on its history, and not

just on the current inputs. Thus, a dynamic system has memory and is usually described in

terms of difference or differential equations. A single-input single-output dynamic system

can be denoted by a set O = {u(n), y(n)}Nn=1 of inputs u(n) ∈ R and outputs y(n) ∈ R
collected at sampling time n, and its input-output discrete time representation1 is given

by

y(n) = f(x(n)) + ε(n), (1.1)

where x(n) represents the regression vector at sampling time n and its components are

given as a function of the relevant variables of the system at previous time. Usually, x(n)

encompasses past inputs and/or outputs and/or measurable disturbance observations. The

additive term ε(n) accounts for the fact that the output observations y(n) may not be an

exact function of past data.

The function f : X→ Y is the unknown, usually nonlinear, target function, where X
denotes the input space, and Y is the output space. The ultimate goal in black-box system

identification consists in finding a regression model h ∈ H : X→ Y that approximates f in

its entire domain, based on a finite set of measurements in the system O. Set H denotes the

candidate models or hypotheses. Over the last decades, a number of learning models have

been proposed to approximate or learn f , such as piecewise affine models (PAPADAKIS;

KABURLASOS, 2010), neural networks (NARENDRA; PARTHASARATHY, 1990), fuzzy

local models (TAKAGI; SUGENO, 1985; REZAEE; FAZEL ZARANDI, 2010), kernel-

based methods (GREGORCIC; LIGHTBODY, 2008; ROJO-ALVAREZ et al., 2004),

hybrid models (HABER; UNBEHAUEN, 1990; LIMA; COELHO; VON ZUBEN, 2007)

and polynomial models (BILLINGS; CHEN; KORENBERG, 1989). Some of them will be

discussed later in this thesis.

A common pipeline for identifying a dynamic system is illustrated in Figure 1.

Basically, it includes: i) data acquisition; ii) model structure selection; iii) parameter

estimation, and iv) model validation. The going backwards in Figure 1 occurs when the

model is not appropriate, and then re-execution of previous stages is sometimes necessary

to make a model adequate. In what follows, a brief description of each task within the

system identification procedure is reported.

The algorithms used for black-box modeling of dynamic systems have mainly

evolved in both automation/control and machine learning areas. Due to that, different

1 A more general formulation consists of the space-state representation.

Chapter 1. Introduction 17

Model structure selection

Data acquisition

Parameter estimation

Model validation

Accepted

Not accepted

Figure 1: The system identification pipeline.

nomenclatures are used as synonyms in many cases. Therefore, in order to avoid confusion

with the nomenclature used in this thesis, we provide a glossary of equivalence between

terms:

• estimate = train, learn;

• validate = test, generalize;

• estimation data = training data/set;

• validation data = generalization set, test set;

• in-sample error = training error;

• out-of-sample error = test error, generalization error.

1.1.1 Data acquisition

The first step consists of collecting data from the system with the objective of

describing how the system behaves over its entire range of operation. It includes decisions

on the sampling time and the input signal. The data acquisition procedure is usually done

by applying an input control signal, u(n) ∈ R, to the system, and then observing the

corresponding generated output, y(n) ∈ R. As a result of this process, we have a set of

corresponding input and output observations O = {u(n), y(n)}Nn=1, where n denotes a

discrete time index. The signal u(n) is also called exogenous input and y(n) is the response.

The choice of the sampling time is crucial. A slow sampling rate may lead to an

uncorrelated sequences, and then create difficulties in the identification procedure. A fast

sampling rate may lead to extremely correlated sequences and then affect the parameter

estimation step, since ill-conditioning regression matrices may be involved. Guidelines

about the choice of the sampling rate of nonlinear systems are given by Aguirre (2007).

Chapter 1. Introduction 18

The quality of the model obtained is intimately related to the choice of the input

signal used to excite the system. Ideally, the input-output time series should contain as

much information as possible on the dynamics of the system. If nonlinearities are not

present in the collected samples, it is impossible to learn the dynamics without any prior

information about the system. The more complete and diverse the data is, the more

feasible, from a learning point of view, the identification of the underlying system becomes.

With respect to that, not only the frequency bands are important, but also amplitude

information. The identification experiment which yields the data for the training set must

be designed so that the input sequence excites the process dynamics as completely and

uniformly as possible (BITTANTI; PIRODDI, 1996). To achieve this, white noise and

amplitude pseudo random binary signal (APRBS) are commonly used.

There are many issues related to preliminary identification steps, such as pre-

processing, normalization, nonlinearity detection, the choice of relevant variables in the

system, etc. For a comprehensive discussion about such issues, we recommend the following

texts: Nelles (2001) and Aguirre (2007).

1.1.2 Model structure selection

Selecting the model structure is concerned with defining a class of models that may

be considered appropriate for describing the system. For this task, two steps are necessary:

• Select the dynamic structure of the model, which includes the definition of the

regressors x(n).

• Define a model class H such that h ∈ H : X→ Y approximates the unknown static

nonlinear mapping f .

Regarding the selection of the dynamic structure, a number of different models

have been proposed, such as ARX (Auto-Regressive with eXogenous inputs), ARMAX

(Auto-Regressive Moving Average with eXogenous inputs), NARX (Nonlinear ARX),

NARMAX (Nonlinear ARMAX), NOE (Nonlinear Output Error), and NFIR (Nonlinear

Finite Impulse Response). For a review about linear and nonlinear models for dynamic

systems, we also recommend the reference text-books by Nelles (2001), Norgaard et al.

(2000), and Aguirre (2007).

A wide class of nonlinear dynamic systems can be described in discrete time by

the NARX model (NORGAARD et al., 2000), that is

y(n) = f(y(n− 1), . . . , y(n− ny), u(n− 1), u(n− 2), . . . , u(n− nu)) + ε(n), (1.2)

= f(x(n)) + ε(n), (1.3)

Chapter 1. Introduction 19

where x(n) = [y(n − 1), . . . , y(n − ny);u(n − 1), u(n − 2), . . . , u(n − nu)]T , nu ≥ 1 and

ny ≥ 1 are the input-memory and output-memory orders, respectively. The functional form

f denotes the unknown target function. The term ε(n) is often assumed to be white noise.

The predictor associated with the NARX model, which we are interested in, is given by

ŷ(n) = h(y(n− 1), . . . , y(n− n̂y), u(n− 1), u(n− 2), . . . , u(n− n̂u)), (1.4)

= h(x(n)), (1.5)

where h ∈ H is a static nonlinear mapping that aims at approximating the “true” mapping

f that generated the observations u(n) and y(n). The terms n̂y and n̂y are estimates of

the system memory. Clearly, the regressors x(n), and consequently the model h(·), depend

on n̂y and n̂u, but we omit these dependencies in order to simplify the notation. As seen in

Eq. (1.2), the choice of the NARX model only defines the relationship between variables

in the dynamic system. In that sense, we need to refine our model class H by specifying

the structure of the mapping h(·), which is the main topic of this thesis.

Model selection consists of picking a final hypothesis g(·) from the set of candidate

models H, using a finite set of observations O. We are interested in models which produce

good performance on data that have not been used for fitting/training the models, i.e., we

are interested in the generalization or out-of-sample performance of a model. In general, we

can assess generalization performance using only the available training examples. We can do

this either analytically by means of optimization criteria — which combine model complexity

and performance on estimation/training data, like the Akaike information criterion (AIC)

(AKAIKE, 1974) and the Bayesian information criterion (BIC) (KASHYAP, 1977) — or

by re-sampling methods, such as cross-validation and bootstrap (HASTIE; TIBSHIRANI;

FRIEDMAN, 2009).

Re-sampling methods, such as leave-one-out (LOO) cross-validation, are of great

importance for model selection. The idea of these approaches consists in using a separated

part of the available samples in order to estimate the expected out-of-sample performance

directly. The one which achieves the best performance on the fresh out-of-sample points

is selected as the final model. Additionally, criteria like AIC and BIC can be used in

combination with re-sampling methods (HONG et al., 2008).

1.1.3 Parameter estimation

The parameter estimation step provides the choice for the parameters in the model

structure. The method for parameter estimation strongly depends on the model used for

representing the dynamic system. Despite the large number of different models, in order to

provide an estimate θ̂ of the parameters θ of the model h(x,θ), we may consider a criterion

such that the optimal estimate arises from an optimization procedure by minimizing or

maximizing the chosen criterion. Many of the models approached in this thesis use the

Chapter 1. Introduction 20

residual sum of squares (RSS) between the observations y(n) and h(x(n),θ) as a criterion,

that is

θ̂ = argmin
θ

N∑

n=1

(
y(n)− h(x(n),θ)

)2
. (1.6)

If H is the class of linear mappings2, then Eq. (1.6) leads to the well-known ordinary

least square (LS) estimator (RAO; TOUTENBURG, 1999). We denote the final model

choice by the mapping g(.). The final model is the one whose structure is defined and its

parameters estimated. In general, g(x(n)) = h(x(n), θ̂), or

ŷ(n) = h(x(n), θ̂)

= g(x(n)).
(1.7)

Commonly, the variable ŷ(n) represents the one-step-ahead predictions (or simply predic-

tions) of the final model.

1.1.4 Model validation

There are two main approaches to validating the model g(·) in terms of its prediction

capability: i) one-step-ahead predictions and ii) free-run simulation. On the one hand, one-

step-ahead predictions use input and output observations at previous time as regressors

in order to predict the current output. On the other hand, free-run simulation uses

previous predictions rather than observations as regressors to predict the output. The

free-run simulation case corresponds to the use of the model in parallel mode, whereas

the one-step-ahead predictions correspond to a series-parallel mode of operation, as

suggested by Narendra and Parthasarathy (1990). Figure 2 illustrates the series-parallel

and parallel modes of operation. The term q−1 represents the unit-delay operator, in which

u(n)q−1 = u(n− 1). The term ξ(n) is called residual, and it is given by ξ(n) = y(n)− ŷ(n).

It is well-known in the system identification literature that model evaluation based on one-

step-ahead predictions solely can result in wrong conclusions about the system dynamics

(AGUIRRE, 2007; BILLINGS, 2013). Essentially, the one-step-ahead predictions will be

close to the observed outputs when the sampling rate is high relative to the system

dynamics (NORGAARD et al., 2000).

The root mean squared error (RMSE) between predictions and actual observations

is a common choice to evaluate the goodness of fit of the model, i.e. it summarizes the

discrepancy between the observed values and the predicted ones under the model in

question:

RMSE(g) =

√√√√ 1

Nt

Nt∑

n=1

(y(n)− g(x(n)))2, (1.8)

2 By linear mappings we also mean nonlinear ones which can be written as a linear-in-the-parameters
model.

Chapter 1. Introduction 21

...
...

System

h(·)

u(n) y(n)

model

ŷ(n)

ξ(n)
q−1

q−1

q−1

q−1

q−1

q−1

−

(a) Series-parallel mode

...
...

System

h(·)

u(n) y(n)

model

ŷ(n)

ξ(n)
q−1

q−1

q−1

q−1

q−1

q−1

−

(b) Parallel mode

Figure 2: The two configurations for model’s operation.

where Nt represents the number of test samples used for model validation. In principle, the

smaller the RMSE, the better the reconstruction of the system dynamics. In this thesis,

we use the term out-of-sample error to refer to the RMSE calculated over test/validation

samples, while in-sample error is the RMSE for training/estimation samples.

In cases where it is not possible to take some samples out for validation, we can

still validate our models by statistical residual analysis. The rationale for applying residual

analysis is to verify if the residuals achieved by the final model on the estimation set are

unpredictable. One of the most well-known approaches consists of the correlation tests

proposed by Billings and Voon (1986) for validating nonlinear models:

ρξξ = E{ξ(n− τ)ξ(n)} = δ(τ),

ρuξ = E{u(n− τ)ξ(n)} = 0,∀τ,
ρu2ξ = E{(u2(n− τ)− u2(n))ξ(n)} = 0, ∀τ,
ρu2ξ2 = E{(u2(n− τ)− u2(n))ξ2(n)} = 0,∀τ,
ρξ(ξu) = E{ξ(n)ξ(n− 1− τ)u(n− 1− τ)} = 0,∀τ > 0,

where δ(0) is the Dirac delta function, x denotes the mean of x and ξ(n) corresponds to

the residual sequence y(n)− ŷ(n) in the estimation set.

It is worth mentioning that model validation uniquely based on statistical resid-

ual analysis can be misleading. This may be because overparametrized models may be

able to fit the estimation data completely, such that no residual is produced. However,

overparametrized models have low generalization capability and can present spurious

dynamics (AGUIRRE; BILLINGS, 1995). This is especially the case for polynomials and

neural networks, where a poor design can easily lead to a high number of degrees of

freedom. Equally, model validation only based on visual inspection between time series

Chapter 1. Introduction 22

of the free-run simulation and the actual system has to be carried out carefully. This is

especially true when a low signal-to-noise ratio is present, since the amount of noise tends

to corrupt the free-run simulation over time and predictions can look quite different from

measurements on the system.

In this thesis, we occasionally evaluate models in terms of their capability in

reconstructing static nonlinearities. The static behavior of a dynamic system in this thesis

is represented by stable fixed points. In order to determine the stable fixed points, we adopt

a simulation procedure. It consists in keeping the input constant (with outputs set to

zero) and running the system until the variation on the outputs is less than a predefined

threshold. For the interested reader, a review of different validation approaches can be

found in Aguirre and Letellier (2009).

1.1.5 A synthetic example

In order to illustrate the advantages and drawbacks of the methods proposed in

this thesis, an artificial plant will be used repeatedly as a running example. This artificial

plant has been evaluated by Gregorcic and Lightbody (2008). It consists of a discrete-time

SISO system corrupted by additive noise given by

y(n+ 1) = 0.2 tanh(y(n)) + sin(u(n)) + ε(n). (1.9)

The artificial plant is a nonlinear dynamic system whose outputs depend on previous

input and output. It corresponds to a NARX system with nu = ny = 1 and Figure 3a shows

the target function, i.e. the deterministic part of Eq. (1.9). For experimental evaluation,

we generated a dataset which contains 1,000 samples with a uniformly distributed random

input signal, u(n) ∼ U [−3, 3], and ε(n) ∼ N (0, 0.01). The input and output signals are

illustrated in Figures 3b and 3c respectively. For all experiments, we use 70% of the samples

for training (model selection) and the remaining samples for testing (model validation)

purposes. We have not carried out any normalization or pre-processing steps over the data

samples.

Figure 3d depicts the data where colors denote the response (y(n+ 1)) along with

the static equilibrium curve of the system, which represents its static behavior. To estimate

the static behavior of the system, the input signal has been kept constant until the system

to converge. A set of such collections with u(n) varying from −3 to 3 were performed and

the static behavior is shown by the solid black line in Figure 3d.

Later (in Chapter 5), a number of real-world datasets will be used for comparison

and performance assessments of the models studied in this thesis.

Chapter 1. Introduction 23

−2
0

2

−1

0

1

−1

−0.5

0

0.5

1

u(n)y(n)

y
(n

+
1
)

(a) One-step-ahead surface: target function

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3

n

u
(n

)

(b) Input signal

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

n

y
(n

)

(c) Output signal

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

u(n)

y
(n

)

−1

−0.5

0

0.5

1

(d) Data and static behavior (solid black line)

Figure 3: Artificial data created from Eq. (1.9).

1.2 Objectives of the thesis

The overall objective of this thesis is to propose novel approaches for nonlinear

system identification using machine learning methods, which aims to produce accurate

models at a low computational cost. As a consequence, we expect the novel proposals to

represent feasible alternatives to classic reference methods in black-box modeling. In order

to accomplish that, we may specifically follow the next steps:

• evaluate the use of learning models based on neural networks to SISO nonlinear

system identification;

• propose a novel distance-based regression approach for supervised learning and

evaluate its application on system identification tasks;

• propose a new approach for system identification and a novel method based on

self-organizing neural networks;

Chapter 1. Introduction 24

• compare the different methods and paradigms on synthetic and real-world bench-

marking system identification problems.

1.3 Chapter organization and contributions

In Chapter 2, global and local learning approaches that have been applied to system

identification are described. It includes linear and nonlinear methods, such as a global

linear method that uses ordinary least square (LS) for parameter estimation, and neural

network architectures: Multilayer Perceptrons, Extreme Learning Machines and Radial

Basis Functions networks. Also, a number of local approaches for system identification

are discussed, such as Local Linear Regression approaches, and methods based on the

Self-Organizing Map (SOM).

In Chapter 3, a novel distance-based regression method for supervised learning,

called Minimal Learning Machine (MLM), is described and its application for system

identification is illustrated. Original contributions of this chapter include:

• formulating a completely novel method called the Minimal Learning Machine. It

includes the basic formulation and a comprehensive discussion on computational

complexity and hyper-parameters.

• discussion on the links between MLM and classic methods, such as radial basis

function networks;

• the proposal of supervised alternatives to the random selection of reference points in

MLM.

In Chapter 4, we introduce a new modeling paradigm that stands between global

and local approaches and it is called regional modeling. We describe the main characteristics

of regional models and how we can use learning methods in the regional framework. Original

contributions of this chapter include the following ones:

• the proposal of a new method for system identification via the clustering of the

Self-Organizing Map.

• a robust extension of the proposed regional models through M -estimation (HUBER,

2004).

In Chapter 5, a set of experiments involving all the approaches studied throughout

the thesis is reported. The experiments include tests on real-world system identification

problems. A comparison performance analysis is also carried out.

Chapter 1. Introduction 25

In Chapter 6, we provide concluding remarks and discuss directions for future

research on topics related to this thesis.

In Appendix A, we briefly describe the clustering algorithms used in this thesis.

In Appendix B, we extend the Minimal Learning Machine to classification prob-

lems, while evaluating its performance against standard classification methods. A binary

classification example and four real-world problems are used for performance assessment.

In Appendix C, we evaluate the performance of the Minimal Learning Machine on

eight regression problems and compare it against the state-of-the-art methods in machine

learning.

1.4 Publications

During the development of the thesis, a number of articles have been published

by the author. It includes articles which relate directly to thesis topics, as well as articles

related to cooperation on projects between different research groups. Despite of that, all

the articles are contributions on either Machine Learning/ Computational Intelligence or

System Identification areas. The published articles related to the thesis are:

1. A. H. de Souza Junior, F. Corona, G. Barreto, Y. Miche and A. Lendasse, Min-

imal Learning Machine: A novel supervised distance-based method for

regression and classification. Neurocomputing, to appear, 2014.

2. A. H. de Souza Junior, F. Corona and G. Barreto, Regional models: A new

approach for nonlinear dynamical system identification with the Self-

Organizing Map. Neurocomputing, vol. 147, n. 5, 36-45, 2015.

3. A. H. de Souza Junior, F. Corona and G. Barreto, Minimal Learning Machine

and Local Linear Regression for Nonlinear System Identification. In Proc.

20th Congresso Brasileiro de Automática, 2066-2073, 2014.

4. A. H. de Souza Júnior, F. Corona, Y. Miche, A. Lendasse and G. A. Barreto,

Extending the Minimal Learning Machine for Pattern Classification. In

Proc. 1st BRICS Countries Congress on Computational Intelligence - BRICS-CCI

2013, 236-241, 2013.

5. A. H. de Souza Júnior, F. Corona, Y. Miché, A. Lendasse, G. Barreto and O. Simula,

Minimal learning machine: A new distance-based method for supervised

learning. In Lecture Notes in Computer Science: Advances in Computational Intel-

ligence, F. Sandoval, A. Prieto, J. Cabestany and M. Graña Eds., vol. 7903, 408-415,

2013.

Chapter 1. Introduction 26

6. F. Corona, Z. Zhu, A. H. de Souza Júnior, M. Mulas, G. A. Barreto, and R. Baratti,

Monitoring diesel fuels with Supervised Distance Preserving Projections

and Local Linear Regression. In Proc. 1st BRICS Countries Congress on Com-

putational Intelligence - BRICS-CCI 2013, 422-427, 2013.

7. A. H. de Souza Júnior, F. Corona and G. Barreto, Robust regional modelling

for nonlinear system identification using self-organising maps. In Advances

in Intelligent Systems and Computing: Advances in Self-Organizing Maps, P. A.

Estévez, J. P. Pŕıncipe and P. Zegers Eds., vol. 198, 215-224, 2013.

8. A. H. de Souza Júnior and G. Barreto, Regional Models for Nonlinear System

Identification Using the Self-Organizing Map. In Lecture Notes in Computer

Science: Intelligent Data Engineering and Automated Learning - IDEAL 2012, H.

Yin, J. A. F. Costa and G. A. Barreto Eds., vol. 7435, 717-724, 2012.

Also, the following papers were produced during the thesis period as a result of

research collaborations:

1. F. Corona, Z. Zhu, A. H. Souza Júnior, M. Mulas, E. Muru, L. Sassu, G. Barreto,

R. Baratti. Supervised Distance Preserving Projections: Applications in

the quantitative analysis of diesel fuels and light cycle oils from spectra.

Journal of Process Control, under review, 2014.

2. R. L. Costalima, A. H. de Souza Junior, C. T. Souza and G. A. L. Campos, MInD:

don’t use agents as objects. In Proc. 7th Conference on Artificial General Intel-

ligence (Lectures Notes in Computer Science), vol. 8598, 234-237, 2014.

3. F. Corona, Z. Zhu, A. H. de Souza Júnior, M. Mulas and R. Baratti, Spectroscopic

monitoring of diesel fuels using Supervised Distance Preserving Projec-

tions. In Proc. IFAC 10th International Symposium on Dynamics and Control of

Process Systems - DYCOPS 2013, 63-68, 2013.

4. César L. C. Mattos, Amauri H. Souza Júnior, Ajalmar R. Neto, Guilherme Barreto,

Ronaldo Ramos, Hélio Mazza and Márcio Mota, A Novel Approach for Labelling

Health Insurance Data for Cardiovascular Disease Risk Classification. In:

11th Brazilian Congress on Computational Intelligence, 1-6, 2013.

5. César L. C. Mattos, Amauri H. Souza Júnior, Ajalmar R. Neto, Guilherme Barreto,

Ronaldo Ramos, Hélio Mazza and Márcio Mota, Cardiovascular Disease Risk

Classification From Health Insurance: A Big Data Experimental Compar-

ison. In: Proc. 2nd Brazilian Conference on Intelligent Systems, 1-12, 2013.

27

Chapter 2

Global and Local Learning Models

for System Identification

Although several techniques for nonlinear dynamic system identification have been

proposed, they can be categorized into one of the two following approaches: global and

local modeling. On the one hand, global modeling involves the utilization of a single model

structure that approximates the whole mapping between the input and the output of

the system being identified. On the other hand, local modeling utilizes multiple models

to represent the input-output dynamics of the system of interest (LAWRENCE; TSOI;

BACK, 1996). In this chapter we briefly overview global and local strategies for nonlinear

system identification. The emphasis of this chapter is on a basic understanding of the

approaches that will be further used for comparison. In Section 2.1 we discuss global

models and their application to the identification of nonlinear dynamic systems. Section 2.2

introduces local modeling techniques. Section 2.3 gives the closing remarks of the chapter.

2.1 Global modeling

In global modeling, the assumption is that the relationship between the input

and output values can be described by a single analytical function over the whole input

domain. In the literature related to NARX models, a number of global models have

been proposed, such as polynomials (BILLINGS; CHEN; KORENBERG, 1989), rational

models (BILLINGS; ZHU, 1991), neural networks (NARENDRA; PARTHASARATHY,

1990) and wavelet networks (CAO et al., 1995). A different line of action is that based

on block-oriented systems in which a linear transfer function model is applied either

before or after a nonlinear static mapping. These are called Hammerstein and Wiener

models (BILLINGS; FAKHOURI, 1982). Also, Volterra models (CAMPELLO; FAVIER;

Chapter 2. Global and Local Learning Models for System Identification 28

AMARAL, 2004) comprise classical global modeling attempts. In fact, global models

constitute the mainstream in nonlinear system identification and control (YU, 2004; LI;

YU, 2002; NARENDRA, 1996).

Due to the large number of global models, the focus of this thesis is on approaches

from machine learning and computational intelligence fields, particularly, neural network

based models. The field of machine learning abounds in efficient supervised methods and

algorithms that can be equally applied to regression and classification tasks (BISHOP,

1995), and whose application in system identification is straightforward. An exhaustive

and fair list of such methods would be hard to present here, but one can certainly mention

as state-of-the-art methods the multilayer perceptron (MLP) (RUMELHART; HINTON;

WILLIAMS, 1986), radial basis functions networks (RBF) (POGGIO; GIROSI, 1990; WU

et al., 2012) support vector regression (SVR) (VAPNIK, 1998; SMOLA; SCHOLKOPF,

2004), as well as more recent approaches, such as those based on extreme learning machine

(ELM) (HUANG; ZHU; ZIEW, 2006), Gaussian processes (RASMUSSEN; WILLIAMS,

2006) and information-theoretic learning (ITL) (PRINCIPE, 2010).

This section describes global approaches for nonlinear system identification, includ-

ing the well-known ordinary least square (LS) estimation method, which is commonly used

for estimating part of the nonlinear model’s parameters. In Section 2.1.2, we briefly report

neural network architectures and their application to system identification.

2.1.1 Least Squares and ARX models

As mentioned, the ordinary least squares method (RAO; TOUTENBURG, 1999) is

an estimation method applied to linear-in-the-parameter models. Despite its early proposal,

it is still one of the most used methods in machine learning and related areas.

We are interested in approximating a target function f : X → Y from empirical

input and output observations {(xn, yn)}Nn=1, with xn ∈ RD and yn ∈ R, following the

model in Eq. (1.1). For the task, one can use the linear model/hypothesis

h(x) = βTx, (2.1)

where h : RD → R, β = {βj}Dj=1 is the vector of parameters and x = {xj}Dj=1 is the

regression vector (or regressors).

As usual, we need to quantify how well h approximates f . A feasible choice to

ensure approximation quality is the squared error e(f(x), h(x)) = (h(x)− f(x))2, which

can be averaged over the whole set of observations:
∑N

n=1(h(xn)− f(xn))2. Unfortunately,

we do not have access to f , so we may use the output measurements y to ensure good

approximation to f . In doing so, we define the least square loss function JLS by

JLS(β) =
N∑

n=1

(h(xn)− yn)2, (2.2)

Chapter 2. Global and Local Learning Models for System Identification 29

By minimizing 2.2 using the model 2.1 we have that the least square estimator is

β̂ =
(
XTX

)−1
XTy. (2.3)

where the matrix X = [x1,x2, · · · ,xN]T is a N ×D matrix whose n-th row corresponds to

the n-th regression vector xn. Similarly, the column vector y encompasses the N output

observations in its rows.

We may assume that the dynamic SISO system we are working with can be

described mathematically by the ARX (AutoRegressive with eXogenous input) model

(LJUNG, 1999):

y(n) = a1y(n− 1) + · · ·+ anyy(n− ny) + b1u(n− n0 − 1) + · · ·+ bnuu(n− n0 − nu) + ε(n),

=

ny∑

j=1

ajy(n− j) +
nu∑

l=1

blu(n− n0 − l) + ε(n), (2.4)

where u(n) ∈ R and y(n) ∈ R denote, respectively, the input and output of the model at

time step n, while nu ≥ 1 and ny ≥ 1 are the input-memory and output-memory orders,

respectively. The error term ε(n) is assumed to follow a white noise process. The parameter

n0 (n0 ≥ 0) is a delay term, known as the process dead-time. Without lack of generality,

we assume n0 = 0 in this thesis, thus obtaining the following ARX model:

y(n) =

ny∑

j=1

ajy(n− j) +
nu∑

l=1

blu(n− l) + ε(n). (2.5)

By defining the input vector x(n) ∈ Rnu+ny at time step n and the vector of

parameters β ∈ Rnu+ny as

x(n) = [y(n− 1) · · · y(n− ny) | u(n− 1) · · · u(n− nu)]T , (2.6)

β = [a1 · · · any | b1 · · · bnu]T , (2.7)

we can write the output of the ARX model in Eq. (2.5) simply as

y(n) = βTx(n) + ε(n) (2.8)

By comparing Eqs. (2.1) and (2.8), one may observe that the ARX model can use

the LS estimation method to find the optimal vector of parameters in the least squares

sense. For that, all that is required is to create the regressors following Eq. (2.6). Thus, the

predictor (or final model) associated with the ARX model is ŷ(n) = g(x(n)) = β̂Tx(n),

with β̂ given by Eq. (2.3). Under the assumption that ε(n) is white noise, the LS estimator

is unbiased and equivalent to the maximum likelihood estimator (AGUIRRE, 2007).

Since the LS estimation solution will be used extensively throughout the thesis,

important remarks are necessary. An important issue is that the regression matrix X must

Chapter 2. Global and Local Learning Models for System Identification 30

be full-rank. Otherwise, XTX does not have an inverse. Also, the number of rows N of X

must exceed (or equal) the number of columns D in Eq. (2.3). If not, XTX is not full-rank

and it may not correspond to the LS estimator. In those cases where N < D, a least-norm

solution is usually preferred and it represents a regularized solution. Clearly, situations

in which N < D are undesired for estimation and data fitting purposes since an infinity

number of solutions is possible. From now on, in the context of system identification,

D = ny + nu.

2.1.2 Single-hidden layer feedforward networks

In this section, we briefly discuss artificial neural networks (ANN), specifically a

special type of ANN called single-hidden layer feedforward networks (SLFN). The term

“artificial neural networks” was originally motivated by the way that biological structures

process information in the brains of humans and animals. However, eventually, most

artificial neural networks used in engineering are at least as closely related to mathematics,

statistics and optimization as to the biological model (NELLES, 2001). ANNs are based

on processing units called neurons or nodes which are combined to form a network. An

SLFN has one hidden layer of neurons that work in parallel. These neurons are connected

to other neurons in the output layer. The layers may be organized in such a way that the

input vector enters the hidden layer and then reaches the output layer. The mathematical

representation of SLFN is given by

h(x) =
L∑

l=1

βlφ(x,ml) + β0 = βTz, (2.9)

where L denotes the number of neurons in the hidden layer, β ∈ RL+1 is the weight vector

of the linear output unit, φ(·) : R → R is a nonlinear mapping, also called activation

function, which depends on the input vector x ∈ Rny+nu and the vector of parameters ml

of the l-th hidden unit. The notation φ(x,ml) stands for the fact that the fixed univariate

mapping φ(·) depends on the input vector and the parameters of the hidden units, and we

can simplify the notation by expressing φ(x,ml) = φl(x). An alternative interpretation

for Eq. (2.9) is that the vector z results of a nonlinear transform Φ : X → Z on x such

that z = [1, φ1(x), . . . , φL(x)]T . Thus, we can write z = Φ(x). In other words, the SLFN

approaches correspond to linear models in a transformed space Z. Figure 4 shows the

structure of SLFNs, with the regression vector x comprised of input and output samples

of a SISO system.

The SLFN approaches differ in the way they define φ(·) and the parameters ml,

how they combine x and ml to provide a single variable as input for φ, and how they

compute β. In the following, we present the particularities of the Radial Basis Functions

Networks, Multilayer Perceptrons and Extreme Learning Machines. For an overview of

most neural network architectures, we recommend Haykin (2009). Bishop (2006) discusses

Chapter 2. Global and Local Learning Models for System Identification 31

y(n − 1)

y(n − ny)

...

...

u(n − 1)

u(n − nu)

x
...

input hidden layer output layer

ŷ = h(x)

+1

�

φ(x,m1)

φ(x,m2)

φ(x,mL)

β0

β1

βL

β2

Figure 4: General structure of single-hidden layer feedforward networks.

the use of neural networks for pattern classification, including Bayesian approaches. For a

review of neural networks for system identification, we suggest the books by Nelles (2001)

and Norgaard et al. (2000), and the seminal paper by Narendra and Parthasarathy (1990).

2.1.2.1 MultiLayer Perceptrons

The multilayer perceptrons (MLP) (HAYKIN, 2009) is the most widely known and

used neural network architecture. In the literature, the MLP is even used as a synonym for

neural networks. The operation of MLPs is based on units or neurons called perceptrons.

The operation of these neurons can be split into two parts. The first part consists of

projecting the input vector x on the weights ml through the inner product mT
l x. Second,

the nonlinear activation function φ transforms the projection result. If several perceptron

neurons are used in parallel and connected to an output neuron, the MLP network with

one hidden layer is obtained. The MLP can be mathematically formulated as

h(x) =
L∑

l=1

βlφ(mT
l x) + β0 = βTz, (2.10)

where L is the number of hidden neurons, x ∈ Rny+nu+1 is the input vector added a bias

term x0 = 1, ml ∈ Rny+nu+1 is the weight vector of the l-th hidden neuron, β ∈ RL+1

is the weight vector of the output unit and, z = [1, φ(mT
1 x), . . . , φ(mT

Lx)]T represents

the projection of x in the space of the hidden layer. Common choices for the activation

function φ(·) : R→ R are the logistic function φ(mT
l x) = 1

1+exp (−mT
l x)

and the hyperbolic

tangent φ(mT
l x) = tanh(mT

l x). The two functions share the interesting property that their

derivative can be expressed in terms of the function itself (NELLES, 2001).

The estimation of the parameters of an MLP, e.g. β and {ml}Ll=1, is usually achieved

by minimizing the difference between the network output h(x(n)) and the measured output

Chapter 2. Global and Local Learning Models for System Identification 32

y(n) from the estimation samples {(x(n), y(n))}Nn=1. The typical approach to MLP training

is the error back-propagation algorithm (RUMELHART; HINTONT; WILLIAMS, 1986).

Essentially, this procedure applies chain rule for derivative calculations with respect to the

parameters, which corresponds to a steepest descent algorithm. In fact, many nonlinear

optimization techniques can be used to estimate the MLP parameters. A description of

strategies for MLP training is beyond the scope of this thesis, and can be found in Haykin

(2009), Nelles (2001) and Bishop (1995).

The MLP network, as described by Eq. (2.10), represents only the most commonly

applied MLP type. Different variants exist. Sometimes the output neuron is not of the

pure linear combination type but is chosen as a complete perceptron. This means that an

additional activation function at the output is used. Another possible extension is the use

of more than one hidden layer. In fact, it can be used as many hidden layer as necessary.

SLFNs with several hidden layers has gained special attention from the machine learning

community recently, under the general name of deep networks, since efficient learning

algorithms for training such networks have been derived (BENGIO, 2009).

2.1.2.2 Extreme Learning Machines

The Extreme Learning Machine (ELM) is a class of SLFNs, recently proposed by

Huang, Zhu and Ziew (2006), for which the weights from the inputs to the hidden neurons

are randomly chosen, while only the weights from the hidden neurons to the output are

analytically estimated. The hidden layer does not need to be tuned, and its parameters

are independent of training data. According to Huang, Wang and Lan (2011), ELM offers

significant advantages, such as a fast learning speed, ease of implementation, and less

human intervention than more traditional SLFNs, such as the MLP network.

The structure of ELM is exactly the same as MLP, including the choice for the

activation function φ. The difference between MLP and ELM relies on the learning

algorithm, i.e., how the model parameters are estimated. Whereas the MLP is usually

trained using nonlinear optimization techniques, the ELM training consists of two steps:

1. Random initialization of the weights in the hidden layer {ml}Ll=1. Usually, the weight

vectors ml are randomly sampled from a uniform (or normal) distribution.

2. Estimation of the output weights by the LS algorithm.

For the second step in the ELM training, let Z = [z(1) z(2) · · · z(N)]T be a

N × (L + 1) matrix whose N rows are the hidden-layer output vectors z(n) ∈ RL+1,

n = 1, ..., N , where N is the number of available training input patterns, and z(n) =

[1, φ(mT
1 x(n)), . . . , φ(mT

Lx(n))]T . Similarly, let y = [y(1) y(2) · · · y(N)]T be a N × 1

vector whose the n-th row is the output observation y(n) associated with the input pattern

Chapter 2. Global and Local Learning Models for System Identification 33

x(n). Since the ELM is linear in the parameters β, the weight vector β can be easily

computed by means of the LS method as follows

β̂ =
(
ZTZ

)−1
ZTy. (2.11)

2.1.2.3 Radial Basis Function Networks

The Radial Basis Function network (RBF) (BUHMANN, 2003) is also a SLFN, with

the difference being that the activation function φ, also called radial basis function, depends

on a distance metric. A radial basis function approximation of a function f : Rny+nu → R
takes the form

h(x) =
L∑

l=1

βlφ(‖x−ml‖2) + β0, (2.12)

where φ : [0,∞) → R is a fixed univariate function, β = [β0, β1, β2, . . . , βL]T denotes a

vector of coefficients usually estimated by the LS method and ml ∈ Rny+nu corresponds to

the centers of the radial basis functions φ(.). In other words, the RBF approximation is a

linear combination of translates of a fixed function φ(·) of a single real variable. In system

identification applications, it is common to add an autoregressive and moving average

linear terms to Eq. (2.12) (ALVES; CORREA; AGUIRRE, 2007).

Historically, radial basis functions were introduced in the context of exact function

interpolation. Thus, usually the number of centers equals the number of learning points,

L = N , and the centers are the learning points, mn = x(n), for n = 1, . . . , N . In this case,

the RBF approximation (Eq. 2.12) may fit the training examples perfectly. However, in

machine learning applications, the output observations are noisy, and exact interpolation

is undesirable because it may lead to overfitting.

The design of RBF models encompasses four basic decisions: i) The choice of radial

basis functions φ(·); ii) How to compute the coefficients {βl}Ll=0; iii) How to determine

the number of radial basis function L; and iv) How to locate the centers ml.

Among a variety of radial basis functions, some well-known functions are listed

below:

• Linear: φ(‖x−ml‖) = ‖x−ml‖.

• Cubic: φ(‖x−ml‖) = ‖x−ml‖3.

• Multiquadric: φ(‖x−ml‖) =
√
‖x−ml‖2 + σ2, where σ ∈ R is a constant.

• Gaussian: φ(‖x−ml‖) = exp
(
−‖x−ml‖2

σ2
l

)
, where σl ∈ R is a constant.

The coefficients of the linear output unit β are generally computed using the LS

algorithm. In doing so, let us define the matrix Z = {znl}, with zn0 = 1 for all n = 1, . . . , N ,

Chapter 2. Global and Local Learning Models for System Identification 34

and

znl = φ(‖x(n)−ml‖), n = 1, . . . , N ; l = 1, . . . , L.

where N again represents the number of training points. In addition, let us collect the

output observations y(n), n = 1, . . . , N in a column vector y. Thus, the LS estimation of

β ∈ RL+1 is

β̂ =
(
ZTZ

)−1
ZTy. (2.13)

The number of radial basis function L, as well as the hyper-parameters σl, are

usually optimized using sampling methods, like k-fold cross-validation. Regarding the

choice of the centers of the radial basis functions ml, many approaches are feasible.

The simplest strategy would be to select the center randomly from the training points

{x(n)}. Another possibility is through clustering on the input space, which constitutes

the standard approach. Normally, the k-means algorithm (MACQUEEN, 1967) is used

to provide prototypes as centers of the radial functions. The drawback of these methods

is that the center location depends only on training data distribution in the input space.

Thus, the complexity of the underlying function that has to be approximated is not taken

into account. Supervised techniques that use output information to locate the centers

where the underlying function to be approximated is more complex are usually desired.

An efficient supervised learning approach for choosing centers is proposed by Chen, Cowan

and Grant (1991). For an overview of different strategies for center placement in RBF

networks, we recommend Sarra and Kansa (2009) and Nelles (2001).

2.2 Local modeling

Local modeling consists in a divide-and-conquer approach where the function

approximation problem is solved by dividing it into simpler problems whose solutions

can be combined to yield a solution to the original problem. These approaches have been

a source of much interest because they have the ability to locally fit to the shape of

an arbitrary surface. This feature is particularly important when the dynamic system

characteristics vary considerably throughout the input space. Regarding learning models,

there are two main different local modeling approaches: i) modular architectures, and

ii) local approximating methods. Modular architectures consists of a number of modules

(models) covering different parts of the input space. This is the idea of operating regimes

which assume a partitioning of the operating range of the system in order to solve the

modeling problem. Examples of modular architectures include the Local Model Network

(LMN) (MURRAY-SMITH, 1994; HAMETNER; JAKUBEK, 2013), the Local Linear

Mapping (LLM) (WALTER; RITTER; SCHULTEN, 1990), the Adaptive-Network-Based

Fuzzy Inference System (ANFIS) (JANG, 1993), Takagi-Sugeno (TS) models (TAKAGI;

Chapter 2. Global and Local Learning Models for System Identification 35

SUGENO, 1985), and Mixture of Experts (MEs) (JACOBS et al., 1991; LIMA; COELHO;

VON ZUBEN, 2007).

Local approximating approaches turn the problem of function estimation into

a problem of value estimation. In other words, they do not aim to return a complete

description of the input/output mapping but rather to approximate the function in a

neighborhood of the point to be predicted. Examples of local approximating methods

are Lazy Learning (LL) (BONTEMPI; BIRATTARI; BERSINI, 1999), Locally Weighted

Learning (LWL) (ATKESON; MOORE; SCHAAL, 1997), Local Linear Regression (LLR)

(GUPTA; GARCIA; CHIN, 2008), and the kSOM model (SOUZA; BARRETO, 2010).

MEs

ANFIS

LMN

LLM

LL

LWL

kSOM

LLR

TS

Divide-
Conquer
Approaches

SOM-based

Fuzzy Inference

Figure 5: Taxonomy of divide-and-conquer approaches. Blue circles denote local approxi-
mating methods whereas green circles represent modular architectures.

Figure 5 summarizes the taxonomy of local models and it emphasizes methods

based on the Self-Organizing Map (SOM) and Fuzzy Inference ones. Clearly, it does not aim

to represent a comprehensive list of methods. In what follows, we discuss local modeling

approaches, including both modular architectures and local approximating strategies.

2.2.1 Modular architectures

In this section, we describe classic modular approaches to the system identification

problem. We focus on methods based on the Self-Organizing Map (SOM) (KOHONEN,

2013). First, we briefly introduce the Self-Organizing Map algorithm. Second, we explore

an alternative for using the Self-Organizing Map to build regression models for system

identification, the Local Linear Map (LLM) model.

2.2.1.1 The Self-Organizing Map

The Self-Organizing Map is a well-known competitive learning algorithm. The SOM

learns from examples a mapping (projection) from a high-dimensional continuous input

Chapter 2. Global and Local Learning Models for System Identification 36

space X onto a low-dimensional discrete space (lattice) A of Q neurons, which are arranged

in fixed topological forms, e.g., as a rectangular 2-dimensional array. The map i∗(x) : X→
A, defined by the set of prototypes or weight vectors W = {w1,w2, . . . ,wQ},wi ∈ Rnu+ny ,

assigns to an input vector x ∈ Rnu+ny a winning neuron i∗ ∈ A, determined by

i∗ = arg min
∀i
‖x−wi‖, (2.14)

where ‖ · ‖ denotes the Euclidean distance.

During SOM iterative training, at each training step j, one sample vector x(n(j))

is randomly chosen from the input data set X . The winning neuron and its topological

neighbors are moved closer to the input vector by the following weight update rule:

wi(j + 1) = wi(j) + α(j)η(i∗, i; j)[x(n(j))−wi(j)] (2.15)

where 0 < α(j) < 1 is the learning rate and η(i∗, i; j) is a weighting function which limits

the neighborhood of the winning neuron. A usual choice for η(i∗, i; j) is given by the

Gaussian function:

η(i∗, i; j) = exp

(
−‖i(j)− i∗(j)‖2

2σ2(j)

)
(2.16)

where i(j) and i∗(j) are respectively, the coordinates of the neurons i and i∗ in the output

array at time j, and σ(j) > 0 defines the radius of the neighborhood function at time j.

The variables α(j) and σ(j) should both decay with time to guarantee convergence of the

weight vectors to stable steady states. In this thesis, we adopt an exponential decay for

both variables α(j) and σ(j).

Weight adjustment is performed until a steady state of global ordering of the weight

vectors has been achieved. In this case, we say that the map has converged. The resulting

map also preserves the topology of the input samples in the sense that adjacent patterns

are mapped into adjacent regions on the map. Due to this topology-preserving property,

the SOM is able to cluster input information and spatial relationships of the data on the

map. Despite its simplicity, the SOM algorithm has been applied to a variety of complex

problems (VAN HULLE, 2010; YIN, 2008; KOHONEN et al., 1996) and has become one

of the most popular artificial neural networks.

2.2.1.2 The Local Linear Map

The first local modeling approach to be described has been called Local Linear Map

(LLM) (WALTER; RITTER; SCHULTEN, 1990) by its proponents, and was originally

applied to nonlinear time series prediction. The basic idea of the LLM is to associate

each neuron in the SOM with a linear finite impulse response (FIR) filter trained with

the least mean squares (LMS) adaptation algorithm (WIDROW, 2005). The SOM array

is used to quantize the input space in a reduced number of prototype vectors (hence,

Chapter 2. Global and Local Learning Models for System Identification 37

Voronoi regions), while the filter associated with the winning neuron provides a local linear

estimate of the output of the mapping being approximated.

For modeling purposes, the input vector x(n) is built at each time step n by sliding

through the input-output time series. Vector quantization of the input space X is performed

by the LLM as in the usual SOM algorithm, with each neuron i owning a prototype vector

wi, i = 1, . . . , Q. In addition, associated with each weight vector wi, there is a coefficient

vector βi ∈ Rnu+ny of the i-th local model.

The output value of the LLM-based local model is computed as

ŷ = βTi∗x, (2.17)

where βi∗ is the coefficient vector associated with the winning neuron i∗ for x. From

Eq. (2.17), one can easily note that the coefficient vector βi∗ is used to build a local linear

approximation of the unknown global input-output mapping or target function.

Since the adjustable parameters of the LLM algorithm are the set of prototype

vectors wi and their associated coefficient vectors βi, i = 1, 2, . . . , Q, we need two learning

rules. The rule for updating the prototype vectors wi follows exactly the one given in

Eq. (2.15). The learning rule of the coefficient vectors βi(j) is an extension of the normalized

LMS algorithm, that also takes into account the influence of the neighborhood function

η(i∗, i; j):

βi(j + 1) = βi(j) + α′(j)η(i∗, i; j)∆βi(j), (2.18)

where 0 < α′(j) < 1 denotes the learning rate of the coefficient vector, and ∆βi(j) is the

error correction rule of Widrow-Hoff, given by

∆βi(j) =
[
y(n(j))− βTi (j)x(n(j))

] x(n(j))

‖x(n(j))‖2 , (2.19)

where x(n(j)) and y(n(j)) are randomly chosen input sample and corresponding output

from the training sets X and Y . After trained for a large number of iterations, the weight

vectors wi(j) of the SOM and the associated coefficient vectors βi(j) are “frozen”.

The basic idea behind the SOM-based local approaches is the partitioning of the

input space into non-overlapping regions, called Voronoi cells, whose centroids correspond

to the weight vectors of the SOM. Then an interpolating hyperplane is associated with

each Voronoi cell or a small subset of them, in order to estimate the output value of the

target function.

2.2.2 Local approximating models

Local approximating strategies have been proposed in the literature of system

identification and machine learning under many different names, such as just-in-time

models, prototype-based or memory-based methods, lazy learning, and look-up tables. In

Chapter 2. Global and Local Learning Models for System Identification 38

this section, we focus on the SOM-based approaches and we discuss the recently proposed

local linear regression methods with enclosing neighborhood.

2.2.2.1 The VQTAM Approach

The Vector-Quantized Temporal Associative Memory (VQTAM) (BARRETO;

ARAÚJO, 2004) approach aims to build an input-output associative mapping using the

Self-Organizing Map. It is a generalization to the temporal domain of a SOM-based asso-

ciative memory technique that has been used by many authors to learn static (memoryless)

input-output mappings, especially within the domain of robotics.

According to the VQTAM framework for system identification, during the training

process, the training set X has its elements x(n) augmented by incorporating output

information y(n). In doing so, the augmented input vector xaug(n) ∈ Rnu+ny+1 is given by

xaug(n) = [x(n), y(n)] = [y(n− 1), . . . , y(n− ny), u(n− 1), . . . , u(n− nu), y(n)].

As expected, the augmented prototypes of the SOM network waug
i ∈ Rnu+ny+1 can

be decomposed into two parts as well. The first part, denoted by wi ∈ Rny+nu , carries

information about the original input space. The second part, denoted wouti ∈ R, represents

the coordinate associated with output information, such that waug
i = [wi, w

out
i].

The VQTAM learning algorithm differs slightly from the basic SOM algorithm.

The winning neuron is determined based only on the original input space, such that

i∗ = argmin
∀i∈A

{‖x−wi‖}. (2.20)

In the iterative weight updating step, the augmented vectors are used:

waug
i (j + 1) = waug

i (j) + α(j)η(i∗, i; j)[xaug(n(j))−waug
i (j)], (2.21)

where xaug(n(j)) is the augmented vector randomly selected at iteration j.

Once VQTAM has been trained, the estimated output ŷ for an input test point x

is simply computed as ŷ = wouti∗ , where i∗ refers to the winning neuron to x.

2.2.2.2 The kSOM Model

The kSOM was introduced by Souza and Barreto (2010) and originally evaluated

on inverse system identification tasks. The kSOM model uses a single local linear model

whose vector of coefficients is time-varying, i.e. it is computed at each iteration based

on the prototype vectors of the neuron nearest to the current input vectors and of its K

nearest neighbors.

The idea behind the kSOM is to train firstly the VQTAM as described in Sec-

tion 2.2.2.1, in order to have a reduced representation of the input-output mapping encoded

Chapter 2. Global and Local Learning Models for System Identification 39

in the weight vectors of the VQTAM. Then, for an out-of-sample input vector x, the

coefficients of a linear local model are estimated using the weight vectors of the K first

winning neurons {i∗1, i∗2, . . . , i∗K}. These neurons are selected as follows:

i∗1 = argmin
∀i

{‖x−wi‖} (2.22)

i∗2 = argmin
∀i 6=i∗1

{‖x−wi‖}

...
...

...

i∗K = argmin
∀i 6={i∗1,...,i∗K−1}

{‖x−wi‖}

Let the set ofK winning augmented weight vectors be denoted by {waug
i∗1
,waug

i∗2
, . . . ,waug

i∗K
}.

Recall that, due to the VQTAM training style, each augmented weight vector waug
i has

a portion associated with elements of the original input space x(n) and another asso-

ciated with y(n). So, the kSOM uses the corresponding K pairs of prototype vectors

{wi∗k
, wouti∗k

}Kk=1, with the aim of building a local linear mapping:

wouti∗k
= βTwi∗k

, k = 1, . . . , K (2.23)

where β ∈ Rny+nu is a coefficient vector. Eq. (2.23) can be written in a matrix form as

wout = Wβ, (2.24)

where the output vector wout ∈ RK and the regression matrix W ∈ RK×(nu+ny) are defined

as follows

wout =
[
wouti∗1

wouti∗2
· · · wouti∗K

]T
(2.25)

and

W =




wi∗1,1 wi∗1,2 · · · wi∗1,nu+ny

wi∗2,1 wi∗2,2 · · · wi∗2,nu+ny

...
...

...
...

wi∗K ,1 wi∗K ,2 · · · wi∗K ,nu+ny



. (2.26)

In practice, since we usually have nu + ny < K, the matrix W is non-square. In

this case, we estimate the coefficient vector β by means of the regularized least-squares

method:

β̂ =
(
WTW + λI

)−1
WTwout, (2.27)

where I is the identity matrix of order nu + ny, and λ > 0 (e.g. λ = 0.001) is a small

constant added to the diagonal of WTW to make sure that this matrix is full rank. Once

β is estimated, we can locally approximate the output of x as:

ŷ = β̂Tx.

Chapter 2. Global and Local Learning Models for System Identification 40

An approach quite similar to kSOM was introduced by Principe, Wang and Motter

(1998) and used for inverse local modeling by Cho et al. (2007), Cho et al. (2006). In this

architecture, the required prototype vectors are not selected as the K nearest prototypes

to the current input vector, but rather automatically selected as the winning prototype at

time j and its K − 1 topological neighbors. If a perfect topology preservation is achieved

during SOM training, the neurons in the topological neighborhood of the winning prototype

are also the nearest ones to the current input vector. However, if topological defects are

present, as usually occurs for multidimensional data, this property cannot be guaranteed.

Thus, the use of this architecture is limited to topology-preserving VQ algorithms. The

kSOM model, however, is general enough to be used with different types of VQ algorithms.

2.2.2.3 Local Linear Regression

Local Linear Regression (LLR) (GUPTA; GARCIA; CHIN, 2008) is a nonlinear

estimation approach. The spirit of LLR is that, over a small subset of the input domain,

a simple linear model can approximate sufficiently well the true mapping to the output.

LLR retains the simplicity of a global linear model and can overcome its low accuracy

(ZHU et al., 2011).

Again, we are given N training points X→ Y = {(x(1), y(1)), . . . , (x(N), y(N))},
where x(n) ∈ Rny+nu and y(n) ∈ R. For an arbitrary input test point x ∈ Rnu+ny , LLR

estimates its output as ŷ = β̂Tx + β̂0, the least-squares hyperplane over the neighborhood

Jx of x:

(β̂, β̂0) = argmin
β,β0

∑

x(n)∈Jx

(y(n)− βTx− β0)2.

The definition of the neighborhood and the number of neighbors are crucial for local linear

regression. In this section, we briefly define four major neighborhood definition strategies

for LLR from a geometrical point of view.

Classic k-nearest neighbors (kNN) define a neighborhood J kNN
x of x using k of

its neighbors, according to a specified distance metric. Usually, the Euclidean metric is

used and the number of neighbors k is fixed or cross-validated. Despite its simplicity, one

major problem in kNN is the selection of the neighborhood size: i) too few neighbors may

lead to a neighborhood that does not enclose the test point, which might give a large

estimation variance and, ii) too many neighbors to impose enclosure may cause the model

to over-smooth. How to select adaptively k is an open issue.

If Jx encloses x, we call it an enclosing neighborhood, i.e., x ∈ conv(Jx), where the

convex hull of a point set S={s1, . . . , sn} is defined as conv(S)={∑n
i=1 ωisi |

∑n
i=1 ωi =

1, ωi ≥ 0}. Figure 6a shows a kNN neighborhood of size k = 3 for a test point x. Recently,

Gupta, Garcia and Chin (2008) proved that if a test point is in the convex hull enclosing its

neighborhood, then the variance of the local linear regression estimate is bounded by the

Chapter 2. Global and Local Learning Models for System Identification 41

x

x2

x3

x4

x5

x6

x7

x8

x9

x10

x1

(a) k-nearest neighbors

x2

x3

x4

x5

x6

x7

x8

x9

x10

x1

x

(b) Enclosing k-nearest neighbors

x2

x3

x4

x5

x6

x7

x8

x9

x10

x1
x

(c) Natural neighbors

x2

x3

x4

x5

x6

x7

x8

x9

x10

x1
x

(d) Natural neighbors inclusive

Figure 6: Neighborhoods: a) J kNN
x ={x1,x5,x6}, b) J ekNN

x ={x1,x3,x5,x6,x8}, c)
J NN

x ={x1,x2,x3,x5,x6}, and d) J NNi
x ={x1,x2,x3,x5,x6,x7,x8,x9}.

variance of the measurement noise. Such a property is fundamental to limit erratic results.

In the following, three enclosing neighborhood definition strategies are briefly overviewed.

Enclosing k-nearest neighbors (ekNN) It is based on the kNNs of x and extends

them to define a neighborhood that encloses it. ekNN is the neighborhood of the kNNs

with the smallest k such that x ∈ conv(Jx(k)), where Jx(k) is the set of kNNs of x

(GUPTA; GARCIA; CHIN, 2008). If x is outside of the convex hull of the set X , no such

k exists. Define distance to enclosure as d(x,Jx) = minz∈conv(Jx) ‖x− z‖2, where z is any

point in the convex hull around the neighborhood of x, as demonstrated in Figure 6b.

Note that d(x,Jx) = 0 only if x ∈ conv(Jx). Then, the ekNN neighborhood is Jx(k∗)

with k∗ = mink{k | d(x,Jx(k)) = d(x,X)}. The complexity for building a convex hull

using k neighbors is O(kb(ny+nu)/2c), where b·c is the floor function.

Natural neighbors (NN) Natural neighbors are based on the Voronoi tessellation of

the training samples and the test point. The natural neighbors of x are defined as those

Chapter 2. Global and Local Learning Models for System Identification 42

points whose Voronoi cells are adjacent to the cell including x. Natural neighbors have

the so-called local coordinates property, which is used to prove that the natural neighbors

form an enclosing neighborhood if x ∈ conv(X). Figure 6c shows an example of natural

neighbors for the point x.

Natural neighbors inclusive (NNi) In some cases of non-uniformly distributed local

areas, a training point which is far from the test point can be one of its natural neighbors,

but a nearer point is excluded for its neighborhood. To overcome this situation, natural

neighbors inclusive has been proposed to include both the natural neighbors and those

training points within the distance to the furthest natural neighbor. That is, J NNi
x =

{x(j) ∈ X | ‖x− x(j)‖ ≤ maxx(n)∈JNN
x
‖x− x(n)‖}. Figure 6d is an example of natural

neighbors inclusive.

2.3 Conclusions

This chapter overviewed global and local learning methods with direct application

to system identification tasks. In the realm of global models, the focus was on neural

networks architectures. Thus, we discussed MLP, ELM and RBF networks. With respect

to local models, we introduced the Local Linear Regression approaches, and SOM-based

architectures, which mainly included LLM and KSOM algorithm. The architectures studied

in this chapter are going to be further used for comparison purposes.

43

Chapter 3

The Minimal Learning Machine

Supervised machine learning methods for regression and classification have been

designed mostly for data types that lie in vector spaces, i.e. response (i.e. output) and/or

predictor (i.e. input) variables are often arranged into vectors of predefined dimensionality.

There are other types of data, however, such as graphs, sequences, shapes, images, trees

and covariance matrices, which are less amenable to being treated within standard regres-

sion/classification frameworks. These data types usually do not lie in a natural vector

space, but rather in a metric space.

For this type of data, usually referred to as structured data (HAGENBUCHNER;

SPERDUTI; TSOI, 2003; HAMMER et al., 2004), a more general approach to the charac-

terization of the data items is to define a distance (or dissimilarity) measure between data

items and to provide a learning algorithm that works with the resulting distance matrix.

Since pairwise distance measures can be defined on structured objects (e.g. graphs, trees or

strings), this procedure provides a bridge between the classical and the structural/syntactic

approaches to pattern recognition (BUNKE, 1993; SCHALKOFF, 1992).

Pairwise distance data occur frequently in empirical sciences, such as psychology,

economics, ecology and biochemistry, with most of the algorithms developed to han-

dle this kind of data falling into the realm of unsupervised learning, predominantly as

clustering (HAMMER; HASENFUSS, 2010; SOMERVUO; KOHONEN, 1999; GRAE-

PEL; OBERMAYER, 1999; HOFMANN; BUHMANN, 1997) or multidimensional scaling

algorithms (WANG, 2011).

For regression tasks, there are prior works in which the response and/or the predictor

variables are expressed as distance (i.e. dissimilarity) matrices. Cuadras and Arenas (1990)

proposed an approach to regression where only the predictors are expressed as a distance

and classical multidimensional scaling (a.k.a principal coordinates analysis) (WANG, 2011)

is used to generate scores. The response variable is then regressed on these scores. McArdle

Chapter 3. The Minimal Learning Machine 44

and Anderson (2001) performed MANOVA1 on ecological data with only knowledge of the

distance matrix of the response variable. Finally, Lichstein (2006) proposed a modeling

approach where both the response and predictor variables are represented as distance

matrices. However, since their method converts the distance matrices to vectors in a

column-wise fashion, useful information provided by the geometry of the problem is lost.

For classification tasks, we refer the reader to the works of Hammer et al. (2014),

Zhu, Schleif and Hammer (2014), and Graepel et al. (1999). Roughly speaking, these works

introduce extended versions of classification algorithms for data characterization by means

of a matrix of pairwise similarities or more general dissimilarity measures, rather than

explicit feature vectors. In Hammer et al. (2014) the authors propose a general learning

framework that unifies previous attempts of making LVQ algorithms capable of handling

non-vectorial data, such as kernel GLVQ (SCHLEIF et al., 2012; QIN; SUGANTHAN,

2004) and relational GLVQ (GISBRECHT et al., 2012). This is possible by means of a

pseudo-Euclidean embedding2 of similarity (or dissimilarity) data, i.e., every finite data

set which is characterized by pairwise similarities or dissimilarities can be embedded in

a so-called pseudo-Euclidean vector space. Zhu, Schleif and Hammer (2014) proposes an

LVQ-based classifier that, in addition to its ability to directly deal with arbitrary symmetric

dissimilarity matrices, provides confidence/reliability measures for the classification results.

Finally, in the pioneering work by Graepel et al. (1999), they suggested classification

algorithms based on linear models which operate on distance data from both Euclidean

and pseudo-Euclidean spaces.

As mentioned in the previous paragraphs, data characterization by means of pairwise

dissimilarity measures have been associated with the processing of structured data, either

for regression or classification purposes. However, we argue that the use of dissimilarity

measures for data characterization may also be beneficial for the processing of unstructured

data types, by allowing, for example, a nonlinear learning problem to be tackled by linear

models. Bearing this in mind, we introduce a new supervised nonparametric method, called

the Minimal Learning Machine (MLM), aiming at the efficient design of distance-based

regression models or pattern classifiers for unstructured data types.

Learning in MLM consists in building a linear mapping between input and output

distance matrices. In the generalization phase, the learned distance map is used to provide

an estimate of the distance from M output reference points to the target output value.

Then, the output point estimation is formulated as a multilateration problem based on

the predicted output distance and the locations of the reference points. Given its general

1 Acronym for multivariate analysis of variance.
2 Non-Euclidean dissimilarities arise naturally when we want to build a measure that incorporates

important knowledge about, e.g. the relation between objects to be classified. Pseudo-Euclidean
embedding allows one to embed such dissimilarities in a vector space in order to use standard
(Euclidean) classification tools.

Chapter 3. The Minimal Learning Machine 45

formulation, the Minimal Learning Machine is inherently capable of operating on nonlinear

regression problems as well as on multidimensional response spaces. Because of that, the

MLM can be extended for classification in a straightforward manner (Appendix B) (SOUZA

JUNIOR et al., 2013b). One of the main advantages of the MLM is that it requires tuning

of a single parameter, which is the number of reference points used to obtain an estimate

of the response variable.

Based on experiments on regression (Appendix C) and classification (Appendix B)

problems, the proposed distance-based method, when applied to standard vectorial (i.e.

unstructured) data types, achieves accuracies that are comparable to those achieved by

standard supervised nonlinear machine learning methods, thus offering a simpler alternative

to these nonlinear approaches. Results on system identification problems, further reported

in Chapter 5, also highlight that the MLM does not suffer from numerical problems

commonly present in reference nonlinear global models, outperforming them.

The remainder of the chapter is organized as follows. In Section 3.1, the Minimal

Learning Machine is presented. Section 3.2 discusses the computational complexity of

MLM and its hyperparameter. In Section 3.3, we describe the links between MLM and two

other methods: RBF network and Kernel Dependency Estimation. Section 3.4 extends the

MLM to system identification tasks, which is the focus of the thesis. Section 3.5 describes

some strategies to the selection of reference points in MLM. In Section 3.6, we illustrate

the performance of the MLM on two synthetic examples. Finally, Section 3.7 presents

concluding remarks.

3.1 Basic formulation

In this section, we formulate the Minimal Learning Machine (MLM) (SOUZA

JUNIOR et al., 2013a) and we discuss its computational complexity and its hyperparameter.

We are given a set of N input points X = {xi}Ni=1, with xi ∈ RD, and the set of

corresponding outputs Y = {yi}Ni=1, with yi ∈ RS. Assuming the existence of a continuous

mapping f : X→ Y between the input and the output space, we want to estimate f from

data with the multiresponse model

Y = f(X) + R.

The columns of the matrices X and Y correspond to the D inputs and S outputs

respectively, and the rows to the N observations. The columns of the N × S matrix R

correspond to the residuals.

The MLM is a two-step learning method designed to

1. reconstructing the mapping existing between input and output distances;

Chapter 3. The Minimal Learning Machine 46

2. estimating the response from the configuration of the output points.

In the following, the two steps are discussed.

For a selection of reference input points R = {rm}Mm=1 with R ⊆ X and corre-

sponding outputs T = {tm}Mm=1 with T ⊆ Y, define Dx ∈ RN×M in such a way that its

m-th column contains the distances d(xi, rm) between the N input points xi and the m-th

reference point rm. Analogously, define ∆y ∈ RN×M in such a way that its m-th column

contains the distances δ(yi, tm) between the N output points yi and the output tm of the

m-th reference point. Assuming that exists a mapping κ between the input distance matrix

Dx and the corresponding output distance matrix ∆y, it can be reconstructed using the

following multiresponse regression model

∆y = κ(Dx) + E.

The columns of the matrix Dx = [d(x, r1), . . . , d(x, rM)] correspond to the M input vectors;

the columns of the matrix ∆y = [δ(y, t1), . . . , δ(y, tM)] correspond to the M response

vectors, and the N rows correspond to the observations. The columns of the N ×M matrix

E correspond to the M residuals.

Assuming further that the mapping κ between input and output distance matrices

has a linear structure for each response, the regression model has the form

∆y = DxB + E. (3.1)

The columns of the M ×M regression matrix B correspond to the coefficients for the

M responses. The matrix B can be estimated from data through a minimization of the

multivariate residual sum of squares as loss function, i.e.,

RSS(B) =
M∑

m=1

N∑

i=1

(
δ(yi, tm)− κm(d(xi, rm))

)2
, (3.2a)

= tr
(

(∆y −DxB)T (∆y −DxB)
)
. (3.2b)

Under the conditions where the number of equations in Eq. (3.1) is larger than the

number of unknowns, the problem is overdetermined and, usually, with no solution. This

corresponds to the case where the number of selected reference points is smaller than the

number of available points (i.e. M < N). In this case, we have to rely on the approximate

solution provided by the ordinary least squares estimate of B,

B̂ = (DT
xDx)

−1D′x∆y. (3.3)

If in Eq. (3.1) the number of equations equals the number of unknowns (i.e. M = N

because all the learning points are also reference points), then the problem is uniquely

determined and has a single solution if the matrix Dx is full-rank. In this case,

B̂ = (Dx)
−1∆y. (3.4)

Chapter 3. The Minimal Learning Machine 47

Clearly less interesting is the case where in Eq. (3.1) the number of equations is smaller

than the number of unknowns (i.e. for M > N , corresponding to the situation where, after

selecting the reference points, only a smaller number of learning points is used). This case

leads to an underdetermined problem with, usually, infinitely many solutions.

It is worth mentioning that, since the MLM assumes a linear mapping between the

distance matrices, other learning (or estimation) technique can be chosen instead of using

the ordinary least squares method, such as the least mean squares (LMS) (WIDROW,

2005) or even the recursive least squares (RLS) (HAYKIN, 2001) algorithms.

Given the possibility for B to be either uniquely solvable (Eq. (3.4)) or estimated

(Eq. (3.3)), for an input test point x ∈ RD whose distances to the M reference input points

{rm}Mm=1 are collected in the vector d(x,R) = [d(x, r1) . . . d(x, rM)], the corresponding

distances between the unknown output y and the known outputs {tm}Mm=1 of the reference

points are estimated as

δ̂(y, T) = d(x,R)B̂. (3.5)

The vector δ̂(y, T) = [δ̂(y, t1) . . . δ̂(y, tM)] provides an estimate of the geometrical config-

uration of y and the reference set T , in the Y-space.

The problem of estimating the output y, given the outputs {tm}Mm=1 of all the

reference points and estimates δ̂(y, T) of their mutual distances, can be understood

as a multilateration problem (NIEWIADOMSKA-SZYNKIEWICZ; MARKS, 2009) to

estimate its location in Y. The problem of locating y ∈ RS is equivalent to solving the

overdetermined set of M nonlinear equations corresponding to (M + 1)-dimensional hyper-

spheres centered in tm and passing through y. Figure 7 graphically depicts the problem

for S = 2.

ŷ

t1

t2

t3

Y(1)

Y(2)

�̂(y, t2)

�̂(y, t3)
�̂(y, t1)

tm

�̂(y, tm)

Figure 7: Output estimation.

Chapter 3. The Minimal Learning Machine 48

Given the set of m = 1, . . . ,M spheres each with radius equal to δ̂(y, tm)

(y − tm)T (y − tm) = δ̂2(y, tm), (3.6)

the location of y can be estimated from the minimization of the objective function

J(y) =
M∑

m=1

(
(y − tm)T (y − tm)− δ̂2(y, tm)

)2
. (3.7)

The objective function has a minimum equal to 0 that can be achieved if and only if y

is the solution of Eq. (3.6). If it exists, such a solution is thus global and unique. Due to

the uncertainty introduced by the estimates δ̂(y, tm), an optimal solution to Eq. (3.7) can

be achieved by any minimizer ŷ = argmin
y

J(y) like the nonlinear least square estimates

from standard gradient descent methods. In the following, the Levenberg-Marquardt (LM)

method (MARQUARDT, 1963) is preferred.

3.2 Parameters and computational complexity

From the exposed, the number of reference points M is virtually the only hy-

perparameter that the user needs to select in order to fine-tune an MLM model. As

always, a selection based on conventional validation or on standard resampling methods

for cross-validation could be adopted for the task (HASTIE; TIBSHIRANI; FRIEDMAN,

2009).

Two figures of merit can be considered for selecting M , the Average Mean Squared

Error for the output distances (AMSE(δ)) and the Average Mean Squared Error for the

responses (AMSE(y)), which are given by

AMSE(δ) =
1

M

M∑

m=1

1

Nv

Nv∑

i=1

(δ(yi, tm)− δ̂(yi, tm))2, (3.8)

and

AMSE(y) =
1

S

S∑

s=1

1

Nv

Nv∑

i=1

(y
(s)
i − ŷ(s)i)2. (3.9)

For a set of Nv validation pairs (xi,yi), the AMSE(δ) quantifies how well the

distances δ(yi, tk) between the Nv output responses yi and the outputs of the M selected

reference points tm are estimated δ̂(yi, tm). The AMSE(y), in turn, is only performed

after both the distance regression and the estimation steps of the MLM are completed,

thus, it quantifies how well the S-dimensional outputs y
(s)
i are estimated ŷ

(s)
i . In the case

of univariate responses (S = 1) the AMSE(y) reduces to the conventional Mean Square

Error for the outputs (MSE(y)).

Ideally, if we had enough data, we would set aside a validation set and use it to

assess the performance of our model trained with a varying number M of reference points.

Chapter 3. The Minimal Learning Machine 49

The value of M that optimizes the chosen figure of merit is then used to learn the final

model with all the data. However, since the data are often scarce, this is usually impossible

and we need to resort to cross-validation. We split the data into a number Nf of roughly

equal-sized parts and for the i-th part we train the model with a varying number M of

reference points on data from the other Nf − 1 parts and we calculate the corresponding

figure of merit. This is repeated for i = 1, 2, . . . , Nf and the resulting figure of merit for

the same value of M averaged over all the Nf folds. Again, the value of M that minimizes

the chosen figure of merit is then used to learn the final model with all the data. The case

Nf = N is known as leave-one-out cross-validation.

The training procedure of the Minimal Learning Machine is sketched in Algorithm

1. The training computation can be roughly divided into two parts: i) calculation of

the pairwise distance matrices in the output and input space; and ii) calculation of the

least-square solution for the multiresponse linear regression problem on distance matrices.

The first part takes Θ(MN) time (see Cormen et al. (2009) for a review of algorithmic

asymptotic analysis). The computational cost of the second part is driven by the calculation

of the Moore-Penrose pseudoinverse matrix.

Algorithm 1 MLM training procedure

Input: Training data sets X and Y, and M .
Output: B̂, R and T .

1. Randomly select M reference points, R, from X and their corresponding outputs, T , from
Y;
2. Compute Dx: The distance matrix between X and R;
3. Compute ∆y: The distance matrix between Y and T ;

4. Calculate B̂ = (DT
xDx)−1DT

x∆y.

One of the most used methods for the calculation of Moore-Penrose pseudoinverses

is the SVD (GOLUB; LOAN, 1996), which runs in Θ(M2N) time. This method is very

accurate but its drawback lies in the computational time constants that makes it time-

intensive. In order to speed up the computation, several methods have been proposed (for

example, see Katsikis, Pappas and Petralias (2011), and Courrieu (2005)). In Katsikis,

Pappas and Petralias (2011), the computation is optimized by using a special type of

tensor product and QR factorization, whereas the method proposed by Courrieu (2005)

is based on a full-rank Cholesky decomposition. Even if such approaches significantly

improve the computational time of computing the Moore-Penrose inverse matrix, the time

complexity is still equal to that provided by the SVD method. Even though, one might

consider them for large datasets or real-time applications.

The time complexity of the MLM training phase is driven by the computation

of the Moore-Penrose matrix and then it is given by Θ(M2N). In order to establish a

comparison, the MLM training computational cost is similar to what presented by an ELM

network when the number of hidden neurons is equal to the number of reference points.

Chapter 3. The Minimal Learning Machine 50

It is worth noting that the ELM is considered one of the fastest methods for nonlinear

regression and classification tasks (MICHE et al., 2010).

Algorithm 2 MLM test procedure

Input: B̂, R, T and x.
Output: ŷ.

1. Compute d(x,R);
2. Compute δ̂(y, T) = d(x,R)B̂;
3. Use T and δ̂(y, T) to find an estimate for y. This can be accomplished by any gradient
descent algorithm over the cost function in Eq. (3.7).

Concerning the computational analysis of the generalization step in MLM (Al-

gorithm 2), we consider the Levenberg-Marquardt method due to its fast and stable

convergence, even though any gradient descent method can be used on the minimization

step in Eq. (3.7). For each iteration, the LM method involves the computation of the

Jacobian matrix J ∈ RM×S and the inverse of JTJ. In this regard, the computational

complexity of the LM algorithm is about Θ(I(MS2 + S3)), where S is the dimensionality

of y and I denotes the number of iterations. In most of the regression and classification

problems, S is a small number and then the complexity turns to be proportional to the

number of reference points and number of iterations. This is slightly worse than what

is presented, for instance, by SVM methods with M support vectors, which is linear in

M with small constant factor. Also, ELM testing phase runs in Θ(MS) time, with M

corresponding to the number of hidden units.

3.3 Links with Multiquadric Radial Basis Functions and Kernel

Dependency Estimation

An alternative interpretation for the MLM lies in the theory of RBFs. A radial

basis function approximation of a function f : RD → R takes the form

h(x) =
L∑

l=1

βlφ(‖x−ml‖), (3.10)

where φ : [0,∞)→ R is a fixed univariate function, β = [β1, β2, . . . , βL] denotes a vector

of coefficients usually estimated by the ordinary least squares method and ml correspond

to centers of the radial basis functions φ(.). In other words, the RBF approximation h(x)

is a linear combination of translates of a fixed function φ(.) of a single real variable.

Similarly to the RBF approximation, the MLM equations for the distance regression

step (Eq. (3.5)) are given by

δ̂(y, tm) =
M∑

j=1

bjmd(x, rj), m = 1, . . . ,M. (3.11)

Chapter 3. The Minimal Learning Machine 51

Among a variety of radial basis functions, a well-known function is the multiquadric

function (HARDY, 1971), where φ(‖x − ml‖) = (‖x − ml‖2 + σ2)1/2, with σ ∈ R.

By simply setting the constant σ = 0, the multiquadric function becomes the identity

φ(||x−ml||) = ‖x−ml‖ = d(x, rm), with the centers ml corresponding to the reference

points rm, and L = M .

Analogously to the RBF network, the MLM approximates a function by a linear

combination of translates of the multiquadric function, with the difference that the target

function is a distance function in the output space. Moreover, the MLM uses a randomly

chosen subset of the learning points as centers, which is also a feasible choice for the design

of RBF learning models (BISHOP, 2006). The number of reference points, or centers,

corresponds to a hyperparameter to be optimized based on a specific dataset.

Since estimating distances is not the final goal in learning the target function f , the

MLM requires an optimization step to estimate outputs based on the estimated distances.

It is a deterministic problem given that the distances are perfectly reconstructed. Indeed,

because the distances are usually not perfectly estimated, the output estimation as an

optimization procedure allows the use of many different techniques, including methods for

robust estimation (HUBER, 2004).

Weston et al. (2002) introduced the kernel dependency estimation (KDE) approach,

which is a kernel based method for learning a dependency between two classes of objects —

one class being the input and the other class the corresponding output. The objects can

be defined in terms of vectors, images, strings, trees or graphs. In a like manner to MLM,

KDE learning employes similarity measures in both input and output spaces, and it also

requires an output estimation, which is in this case called pre-image problem. There are,

however, four notable differences between the MLM and KDE. Firstly, the KDE is a kernel

method and, as such, it relies on kernel functions in order to embed the objects into vector

spaces, whereas any dissimilarity or proximity measure can be used in MLM. Secondly,

the KDE requires a PCA step to be applied to the kernel output similarity matrix. In

MLM, one uses the distance matrix directly in order to learn the input-output mapping.

Thirdly, the pre-image problem (i.e. output estimation) in KDE is solved using a very

simplified algorithm, where the closest output sample is chosen from the available training

set. In MLM, an optimization procedure is carried out as described in Algorithm 2. Finally,

the KDE was evaluated mainly on classification problems, while the MLM is evaluated

comprehensively in both, regression and classification tasks.

3.4 Application to system identification

The extension of the Minimal Learning Machine to system identification is straight-

forward, since we have adopted the external dynamics approach in this thesis. The

Chapter 3. The Minimal Learning Machine 52

term “external dynamics” stems from the fact that the nonlinear dynamic model can

be separated into two parts: a nonlinear static approximator and an external dynamic

filter bank (NELLES, 2001). The MLM assumes the role of the nonlinear static map-

ping. Thus, all that is required is to design the regression vectors accordingly to the

system dynamics (memory orders nu and ny), as illustrated in Figure 8. In the context

of SISO systems, the input and output learning sets are given by X = {x(n)}Nn=1, with

x(n) = [y(n−1), . . . , y(n−ny); u(n−1), . . . , u(n−nu)] ∈ Rnu+ny , and a set of corresponding

outputs Y = {y(n)}Nn=1.

q−1 q−1 q−1 q−1.

MLM

y(n)u(n)

u
(n

−
1
)

u
(n

−
n

u
)

y
(n

−
n

y
)

y
(n

−
1)

nonlinear dynamic model

ŷ(n)

Figure 8: Use of the MLM for nonlinear system identification: external dynamics approach.

A remarkable characteristic of MLM is its inherently capability of operating on

multidimensional responses. Therefore, the MLM can be used in the identification of MIMO

(Multiple-Inputs Multiple-Outputs) systems without any additional step or adaptation.

3.5 On the selection of reference points

A crucial aspect related to MLM training is the selection of reference points. In

this section, we discuss two simple strategies for selecting reference points in MLM.

Based on the RBF theory for center placement, the first natural choice is to

carry out centroid-based selection. In doing so, the k-medoids algorithm (KAUFMAN;

ROUSSEEUW, 1990) is a feasible choice. A description of the k-medoids method can be

found in Appendix A. The rationale of k-medoids is to select the most representative k

points from a set, in the sense of minimizing an intra-cluster error measure (dissimilarity),

while maximizing an inter-cluster error measure. Figure 9 shows the selection of 60 reference

points (input space) using the k-medoids clustering method on the synthetic example

presented in chapter 1.

A different strategy would be to carry out center placement from the most complex

(high curvature) portion of the target function in a supervised manner. Among such

Chapter 3. The Minimal Learning Machine 53

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

u(n)

y
(n

)

Data points
Reference points

Figure 9: Selection of reference points through k-medoids.

strategies, a well-known method was proposed by Chen, Cowan and Grant (1991) and it is

based on the orthogonal least-squares method. The advantage in performing supervised

center/reference placement is that we can select centers in those regimes where they are

most effective in terms of modeling error reduction (NELLES, 2001).

We propose a method based on distance computations and nonparametric hypothesis

testing. The idea is to locally match distance measurements on the input and output

spaces. Thus, for all training pairs {x(n), y(n)}, we compute distances to the k nearest

points in the training sets X and Y , respectively. Let us assume that column vector dk(n)

encompasses the distances from x(n) to its k neighbors (nearest points) in X . Likewise,

δk(n) denotes the distances between y(n) and its k neighbors in Y. Now, think of dk(n)

and δk(n) as local distance distributions on the input and output spaces. Assuming that

the target function f : X → Y satisfies the Weierstrass continuity definition3, then the

distributions dk(n) and δk(n) are equal (matches) up to a normalization factor if we

consider a neighborhood of f(·) such that f is linear.

To ensure the matching between the input and output local distance measurements,

we use the resulting p-value of the nonparametric Kolmogorov-Smirnov (KS) hypothesis

test (MASSEY, 1951). The null hypothesis is that dk(n) and δk(n) are samples coming

from the same distribution. Therefore, the idea is to apply the test and use the p-values

from the two-sample KS test as a ranking criterion, indicating which points correspond to

the most linear part of the target function. Clearly, the measurements dk(n) and δk(n)

are normalized to have zero-mean and unit variance before applying the KS test.

Additionally, heuristics are necessary to select the references on the basis of the

resulting ranking. For instance, a simple strategy would be to randomly select 20% of the

reference points from those where the null hypothesis is accepted (high p-value) and 80%

from those 40% with smallest p-values. Figure 10 illustrates the procedure for two toy

3 f(x) is continuous at x = x0 if ∀ ε > 0 ∃ δ > 0 such that for every x in the domain of f ,
|x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

Chapter 3. The Minimal Learning Machine 54

functions. For the experiment, we used neighborhood size (k) equal to 100. The red points

are the 200 points with the smallest p-values and the blue ones are the 200 points with

highest p-values.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Target Function
Linear part
Nonlinear part

(a) y = sin(x)

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
y

Target Function
Linear part
Nonlinear part

(b) y = x2

Figure 10: Selection of reference points through KS test for two different functions.

3.6 Illustrative examples

In this section, we illustrate the Minimal Learning Machine using two synthetic

problems, one for regression and one for system identification. The regression problem

consists in the estimation of a smoothed and nonlinear version of the parity function. The

system identification problem consists in the synthetic plant described in Chapter 1.

3.6.1 The smoothed parity

To illustrate the behavior of the Minimal Learning Machine for regression problems,

we generated 213 bi-dimensional input points uniformly distributed in the unit-square,

x ∈ [0, 1]2, and built the response using the smoothed parity function model y = f(x) + ε,

where f = sin(2πx1) sin(2πx2) and ε ∼ N (0, 0.12), Figure 11.

We analyzed the performance of the MLM for N learning points ranging from 21 to

212 and M randomly selected reference points such that always M ≤ N . An independent

set of Nv = 212 points is used for validating the MLM in terms of its hyperparameter M .

Two figures of merit are used, the AMSE(δ) for the output distances and the MSE(y) for

the single response. In our experiments, the Minimal Learning Machines are trained with

all the different N -sized learning sets and for all possible number of reference points. For

each size N of the learning set and for a varying number M of reference points, the figures

of merit of the distance regression and the output estimation steps are then evaluated on

the validation set (Figure 12).

Chapter 3. The Minimal Learning Machine 55

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

−1

−0.5

0

0.5

1

x1
x2

y

Figure 11: The smoothed parity function: Data

log
2
()

lo
g
2
(N

)

2 4 6 8 10 12

2

4

6

8

10

12

0.1

0.2

0.3

0.4

0.5

0.6

M

(a) AMSE(δ)

2 4 6 8 10 12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log
2
(N)

A
M

S
E

(δ
)

(b) Optimal AMSE(δ)

log
2
()

lo
g
2
(N

)

2 4 6 8 10 12

2

4

6

8

10

12

0.1

0.2

0.3

0.4

0.5

0.6

M

(c) MSE(y)

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

log
2
(N)

M
S

E
(y

)

(d) Optimal MSE(y)

Figure 12: The smoothed parity function: Figures of merit.

Figure 12a shows the AMSE(δ) performance of the Minimal Learning Machine

in the distance estimation step, for different combinations of N learning points and M

reference points. For a given number N of learning points, the number of reference points

that leads to the best performances is denoted by a red dot and, then, a red circle is

used to denote the MLM with the overall smallest AMSE(δ). Related to that, Figure 12b

Chapter 3. The Minimal Learning Machine 56

illustrates the AMSE(δ) achieved by the best performing MLMs for different sizes of the

learning set. Analogously for the output estimation step, Figure 12c shows the MSE(y)

performances, where again the best performing MLMs are denoted by red dots, and a red

circle denotes the best MLM overall. By the same token, Figure 12d shows the performance

of the best MLMs for different sizes of the learning set. Based on the results depicted

in Figure 12b and 12d, it is possible to observe that the MLM performance improves as

the number N of learning points increases; an expected result. On the other hand, the

optimal number M of reference points does not necessarily grow at the same rate of the

number of learning points. After some point, including more reference points decreases the

generalization performances of the MLM, both in terms of distance regression and output

estimation, a clear indication that the MLM starts overfitting. Considering the nature of

the sets of equations that characterize the two steps of the MLM learning, this is again an

expected result further confirmed by experimental evidence.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

y

ŷ

Figure 13: The smoothed parity function: Output estimation with N = 212 and M = 28.

The best Minimal Learning Machine overall was found to be the one trained using

N = 212 learning points and M = 28 reference points. It is worth noticing that for both

the distance regression and the output estimation step, the optimal number of reference

points is found to be the same. Figure 13 illustrates the validation results when estimating

the response with the best performing MLM. Interestingly, the MSE(y) achieved by this

MLM is equal 0.011, which tends to the variance of the additive noise in the response

(Var(ε) = 0.010) and thus also to the smallest Mean Square Error that any regression

model can achieve without overfitting.

3.6.2 Synthetic example

In order to illustrate the performance of the MLM on nonlinear modeling, we

have run experiments with the synthetic example. Since we assume the memory order

is unknown, we combine grid-search and 10-fold cross-validation to select the optimal

memory orders, with ny, nu = {1, 2, 3}, and the number of reference points M varying from

Chapter 3. The Minimal Learning Machine 57

10 to 100 with step size of 10. Figure 14 illustrates the results for ten independent runs.

Figure 14a illustrates the in-sample and out-of-sample RMSE values for the one-step-ahead

predictions (Ein and Eout) and free-run simulations (Ein−sim and Eout−sim). With respect

to the RMSE performance, we observe that the simulation and prediction results are

quite similar (Figure 14a). Still on the RMSE performance we may verify that the out-of-

sample performance is more stable (smaller variation) than the in-sample performance. By

contrasting Figures 14a and 14b, the in-sample error in general decreases as more reference

points are selected, as expected. The optimal number of reference points varied from 60

to 100 (Figure 14b). The memory order terms are depicted in Figure 14c, where a wrong

order detection led to a selection of 100 reference points (repetitions 3 and 9).

1 2 3 4 5 6 7 8 9 10
0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

repetition

R
M

S
E

Ein
Eout
Ein−sim
Eout−sim

(a) MLM accuracies

1 2 3 4 5 6 7 8 9 10
60

65

70

75

80

85

90

95

100

repetition

M

(b) Number of reference points

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

repetition
n̂
y
,
n̂
u

input delay
output delay

(c) Delays

Figure 14: Synthetic example: MLM results.

Figure 15 illustrates the MLM performance in terms of its simulation capability

on the validation/testing set. From Figure 15b the MLM is able to recover the system

dynamics accurately. Also, the resulting RMSE value approximates the standard deviation

of the noise signal.

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

n

y

Observations
MLM (RMSE:1.10e−01)

(a) Simulation on validation set

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

y

ŷ

(b) Estimates: simulation

Figure 15: Synthetic example: MLM estimates.

The approximation of the MLM for the static behavior of the system is illustrated

in Figure 16. The MLM is able to accurately approximate the static curve of the system.

Chapter 3. The Minimal Learning Machine 58

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

u

y

True system
MLM

Figure 16: Synthetic example: MLM static behavior.

3.7 Concluding remarks

This chapter introduced a new learning method called the Minimal Learning Ma-

chine, or MLM for short. Learning in MLM consists in reconstructing the mapping between

input and output distance matrices and then exploiting the geometrical arrangement of

the output points for estimating the response. Based on our experiments, a multiresponse

linear regression model is capable of reconstructing the mapping existing between the

aforementioned distance matrices. Also, the MLM is inherently capable of operating on

multidimensional responses. We have reported the MLM performances on classification and

regression problems in Appendices B and C, respectively. On a large number of real-world

problems, the Minimal Learning Machine has achieved accuracies that are comparable to

what is obtained using state-of-the-art classification and regression methods. In addition,

we illustrated through the synthetic example given in Chapter 1 the application of the

MLM on system identification tasks.

The computational complexity of the MLM training procedure is low, competing

with the fastest machine learning approaches, such as the ELM network. Regarding the

test procedure, we reported that combining random selection of reference points and the

Levenberg-Marquardt optimization method lead to good performance.

With respect to related works, the relationship between the MLM and RBF network

was discussed, and we have shown that the MLM training can be interpreted as the use of a

multiquadric RBF network in the estimation of distances in the output space. Additionally,

we described the similarities and differences between the MLM and KDE method.

Regarding the selection of reference points, we discussed two alternatives to the

random selection described in the MLM basic formulation. The number of strategies for

that is not limited to what is presented in this chapter. In fact, most of the methodologies

already proposed in the literature can be applied to the MLM. For example, ranking

criterion based on subset selection methods, as proposed by Miche et al. (2010) and Chen,

Chapter 3. The Minimal Learning Machine 59

Cowan and Grant (1991), can be equally applied. A comprehensive evaluation of the

impact of the different methods for reference point placement is out of the scope of the

thesis, and will not be further discussed.

Finally, a significant advantage of the MLM over other supervised learning methods

is that the MLM has only one hyperparameter to be optimized using standard resampling

methods, like leave-one-out (LOO) cross validation. Because the MLM is linear in the

parameters on the distance regression step, once the reference points are determined, the

LOO error can be analytically found using the PRESS (or PREdiction Sum of Squares)

statistics (BONTEMPI; BIRATTARI; BERSINI, 1998).

60

Chapter 4

Regional Modeling

As introduced in Chapter 2, modeling techniques can be categorized into two

general paradigms: global and local modeling. Global modeling consists in fitting a single

regression model to the available data, using the whole set of input and output observations.

On the other side of the spectrum stands the local modeling approach, in which the input

space is segmented into several small partitions and a specialized regression model is fit

to each partition. The rationale of the local modeling approach relies on the fact that

complex (e.g. nonlinear) dynamics of the input-output mapping can be represented by

multiple simpler mappings. It usually brings the advantage of interpretability.

However, the alleged flexibility of using multiple local models comes with some

costs. One of the main problems is that it is not straightforward to select the appropriate

number of local models beforehand, without any prior information. An inappropriate

selection may cause the over- or under-identification of the original system dynamics

(WANG; SYRMOS, 2007). Regarding SOM-based models, another shortcoming is related

to the occurrence of dead (or interpolating) neurons1 after SOM training. In this case, it

is impossible to associate a local model with this type of neuron, since there are no data

points to estimate the parameters of the corresponding local model.

To handle these shortcomings, we propose a novel approach to system identification,

called Regional Modeling (RM), that stands in between the global and local modeling

approaches. RM is originally motivated by the two-level clustering approach introduced

by Vesanto and Alhoniemi (2000) and can be thought of as an extension of their work

to regression problems, particularly to nonlinear dynamic system identification. The RM

principle is to combine a smaller number of models in order to cover a larger area of the

input space than purely local models.

In this chapter, we propose regional models based on clustering of the SOM. For this

1 Neurons whose prototypes are located at positions without data points.

Chapter 4. Regional Modeling 61

purpose, we first partition the input space using a single SOM network with Q prototypes,

and then perform clustering using the k-means algorithm (MACQUEEN, 1967) over the

prototypes of the trained SOM in order to find an optimal number Kopt (Kopt � Q) of

clusters of SOM prototypes. The optimal number of clusters can be found by using any

cluster validation technique, such as the Davies-Bouldin index (DAVIES; BOULDIN, 1979;

HALKIDI; BATISTAKIS; VAZIRGIANNIS, 2001). A given cluster of SOM prototypes

defines a region in the input space formed by merging the Voronoi cells of the prototypes

belonging to that cluster. Finally, for each individual cluster of SOM prototypes, we build

a regional regression model using only the data vectors mapped to that specific cluster.

It is worth mentioning that, by using Kopt regional models instead of Q local

models, the RM approach is much more parsimonious than the local modeling approach,

in the sense that few models are required to describe the dynamics of the system of

interest. A second advantage is that the user does not need to worry a great deal about

the specification of the number Q of SOM prototypes, since the subsequent application of

k-means clustering to the SOM prototypes makes the number of regional models relatively

decoupled from large variations in the value of Q. In other words, large variations in Q

do not produce large variations in Kopt, a property that confer considerable robustness

to the RM approach. A third advantage of the RM approach over local modeling is that

regional models can be constructed even if dead/interpolating neurons occur after SOM

training. This is possible because any of the existing dead/interpolating neurons will belong

eventually to one of the Kopt regions available. Finally, Vesanto and Alhoniemi (2000)

concluded that a two-step clustering approach performs well when compared with direct

clustering of the data while reduce its computational time.

The remainder of the chapter is organized as follows. In Section 4.1, a regional

modeling framework based on the SOM is described and its application to a synthetic plant

is illustrated (Section 4.1.1). In Section 4.2 we present the fundamentals of M -estimation

and its use in the context of regional modeling. In Section 4.3, we discuss related works.

Closing remarks are given in Section 4.4.

4.1 Regional modeling by clustering of the SOM

Regional Modeling (RM) (SOUZA JUNIOR; BARRETO; CORONA, 2015) is an

alternative approach to the more traditional local and global modeling techniques. A single

global model may not be able to capture the dynamics of regions with high curvatures,

which might result in smoothing of the details. On the one hand, local models are good

for capturing such details of the system dynamics. On the other hand, it is relatively

difficult to specify an adequate number of local models. A number that is too small may

cause under-identification, with too few submodels to represent important regions of the

Chapter 4. Regional Modeling 62

system dynamics. A large number causes over-identification, with submodels attached to

unimportant regions of the system dynamics. The RM approach then comes out as an

alternative to finding a tradeoff between the standard global and local approaches.

In order to build regional models through clustering of the SOM, we follow the

procedure introduced by Vesanto and Alhoniemi (2000). Thus, the first step requires

training the SOM as usual, with Q prototypes, using the available training input examples

X .

Once trained, for each SOM prototype wi, i = 1, . . . , Q, we collect the input

samples associated to the ith prototype as:

Vi = {x(n) ∈ X | ‖x(n)−wi‖ ≤ ‖x(n)−wj‖,∀j = 1, . . . , Q}. (4.1)

The subset Vi denotes the input training samples whose closest SOM prototype is

wi. In traditional local modeling, the elements of Vi and their corresponding outputs are

used for building linear models. In regional modeling, an additional step is needed, and it

corresponds here to the clustering of the SOM prototypes.

Clustering approaches can be divided into hierarchical and partitional methods.

Although one may use any clustering algorithm, in this thesis, we chose partitional methods

since they do not depend on previously found clusters. More specifically, we use the k-means

algorithm as the clustering method in combination with the Davies-Bouldin (DB) index

in order to select the optimal number of clusters (see Appendix A for details on the DB

index). By doing this, we follow previous experiments by Vesanto and Alhoniemi (2000).

As usual for clustering validity indices, the Davies-Bouldin criterion minimizes the

within-cluster distance and maximizes the inter-cluster distance, additionally indicating

low values for spherical clusters (VESANTO; ALHONIEMI, 2000). Since the k-means also

tries to find spherical clusters, the DB index is a suitable choice for evaluating k-means

partitioning. In such an approach, we compute K = 1, 2, . . . ,Kmax partitioning of the

SOM prototypes and the corresponding DB index values as well. The optimal partitioning,

represented by Kopt partitions, is then chosen by the following search procedure:

Kopt = argmin
K=1,...,Kmax

DB(W ,PK), (4.2)

where PK = {pj}Kj=1, pj ∈ Rnu+ny , denotes the set of K prototypes of the k-means

algorithm, while W = {wi}Qi=1 is the set of SOM prototypes.

After Kopt is selected, the r-th cluster of SOM prototypes Ar is comprised of all

SOM prototypes wi that are mapped onto the prototype pr of the k-means, which is

Ar = {wi | ‖wi − pr‖ ≤ ‖wi − pj‖,∀j = 1, . . . , Kopt}. (4.3)

We are interested in partitioning the input samples X , since we may use them

to fit regression models. For this, we collect the data samples associated with the SOM

Chapter 4. Regional Modeling 63

prototypes of the r-th cluster in order to create the r-th data partitioning Xr given by

Xr =
⋃

wi∈Ar

Vi, r = 1, . . . , Kopt. (4.4)

In words, each element of X is mapped into a region Xr, comprised of those input

vectors whose closest SOM prototype belongs to Ar. Finally, once the original dataset

has been divided into Kopt subsets (one per region), the last step consists in building Kopt

regional regression models using Xr, r = 1, . . . , Kopt.

Assume that we arrange the Nr elements of Xr along the rows of a matrix Xr.

Thus, for regional linear models, one can simply estimate the coefficient vector βr of the

r-th regional model using the ordinary least-squares method as follows:

β̂r = (XT
r Xr)

−1
Xryr, r = 1, ..., Kopt, (4.5)

where yr ∈ RNr is a vector of Nr observed output values associated with the Nr row-vectors

in Xr. Henceforth, we denote by Regional Linear Model (RLM) a regional model built

using Kopt linear models.

For an out-of-sample input vector x ∈ Rnu+ny , the test procedure consists in

computing the predicted output value using the suitable regional model. For RLMs, the

output value is computed as

ŷ = β̂Tr∗x, (4.6)

where r∗ is the index of the winning regional model.

Assuming we are using the k-means algorithm as the clustering method, the index

of the winning regional model, r∗, can be selected as

r∗ = argmin
r=1,...,Kopt

‖x− pr‖, (4.7)

where pr is the r-th prototype of the k-means algorithm. An alternative way of determining

the winning region and consequently the wining model is:

1. Find the closest SOM prototype to x:

i∗ = argmin
i=1,...,Q

‖x−wi‖. (4.8)

2. Find the closest k-means prototype to wi∗ :

r∗ = argmin
r=1,...,Kopt

‖wi∗ − pr.‖ (4.9)

Selecting the winning region using Eq. (4.7) or Eqs. (4.8) and (4.9) produces results

that are only slightly different. Based on that, we used Eq. (4.7) in the experiments of this

thesis since it is faster and eliminates the need to keep the SOM prototypes.

Chapter 4. Regional Modeling 64

It is worth emphasizing that regional modeling does not define which learn-

ing/regression model one may use over the input space regions. We have shown here

how to fit linear models, but regional modeling is not limited to them. If we choose to

build nonlinear regional models, all that is required is to fit the chosen learning model

using the input vectors in Xr and the corresponding target values in Yr, for r = 1, . . . , Kopt.

Fast models are preferred, and precautions may be taken in order to not produce over-

parametrized nonlinear models, since the amount of data in each region can be small. Good

candidate models are the ELM and the MLM models, where overfitting can be controlled

by constraining the number of hidden units and reference points, respectively, or in the light

of regularization theory. In addition, ELM and MLM have fast training and have not been

comprehensively evaluated for system identification tasks, where, for example, oversampled

systems may cause matrix ill-conditioning problems. We use the term Regional Extreme

Learning Machines (RELM) and Regional Minimal Learning Machines (RMLM) to denote

regional models comprised of ELM networks and MLMs respectively. The regional models

are able to deal with multiple-input multiple-output (MIMO) systems since the regression

models handle multiple outputs.

The rationale of using a nonlinear model over regions is because each region encom-

passes a larger portion of the input space than a purely local model. Thus, nonlinearities

may be present. If this is the case, a slightly nonlinear model may be a better choice.

4.1.1 Illustrative example

In this section we illustrate the performance of regional linear models on the

synthetic plant used throughout the thesis.

Figure 17a shows the SOM prototypes and the corresponding Voronoi cells over the

data in the input space. Data samples are depicted with red dots, and SOM prototypes

are denoted by blue circles. The rule of thumb of Q = 5
√
N (VESANTO et al., 2000) was

used in the experiment, i.e., the number of SOM prototypes equals five times the square

root of the number of training points. In this example, N = 699 and Q = 133. Figure 17a

corresponds to the first step for building regional models. After that, we must apply vector

quantization of the SOM prototypes using the k-means algorithm. This is illustrated in

Figure 17b, where the optimal number of clusters was found by the DB index (Kopt = 11).

In addition, Figure 17c shows the regions in the input space, i.e., the data points used to

build 11 independent linear regression models. As one may observe, in the conventional

local approach, Q models would be built, while the RM method delivers 11 models.

In order to evaluate sensitivity to different initialization settings of regional linear

models, we show, in Figure 18, performance results obtained over 10 independent runs.

Figure 18a reports the RMSE performance on the training and test stages for the one-step-

ahead prediction and simulation cases. One may observe that the simulation performances

Chapter 4. Regional Modeling 65

−2 −1 0 1 2

−1

−0.5

0

0.5

1

u(n)

y
(n

)

(a) Data (in red) and SOM prototypes (in blue)

−2 −1 0 1 2

−1

−0.5

0

0.5

1

u(n)

y
(n

)

(b) Clusters centers found by k-means (in black)

−2 −1 0 1 2

−1

−0.5

0

0.5

1

u(n)

y
(n

)

1

2

3

4

5

6

7

8

9

10

11

(c) Eleven regions

Figure 17: Synthetic example: steps for the partitioning of the input space via regional
modeling.

are virtually identical to the one-step-ahead prediction ones. Moreover, the out-of-sample

performances track the in-sample ones, with out-of-sample error values slightly higher

than the corresponding in-sample ones. By contrasting Figures 18a and 18b, the worst

performances are achieved when the clustering process renders a small number of regions,

Kopt = 3. In these cases (repetitions 4 and 7), three linear models can not accurately

approximate the highly nonlinear dynamics presented by the synthetic example. With

regard to the memory orders, the terms nu and ny are correctly reconstructed for all

repetitions (Figure 18c), i.e., n̂u = 1 and n̂y = 1.

Estimates for the static and dynamic behaviors of the synthetic plant are reported

in Figures 19a and 19b, respectively. This correspond to the best case scenario, i.e., the

performances obtained by the model which reported the smallest RMSE value for the

out-of-sample simulation case (Eout−sim = 0.11). From Figure 19a, one may observe that

the static behavior is well reconstructed with 11 linear models. Regarding the dynamic

case, the estimates ŷ were obtained via free-run simulation of the RLM, and Figure 19b

shows that the system dynamics was well approximated.

Chapter 4. Regional Modeling 66

1 2 3 4 5 6 7 8 9 10
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

repetition

R
M

S
E

Ein
Eout
Ein−sim
Eout−sim

(a) RLM accuracies

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11

12

repetition

K
op
t

(b) Number of regions, Kopt

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

repetition

n̂
y
,
n̂
u

input delay
output delay

(c) Delays

Figure 18: Synthetic example: RLM results.

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

u

y

True system
RLM

(a) Static behavior

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

y

ŷ

(b) Dynamic behavior (Eout−sim = 0.11)

Figure 19: Synthetic example: RLM estimates.

4.2 Outlier Robust Regional Models

An important feature of the ordinary least-squares approximate solution is that it

assigns the same importance to all error samples, i.e., all errors contribute the same way

to the final solution. A common approach to handle this problem consists in removing

outliers from data and then trying the usual least-squares (LS) fit. A more principled

approach, known as robust regression, uses estimation methods that are not sensitive to

outliers as the LS method.

Huber (1964) introduced the concept of M -estimation, where M stands for “maxi-

mum likelihood” type, and where robustness is achieved by minimizing a function other

than the sum of the squared errors. Based on Huber’s theory, a general M -estimator

applied to the r-th RLM model minimizes the following objective function:

J(βr) =
∑

x(n)∈Xr

ρ(y(n)− βTr x(n)) =
∑

x(n)∈Xr

ρ(er(n)), (4.10)

where the function ρ(·) computes the contribution of each error er(n) = y(n)− βTr x(n) to

the objective function and βr is the parameter vector associated with the r-th regional

Chapter 4. Regional Modeling 67

linear model. Reasonable choices for the function ρ(·) should possess the following proper-

ties (FOX; WEISBERG, 2010): (i) ρ(er(n)) ≥ 0; (ii) ρ(0) = 0; (iii) ρ(er(n)) = ρ(−er(n));

and (iv) ρ(er(n)) ≥ ρ(er(n
′)), for |er(n)| > |er(n′)|. The LS estimator is a particular

M -estimator, achieved when ρ(er(n)) = e2r(n).

Parameter estimation is defined by the estimating equation which is a weighted

function of the objective function derivative. Let ψ to be the derivative of ρ. Differentiating

ρ with respect to the parameter vector βr, we have

∑

x(n)∈Xr

ψ(y(n)− βTr x(n))x(n)T = 0, (4.11)

where 0 is a (nu + ny)-dimensional row vector of zeros. Then, defining the weight function

γ(er(n)) = ψ(er(n))/er(n), and let γr(n) = γ(er(n)), the estimating equations are given by

∑

x(n)∈Xr

γr(n)er(n)x(n)T = 0. (4.12)

Solving the estimating equations corresponds to solving a weighted least-squares

problem, thus minimizing
∑
γ2r (n)e2r(n). It is worth noting, however, that the weights

depend on the residuals, which in turn depend upon the estimated coefficients, and the

estimated coefficients depend upon the weights. As a consequence, a closed-form solution

for the vector βr is not possible. Thus, an iterative estimation method called iteratively

re-weighted least-squares (IRLS) (FOX; WEISBERG, 2010) is commonly used. The steps

of the IRLS algorithm in the context of training the RLM model are described next.

IRLS Algorithm for RLM Training

B Step 1 - Provide an initial estimate β̂
(0)
r using the ordinary LS approximate solution as

in Eq. (4.6).

B Step 2 - At each iteration j of the IRLS algorithm, collect the residuals from the

previous iteration er(n)(j−1) for all input vectors x(n) ∈ Xr and then compute their corre-

sponding weights γr(n)(j−1) = γ(er(n)(j−1)).

B Step 3 - Solve for the new weighted-least-squares estimate of β
(j)
r :

β̂(j)
r =

[
XT
r B(j−1)Xr

]−1
XT
r B(j−1)yr, (4.13)

where B(j−1) = diag{γr(1)(j−1), γr(2)(j−1), . . . , γr(Nr)
(j−1)} is an Nr ×Nr weight matrix,

and Nr is the number of elements of Xr.

Repeat Steps 2 and 3 until either the convergence of the estimated coefficient vector

β̂
(j)
r or j reaches its maximum allowed value jmax.

Chapter 4. Regional Modeling 68

Several weighting functions for the M -estimators can be chosen, such as the Huber’s

function (HUBER, 1964):

γ(er(n)) =

{
ke
|er(n)| , if |er(n)| > ke

1, otherwise.
(4.14)

where the parameter ke is a threshold value, above which the residual is penalized inversely

proportional to the absolute value of its magnitude. According to Huber’s function in

Eq. (4.14), once the condition |er(n)| > ke is met, the higher the absolute value of the

residual |er(n)|, the smaller the values of the weight γ(er(n)).

Smaller values of ke produce more resistance to outliers, but at the expense of

lower efficiency when the errors are normally distributed. In particular, ke = 1.345s for the

Huber function, where s is a robust estimate of the standard deviation of the residuals. A

usual approach is to take s = MAR/0.6745, where MAR is the median absolute residual.

For details on M -estimation and its practical aspects, we recommend the text by Barros

(2013).

Despite the fact that the theoretic development just presented has been focused on

the RLM model, it is straightforward to apply it to any learning method which includes

linear models in its formulation, such as the MLM and the ELM models.

4.3 Related works

The key aspect of regional modeling is to fit a learning model over partitions of the

input space larger than those provided by purely local models. This can be accomplished by

combining/merging models (KALHOR; ARAABI; LUCAS, 2011), or clustering (FERRARI-

TRECATE et al., 2003; WANG; SYRMOS, 2007; ABONYI et al., 2003). Abonyi et al.

(2003) proposed a local approach based on the Delaunay Tessellation of the codebook of

Self-Organizing Maps to obtain non-overlapping operating regimes of dynamic systems.

Applying Delaunay Tessellation is completely different from clustering SOM prototypes. In

fact, even more input space partitions than SOM prototypes are delivered after performing

Delaunay Tessellation. Wang and Syrmos (2007) and Ferrari-Trecate et al. (2003) discussed

the application of clustering to nonlinear systems, in an attempt to model different system

regimes. Their works share the characteristic of applying the clustering directly to the

data samples. In Wang and Syrmos (2007), a hierarchical clustering approach is used,

whereas Ferrari-Trecate et al. (2003) proposes a modified k-means algorithm as clustering

method. Thus, Regional Modeling distinguishes from previous attempts by the clustering

algorithm, and the two-stages clustering procedure, i.e., application of clustering over SOM

prototypes instead of over data samples directly.

Some local modeling techniques allow the control of the granularity of the input

space partitioning. For instance, the parameter k in k-NN models somehow relates to

Chapter 4. Regional Modeling 69

partitioning granularity, such that a large number of neighbors k may cover a large input

space area. However, a fixed k does not take into account the fact that data points can be

non-uniformly spaced. Thus, a large k may not be adequate in the sense that the local

models can be corrupted by including far away data points. In opposite, methods based

on clustering of local models try to combine models which are similar, and keep separated

models that are not.

4.4 Closing remarks

In this chapter we have introduced the regional modeling framework, a novel

approach for nonlinear dynamic system identification based on the SOM. The proposed

methodology led to the design of regional models, which stands in between the global and

local models. Regional modeling extends the two-level clustering approach by Vesanto and

Alhoniemi (2000) to regression problem, particularly, to system identification. The first

step in regional modeling requires the partition of the input space using the SOM, followed

by clustering on the prototypes of the trained SOM. In the second step, regional regression

models are built over the clusters (i.e. over the regions) of SOM prototypes. Here, the

optimal number of clusters of SOM prototypes was searched for using the Davies-Bouldin

validity index.

Using the proposed framework, it is possible to build regional linear and nonlinear

regression models. For the linear case, we used ARX models whose parameters were

estimated using the ordinary least-squares method. Regional NARX models can be built

using, for example, the ELM network. Additionally, we extended the regional modeling

framework to handle data with outliers by developing a robust variant of the proposed

regional models through the use of M -estimation. It is worth noting that the regional

paradigm is also inherently able to operate on multidimensional responses (multiple input

multiple output systems), since it just depends on the regression model to be used in the

regional approach.

70

Chapter 5

Experiments

In this chapter, we carry out a performance comparison with the models studied in

this thesis. The analysis is conducted over four dynamic systems, two of which correspond to

synthetic systems, while the others consist of datasets of real-world plants. The experiments

follow a general methodology, which we use throughout the chapter. The analysis is applied

to i) global models (MLM, ELM, RBF, ARX/LS); ii) local models (kNN, NNi, ekNN,

LLM, kSOM); and iii) regional model (RLM) for direct system identification. For the task,

we use four benchmark plants, including simulated and real-world systems. Section 5.1

gives a detailed description of the experimental setup and methodology. Sections 5.2, 5.3,

5.4 describe the dynamic systems used in the experiments and report the corresponding

performance results.

5.1 Methodology

As usual, the data are split into estimation and validation sets. Using the estimation

samples, a 10-fold cross-validation step is performed in order to select the best models’

hyperparameters, i.e., automatic model selection. This step aims to optimize the models’

hyperparameters as well as the memory order terms nu and ny.

The only hyperparameter of the Minimal Learning Machine, the number of reference

points M , is selected through grid-search from a range of 10%− 90% of the number of

learning/estimation points, with a step size of 5%. The centers of the radial basis functions

in RBF networks are selected through k-means clustering, and the number of radial

basis functions is optimized from the range {10, 20, . . . , 100}. For RBF networks, we use

Gaussian basis functions, whose spread values are also optimized via exhaustive search

in {0.001, 0.01, 0.1, 1}. The optimal number of hidden units in ELM networks is selected

from the range {10%, 20%, . . . , 90%} of the number of estimation samples.

Chapter 5. Experiments 71

The regional approach has been trained using the default settings from the SOM

Matlab toolbox (VESANTO et al., 2000), with the number of prototypes Q is in the

order of 5
√
N , where N corresponds to the number of training samples. By using the

default settings, we expect that if the regional modeling paradigm provides an acceptable

performance using its basic configuration, then this property is a good indicator for use of

the method. In addition, the regional approach uses Kmax ≈
√
Q.

The local linear regression approaches do not have hyperparameters to optimize,

except for the kNN whose value k is selected from {1%, 5%, 10%} of the estimation points.

As originally proposed, for the SOM-based local models (kSOM and LLM), we use the

sequential training of a one-dimensional SOM with the same amount of prototypes used

for the regional approaches, i.e. Q ≈ 5
√
N . The initial and final learning rates are set to

α0 = 0.1 and αT = 0.01. The initial and final values of the neighborhood function radius

are σ0 = 10 and σT = 0.01. The learning rate α′ is set to 0.01 and the number of epochs

is 100. For the kSOM model, we also perform an exhaustive search on the parameter k

ranging from 5 to 25 (step size of 5).

Regarding the memory order terms, for the synthetic plants, we carry out grid-

search over the range {1, 2, 3}, and then we select the combination of nu, ny that minimizes

the mean squared error over the 10-fold cross-validation step. For the real-world plants,

we select the memory orders from {1, 2, 3, 4}.

For model validation, we use the root mean square error (RMSE) between output

estimates and observations from a validation set in both one-step-ahead predictions and

free-run simulation scenarios, and residual analysis. The residual analysis consists of the

correlation tests proposed by Billings and Voon (1986), which were described in Chapter 1.

5.2 Example: Narendra’s plant

In this section we describe a simulated system first introduced by Narendra and

Parthasarathy (1990). The example was originally proposed to demonstrate the use of

neural networks to model dynamic systems, and its equation is given by

y(n+ 1) =
y(n)y(n− 1)[y(n) + 2.5]

1 + y2(n) + y2(n− 1)
+ u(n) + ε(n), (5.1)

where u(n) and y(n) denote the input and output respectively, and ε(n) ∼ N (0, 0.01).

In this example, the memory order terms are nu = 1 and ny = 2. For the identification

process, we used a random input signal uniformly distributed in the interval [−2, 2], i.e.,

the estimation dataset was comprised of samples using u(n) ∈ U [−2, 2]. A dataset of 300

samples was generated to train the models. The model validation step was carried out

over a time-series of 100 samples, with u(n) = sin (2πn/25). Figures 20a and 20b show the

input and output time-series used for estimation, while Figures 20c and 20d report the

Chapter 5. Experiments 72

input and output validation series. A similar experimental setup was previously designed

by Verdult (2002).

0 50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n

u
(n

)

(a) Input signal used for estimation

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

n

y
(n

)
(b) Output signal used for estimation

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n

u
(n

)

(c) Input signal used for validation

0 20 40 60 80 100
−2

−1

0

1

2

3

4

n

y
(n

)

(d) Output signal used for validation

Figure 20: Narendra’s plant: time-series.

We report in Table 1 the performances on the validation set. It includes the

average RMSE values in the one-step-ahead predictions and free-run simulations over 10

independent runs. The smallest RMSE averages are in boldface.

From Table 1, the best performing model is the MLM for both prediction and

simulation cases. Also, the MLM presented the smallest variance (of those that vary).

Contrasting ELM and RBF models, the ELM achieved better results on simulation. Among

the local approaches, the NN method provides the best results for both simulation and

prediction. For comparison, RLM presents similar results to what is presented by the best

performing local approach. Based on the RMSE for the simulation case, the ARX/LS does

not capture the system dynamics accurately. In fact, ARX/LS represents the worst model

for both prediction and simulation.

For a selection of models (MLM, ELM, ARX and RLM), we illustrate in Figure 21

the models simulations on the validation set. The red dots represent the target outputs

Chapter 5. Experiments 73

Table 1: Averages on validation performance (RMSE): Narendra’s plant.

Models Prediction Simulation
mean std mean std

MLM 1.84e-01 4.18e-03 2.71e-01 8.01e-03
ELM 2.86e-01 1.10e-01 3.43e-01 8.05e-02
RBF 2.58e-01 8.83e-02 5.50e-01 5.21e-01
ARX 6.31e-01 - 1.43e+00 -
RLM 2.34e-01 3.83e-02 4.20e-01 1.34e-01
LLM 3.64e-01 5.72e-02 6.19e-01 1.31e-01
kSOM 2.25e-01 1.66e-02 4.41e-01 7.82e-02
kNN 3.19e-01 - 6.25e-01 -
NN 2.13e-01 - 4.22e-01 -
NNi 2.92e-01 - 5.20e-01 -

ekNN 2.02e-01 - 4.27e-01 -

0 20 40 60 80 100
−2

−1

0

1

2

3

4

n

y

Observations
MLM (RMSE:2.56e−01)

(a) MLM (n̂u = 1, n̂y = 2)

0 20 40 60 80 100
−2

−1

0

1

2

3

4

n

y

Observations
ELM (RMSE:2.22e−01)

(b) ELM (n̂u = 1, n̂y = 2)

0 20 40 60 80 100
−2

−1

0

1

2

3

4

n

y

Observations
ARX (RMSE:1.46e+00)

(c) ARX (n̂u = 3, n̂y = 3)

0 20 40 60 80 100
−2

−1

0

1

2

3

4

n

y

Observations
RLM (RMSE:2.59e−01)

(d) RLM (n̂u = 1, n̂y = 2)

Figure 21: Narendra’s plant: simulations on the validation set.

(observations), and the black lines denote the approximation of the models. The depicted

simulations correspond to the best case (smallest RMSE) performance of each model.

The MLM does not to accurately approximate the observations with high values, while

Chapter 5. Experiments 74

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
ξ
(τ
)

(a) ρξξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
ξ
(τ
)

(b) ρuξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
(τ
)

(c) ρu2ξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
2
(τ
)

(d) ρu2ξ2

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
(ξ
u
)(
τ
)

(e) ρξ(ξu)

Figure 22: Narendra’s plant: residual analysis for the MLM.

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
ξ
(τ
)

(a) ρξξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
ξ
(τ
)

(b) ρuξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
(τ
)

(c) ρu2ξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
2
(τ
)

(d) ρu2ξ2

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
(ξ
u
)(
τ
)

(e) ρξ(ξu)

Figure 23: Narendra’s plant: residual analysis for the ELM.

the RLM and ELM seem to do it. With regard to the best case, the ELM achieved the

smallest RMSE value (2.22e−01). Clearly, the ARX/LS model does not capture the system

dynamics. It just reproduces the sinusoidal behavior of the input signal. Considering the

Chapter 5. Experiments 75

correct memory order, the MLM, RLM and ELM models recovered the correct values of

nu and ny (i.e., nu = 1 and ny = 2), while the ARX/LS presented a tendency towards high

order terms.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−2

0

2

4

6

8

10

12

u

y

True system
MLM

(a) MLM

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

0

5

10

15

20

25

30

35

40

u
y

True system
ELM

(b) ELM

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−2

0

2

4

6

8

10

12

u

y

True system
ARX

(c) ARX

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−2

0

2

4

6

8

10

12

u

y

True system
RLM

(d) RLM

Figure 24: Narendra’s plant: static behavior.

Figures 22 and 23 show the correlation tests with a confidence interval of 95%

for the MLM and ELM, respectively. The MLM and ELM were the two best performing

models. The correlation tests were applied to the best results (smallest RMSE) achieved

with the MLM and ELM over the 10 independent repetitions. As one may observe, overall,

the MLM and ELM passed all the statistical tests.

Figure 24 illustrates the static behavior of the plant and the approximation provided

by the models — MLM, ELM, ARX and RLM — for a constant input signal ū in the

interval [−2, 2]. The MLM, ELM and RLM models accurately approximate the static

behavior in the range [−2, 0.5]. For values of ū higher than 0.5, the approximation becomes

rather poor. Interestingly, the MLM is the model that best approximates ȳ for high values

of ū, while the ELM network achieves extremely poor performance in such a range. As

well, the ARX model does not approximate the static behavior, even for small values of ū.

Chapter 5. Experiments 76

5.3 Example: pH dynamics

This section presents performance evaluation over a chemical process system. The

system under study corresponds to the dynamic response of pH in a continuous stirred

tank reactor (CSTR). The CSTR has two input streams, one containing sodium hydroxide

and the other acetic acid. A dynamic model for the pH in the tank was proposed by

McAvoy, Hsu and Lowenthal (1972). From material balances on Na+ and total acetate

HAC +AC− and assuming that acid-base equilibria and electroneutrality relationships

hold, the acetate balance, sodium ion balance, HAC equilibrium, water equilibrium and

electroneutrality can be written respectively as:

V ζ̇ = F1C1 − (F1 + F2)ζ

V η̇ = F2C2 − (F1 + F2)η

[AC−][H+]

[HAC]
= Ka

[H+][OH−] = Kw

η + [H+] = [OH−] + [AC−]

The parameters for the CSTR used in this thesis are given by Bhat and McAvoy

(1990). A training dataset was developed by forcing the F2 stream with a 2% PRBS signal

superimposed upon its steady state value (F2 = 515). The F2 and pH response used for

model estimation are shown in Figure 25. A full set of 800 samples was generated and 70%

of the samples were used for estimation and the rest for validation/test.

100 200 300 400 500
505

510

515

520

525

n

u
(n

)

(a) Rate of NaOH (F2)

100 200 300 400 500
6.5

7

7.5

8

8.5

9

9.5

10

10.5

n

y
(n

)

(b) pH values

Figure 25: pH dynamics: estimation/training data.

Table 2 reports the average performance (RMSE) in terms of prediction (one-

step-ahead) and simulation over 10 independent runs. The best performing model is

MLM, followed by the NNi model. Also, the MLM presents the most stable performance,

Chapter 5. Experiments 77

represented by the smallest variance. This is an interesting result, since MLM is based on

a random selection of reference points. It can be explained by a selection of a large number

of reference points M during the cross-validation process. In fact, for all repetitions, M

was selected equals either 0.8N or 0.9N , where N denotes the number of samples used for

estimation. The LLM and kSOM models achieve results only slightly better than what is

obtained with an linear global model (ARX/LS). It means that the use of multiple linear

models have not been beneficial. The regional linear model approach achieved results which

are comparable to what is provided by the LLR methods (except ekNN) and RBF network.

In opposite, the ELM network “explodes” when used in the simulation mode. The reason

for why the ELM ”explodes” relies on two issues: normalization and regularization. As a

solution, normalizing the input regression vectors makes them lie in a more suitable range

of values, considering the domain of the nonlinear activation function in the hidden layer.

However, after normalization, the matrix comprised of the activation values of the hidden

layers can still be low-rank. It poses numerical problems for computing the pseudo-inverse

of such a matrix. One alternative to address the problem is through ridge regression

(regularization). For instance, if we normalize the data comprised of the regression vectors

{x(n)} to have zero-mean and unit-variance, and apply ridge regression with regularization

coefficient equal to λ = 10−4, the RMSE value provided by the ELM network for the

simulation case becomes 0.30 (much smaller than 1.63e+09). Neumann and Steil (2013)

and Horata, Chiewchanwattana and Sunat (2013) have already warned for such numerical

problems in ELMs.

Table 2: Averages on validation performance (RMSE): pH dynamics.

Models Prediction Simulation
mean std mean std

MLM 1.17e-01 4.64e-03 1.16e-01 5.13e-03
ELM 5.83e-01 1.69e-01 1.63e+09 2.83e+09
RBF 1.79e-01 2.36e-02 2.95e-01 1.75e-01
kSOM 3.45e-01 6.10e-02 4.03e-01 8.71e-02
LLM 3.84e-01 1.99e-02 4.08e-01 2.68e-02
RLM 2.74e-01 5.34e-02 2.91e-01 7.01e-02
kNN 2.30e-01 - 2.42e-01 -
ARX 4.68e-01 - 5.75e-01 -
NN 2.44e-01 - 2.72e-01 -
NNi 2.17e-01 - 2.36e-01 -

ekNN 2.00e+09 - - -

In order to visually assess performance in terms of the approximation provided

by the models, we show in Figure 26 the best-case performances achieved by MLM, NNi,

ARX/LS and RLM models on the validation set. We observe that the MLM approximates

the system dynamics quite accurately. The NNi model also reconstructs mostly the system

dynamics, with approximation errors mainly around samples 1 and 140. In comparison to

Chapter 5. Experiments 78

MLM and NNi, the ARX/LS model performs poorly. Even though the NN model achieved

smaller orders than the RLM, the best-case RLM error is slightly smaller than what is

achieved by the NN method.

0 50 100 150 200 250
5

6

7

8

9

10

11

12

n

y

Observations
MLM (RMSE:1.08e−01)

(a) MLM (n̂u = 2, n̂y = 3)

0 50 100 150 200 250
5

6

7

8

9

10

11

12

n
y

Observations
NNi (RMSE:2.36e−01)

(b) NNi (n̂u = 1, n̂y = 1)

0 50 100 150 200 250
5

6

7

8

9

10

11

12

n

y

Observations
ARX (RMSE:5.75e−01)

(c) ARX (n̂u = 3, n̂y = 3)

0 50 100 150 200 250
5

6

7

8

9

10

11

12

n

y

Observations
RLM (RMSE:2.09e−01)

(d) RLM (n̂u = 2, n̂y = 2)

Figure 26: pH dynamics: simulations on the validation set.

Figure 27 shows the residual analysis for the MLM model with a confidence interval

of 95% (represented by the red lines). Overall, the MLM passed the correlation tests.

Likewise, Figure 28 illustrates the residual analysis for the RLM method. Again, the

correlation tests were mostly satisfied. The tests were applied to the best performing case

of each model, i.e., from the repetition that reported the smallest RMSE on simulation.

5.4 Identification of a hydraulic actuator

This plant consists of input and output time series of a hydraulic actuator of a

mechanical crane. The structure has four actuators: one for the rotation of the whole

structure, one to move the arm, one to move the forearm and one to move a telescopic

extension of the forearm. This plant was chosen because it has a long arm and a long

Chapter 5. Experiments 79

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
ξ
(τ
)

(a) ρξξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
ξ
(τ
)

(b) ρuξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
(τ
)

(c) ρu2ξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
2
(τ
)

(d) ρu2ξ2

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
(ξ
u
)(
τ
)

(e) ρξ(ξu)

Figure 27: pH dynamics: residual analysis for the MLM.

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
ξ
(τ
)

(a) ρξξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
ξ
(τ
)

(b) ρuξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
(τ
)

(c) ρu2ξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
2
(τ
)

(d) ρu2ξ2

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
(ξ
u
)(
τ
)

(e) ρξ(ξu)

Figure 28: pH dynamics: residual analysis for the RLM.

forearm with considerable flexibility on mechanic structure, making the movement of the

whole crane oscillative and hard to control.

The position of the arm is controlled by a hydraulic actuator. The oil pressure

Chapter 5. Experiments 80

in the actuator is controlled by the valve opening through which the oil flows into the

actuator. The position of the robot arm is then a function of the oil pressure. Figure 29

shows measured values of the valve position (input time series, {u(t)}) and the oil pressure

(output time series, {y(t)}), which are input and output signals, respectively. As seen

in the oil pressure, it contains a very oscillative settling period after a step change of

the valve opening. These oscillations are caused by mechanical resonances in the robot

arm (SJÖBERG et al., 1995).

200 400 600 800 1000

−1

−0.5

0

0.5

1

n

u
(n

)

(a) Measured values of valve position.

200 400 600 800 1000

−3

−2

−1

0

1

2

3

n

y
(n

)

(b) Measured values of the oil pressure.

Figure 29: Hydraulic actuator plant.

The dataset related to the hydraulic actuator plant is comprised of 1024 input-

output samples and it is available at http://www.esat.kuleuven.be/sista/daisy/. Half

of the time series was used for estimation and the rest for validation. Following the previous

methodology for model selection and with the lag terms ny and nu ∈ {1, 2, 3, 4}, Table 3

shows the averages and standard deviations of RMSE values drawn from 10 independent

runs of one-step-ahead predictions and free simulation on the validation set.

On the basis of Table 3, we observe that the prediction results are quite similar for

all the methods, except for ekNN and LLM. It corresponds to the classical situation in

which even wrong (not accurate) models look very accurate based on one-step predictions.

This model inadequacy is represented by a high RMS error in simulation. Among the

evaluated methods, MLM, NN and NNi are the best performing ones. ELM and RBF

networks performs quite poorly, with results that are much worse than what achieved

by a global linear model (ARX/LS) — on the simulation case. Also, the MLM presents

a stable performance, represented by a small variance in comparison to ELM and RBF

models. This is an interesting result, since MLM is based on a random selection of reference

points. It can be explained by a large number of reference points M , selected during the

cross-validation process. For all the runs, M was selected equals 0.9N . Figure 30 shows

that, in fact, the cross-validation error decreases with the number of reference points. The

multiple lines in Figure 30 denote the 10 independent runs.

Chapter 5. Experiments 81

Table 3: Averages on validation performance (RMSE): Actuator.

Models Prediction Simulation
mean std mean std

MLM 1.01e-01 1.26e-03 5.36e-01 9.72e-02
ELM 1.55e-01 2.29e-02 1.40e+01 2.35e+01
RBF 1.05e-01 1.65e-03 1.14e+02 1.41e+02
kSOM 1.40e-01 2.39e-02 3.54e+07 1.12e+08
LLM 2.45e-01 1.37e-02 1.57e+00 8.57e-02
RLM 1.14e-01 1.96e-03 8.16e-01 8.56e-02
kNN 1.14e-01 - 9.66e-01 -
ARX 1.10e-01 - 9.93e-01 -
NN 1.10e-01 - 7.17e-01 -
NNi 1.06e-01 - 7.29e-01 -

ekNN 2.37e-01 - 1.41e+00 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.15

0.2

0.25

0.3

0.35

M/N

E
cv

Figure 30: Actuator plant: RMSE values on cross-validation per number of reference points.

It is important to understand which factors affected ELM and RBF models, and led

to an inaccurate performance. A first look may point to ill-conditioned matrices. For that,

we tried a Tikhonov regularized version of ELM (DENG; ZHENG; CHEN, 2009), which

consists in adding a small term λ to the diagonal of the matrix ZTZ in the LS solution for

the weights of the output layer. The regularized ELM achieves RMS error equal to 0.76,

with a regularization term λ = 10−4. Similar improvement through regularization can be

achieved for RBF networks as well.

Figure 31 illustrates the best-case simulation performances of the MLM, NN, ARX

and RLM models. As can be seen, the MLM model best reproduces the system dynamics

whereas the ARX/LS is rather inaccurate. The RLM performance stands in between MLM

and ARX ones, with many parts of the output time-series being poorly reconstructed.

With regard to the memory order, the MLM and ARX methods provided higher order

models than the NN and RLM.

Figures 32a-32e show the residual analysis for the MLM. The MLM passes the

Chapter 5. Experiments 82

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2

3

4

n

y

Observations
MLM (RMSE:4.38e−01)

(a) MLM (n̂u = 4, n̂y = 4)

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2

3

4

n

y

Observations
NN (RMSE:7.17e−01)

(b) NN (n̂u = 2, n̂y = 3)

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2

3

4

n

y

Observations
ARX (RMSE:9.93e−01)

(c) ARX (n̂u = 4, n̂y = 4)

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2

3

4

n

y

Observations
RLM (RMSE:6.97e−01)

(d) RLM (n̂u = 2, n̂y = 3)

Figure 31: Actuator plant: simulations on the validation set.

correlation tests mostly, except to autocorrelation (Figure 32a) with τ = 1. Figure 33

illustrates the residual analysis for the RLM model — the second best performing model,

considering the best case in simulation—, which, overall, passes the correlation tests as

well. Although, one may observe inadequacy in the autocorrelation function (ρξξ) and the

cross-correlation between u2 and ξ2 (ρu2ξ2), where the confidence interval of 95% is not

satisfied.

5.5 Identification of a heater with variable dissipation

The system to be identified in this section consists of a electric heater with variable

dissipation, proposed by Aguirre (2007). The variation is produced by connecting a fan

to the system. The input and output signals are the voltage applied to the heater and

the amplified output of a thermocouple, respectively. We are interested in modeling the

dynamics of the heater. The input consists a random signal, in which each random level

was kept constant for 10 seconds. The chosen sampling time was 1 seconds, but the signals

were downsampled with factor equal to 12, resulting in a sampling time of 12 seconds. The

Chapter 5. Experiments 83

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
ξ
(τ
)

(a) ρξξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
ξ
(τ
)

(b) ρuξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
(τ
)

(c) ρu2ξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
2
(τ
)

(d) ρu2ξ2

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
(ξ
u
)(
τ
)

(e) ρξ(ξu)

Figure 32: Hydraulic actuator: residual analysis for the MLM.

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
ξ
(τ
)

(a) ρξξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
ξ
(τ
)

(b) ρuξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
(τ
)

(c) ρu2ξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
2
(τ
)

(d) ρu2ξ2

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
(ξ
u
)(
τ
)

(e) ρξ(ξu)

Figure 33: Hydraulic actuator: residual analysis for the RLM.

signals used in the first 7500 seconds of the experiments were used for identification, while

the 7500 seconds subsequent were used for validation. The input and output time-series

collected from the whole experiment is illustrated in Figure 34. The dataset is available by

Chapter 5. Experiments 84

its proponent at http://www.cpdee.ufmg.br/~MACSIN/.

200 400 600 800 1000 1200

0.5

1

1.5

2

2.5

3

3.5

4

n

u
(n

)

(a) Input signal

200 400 600 800 1000 1200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

n

y
(n

)

(b) Output signal

Figure 34: Heater system: input and output time-series.

Table 4 reports the averages and standard deviations of RMSE values on the

validation set over 10 repetitions for prediction and simulation matters. The RBF network

achieved the smallest RMSE value on simulation. In fact, the results achieved by MLM,

ELM, RBF, RLM, NN, NNi and ekNN are similar. For the first time, the MLM was not

the best performing model neither in prediction nor in simulation. However, the MLM

performance did not degrade as much as kNN did in the simulation case, where it returned

the highest RMSE average. On prediction, both methods performed comparably.

Table 4: Averages on validation performance (RMSE): Heater.

Models Prediction Simulation
mean std mean std

MLM 2.32e-02 1.35e-03 3.50e-02 1.19e-03
ELM 1.14e-02 1.67e-04 3.16e-02 1.57e-03
RBF 1.14e-02 1.25e-04 3.11e-02 3.82e-04
kSOM 1.78e-02 3.69e-03 1.43e-01 1.05e-01
LLM 7.07e-02 3.18e-03 1.24e-01 1.48e-02
RLM 1.15e-02 1.53e-04 3.22e-02 1.90e-03
kNN 2.60e-02 - 2.03e-01 -
ARX 1.43e-02 - 8.23e-02 -
NN 1.19e-02 - 3.31e-02 -
NNi 1.20e-02 - 3.68e-02 -

ekNN 1.17e-02 - 3.54e-02 -

Figure 35 depicts the approximation of selected models (MLM, RBF, ARX and

RLM) in the simulation of the dynamic behavior of the heater system when excited using

the validation input signal. The plots correspond to the best cases achieved over ten

independent runs. As one may observe, the RBF and RLM presents indistinguishable

Chapter 5. Experiments 85

approximations. The MLM can not approximate the peak around sample n = 380. This is

the reason for MLM has achieved higher RMSE value than the RBF and RLM models.

The ARX/LS model does not capture the dynamics at the peaks and valleys of the output

time-series.

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

n

y

Observations
MLM (RMSE:3.32e−02)

(a) MLM (n̂u = 4, n̂y = 4)

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

n
y

Observations
RBF (RMSE:3.06e−02)

(b) RBF (n̂u = 2, n̂y = 3)

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

n

y

Observations
ARX (RMSE:8.25e−02)

(c) ARX (n̂u = 3, n̂y = 2)

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

n

y

Observations
RLM (RMSE:3.05e−02)

(d) RLM (n̂u = 1, n̂y = 3)

Figure 35: Heater: simulations on the validation set.

Figures 36 and 37 show the correlation tests on the residuals provided by the models

with smallest RMSE — the RBF and RLM models. As one may observe, the RBF model

does not pass the correlation tests in almost all tests. It represents that the RBF contains

unmodeled dynamics. The correlation tests results for the RLM are indistinguishable from

those reported for the RBF.

5.6 Closing remarks

This chapter reported the performance results of the two main proposals of this

thesis (MLM and RLM) and compared them against global and local standard methods in

the literature of system identification. The performance assessment was carried out over four

benchmarking datasets, corresponding to SISO systems. We were interested in the dynamic

Chapter 5. Experiments 86

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
ξ
(τ
)

(a) ρξξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
ξ
(τ
)

(b) ρuξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
(τ
)

(c) ρu2ξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
2
(τ
)

(d) ρu2ξ2

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
(ξ
u
)(
τ
)

(e) ρξ(ξu)

Figure 36: Heater: residual analysis for the RBF.

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
ξ
(τ
)

(a) ρξξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
ξ
(τ
)

(b) ρuξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
(τ
)

(c) ρu2ξ

−20 −10 0 10 20
−1

−0.5

0

0.5

1

τ

ρ
u
2
ξ
2
(τ
)

(d) ρu2ξ2

0 5 10 15 20
−1

−0.5

0

0.5

1

τ

ρ
ξ
(ξ
u
)(
τ
)

(e) ρξ(ξu)

Figure 37: Heater: residual analysis for the RLM.

modeling of such systems, thus performing evaluation in terms of predictability using

error measure over one-step-ahead predictions and free-run simulations of the underlying

models.

Chapter 5. Experiments 87

For the first three plants, the MLM reported the best performance results. With

regard to global models, the RBF and ELM reported poor results, which can just be

improved via regularization and/or normalization steps. This is an advantage for the

MLM in comparison to RBF and ELM, since applying regularization brings the need for

optimizing an extra hyperparameter. The ARX/LS model also presented poor results,

which could be expected from modeling nonlinear systems with linear structures. But, still,

precautions may be taken when the analysis is made based on one-step-ahead predictions.

Among the local models, the kSOM and LLM methods achieved the worst results, overall.

Such a poor performance likely comes from the use of many local models in comparison

to RLM, for instance. The best local approximation was achieved by the LLR methods,

particularly, by the NN and NNi methods, which for system identification tasks reported

rather similar performances. For the last evaluated plant (heater system), the performances

obtained by the LLR methods, RLM, RBF, MLM, and ELM models were similar. The

RLM slightly outperformed the MLM model.

88

Chapter 6

Conclusions and Future Directions

This thesis deals with the problem of nonlinear dynamic systems identification from

a machine learning point of view. The machine learning approach to system identification

is mainly based on the design of regression models that are virtually capable of describing

any nonlinear dynamics. Such methods can be roughly categorized into global and local

approaches. Global modeling consists of fitting a single regression model to the available

data, whereas in local modeling the data are segmented into small partitions and a

specialized regression model is fit to each partition. The objective of this thesis is to

propose novel machine learning techniques to approach the nonlinear system identification

problem from global and local perspectives.

The first contribution of the thesis is a novel global method, the Minimal Learning

Machine (MLM). Learning in MLM consists in building a linear map between distances

among points in the input and output spaces, and then estimating the response from the

geometry of the outputs. The second contribution is a method that stands between global

and local modeling, the Regional Modeling (RM) approach. In RM, we partition the input

space using the Self-Organizing Map (SOM), and then we cluster the prototypes of the

SOM. Regression models are then built over the SOM clusters, the regions.

A comprehensive performance evaluation of the MLM and RM has been carried

out on synthetic and real-world datasets. The performances were compared to the results

achieved by reference regression models. For the purpose the following methods have been

selected: Auto-Regressive with Exogenous Inputs models (ARX); Extreme Learning Ma-

chines (ELM); Redial Basis Function networks (RBF); Local Linear Maps (LLM); kSOM;

Local Linear Regression models (kNN, ekNN, NN and NNi). Based on the experimental

results, both the MLM and RM are capable to achieve accuracies that are comparable to,

and even better than, traditional machine learning methods.

In more details, in this thesis, we have:

Chapter 6. Conclusions and Future Directions 89

• presented the nonlinear system identification problem in a concise way, while ap-

proaching the main issues related to the problem.

• overviewed global and local models commonly used for supervised learning and with

direct application to system identification. In this regard, we mainly focused on

the methods proposed in the machine learning field. This is in consonance with the

proposal of the thesis of addressing the system identification problem from a learning

perspective, in which all the information about the underlying systems comes from

the available data.

• presented a supervised learning algorithm, Minimal Learning Machine (MLM), for

solving regression, classification, and system identification problems. Learning in

MLM consists in building a linear mapping between input and output distance

matrices. In the generalization phase, the learned distance map is used to provide

an estimate of the distance from M output reference points to the target output

value. Then, the output point estimation is formulated as a multilateration problem

based on the predicted output distance and the locations of the reference points.

Given its general formulation, the Minimal Learning Machine is inherently capable of

operating on nonlinear regression problems as well as on multidimensional response

spaces.

• discussed issues related to the MLM algorithm, such as computational complexity,

selection of hyperparameter, links with other reference methods, and selection of

reference points. In addition, the MLM properties were illustrated for a regression

and system identification synthetic example.

• evaluated the performance of the MLM for system identification through the modeling

of four benchmarking problems. The performance of the MLM was compared against

global, local and regional models. For three of the problems, the MLM was the best

performing model in terms of its prediction capability. Moreover, model validation

via residual analysis was carried out, in which the MLM passed the correlation tests,

overall.

• carried out a comprehensive comparison between MLM and the state-of-the-art

methods in machine learning (GP, SVM, ELM, RBF and MLP) in both classification

and regression problems. The MLM achieved competitive performance, outperforming

the reference models in many cases, and, thus, representing a valid and fast alternative

to the traditional methods.

• evaluated, for the first time in the literature, enclosing neighborhood LLR methods

on system identification tasks. We have shown that Natural Neighbors and Natural

Neighbors Inclusive present rather similar performances, and the enclosing ekNN

method is the most erratic method.

Chapter 6. Conclusions and Future Directions 90

• introduced a new approach for system identification, called Regional Models (RM).

The method proposal was motivated by the principle of parsimony. The proposed

methodology led to the design of regional models, which stands in between the

global and local models. Regional modeling extends the two-level clustering approach

by Vesanto and Alhoniemi (2000) to regression problems, particularly, to system

identification. The first step in regional modeling requires the partition of the input

space using the SOM, and then clustering over the prototypes of the trained SOM.

In the second step, regional regression models are built over the clusters (i.e. over

the regions) of SOM prototypes. It turns out that regional modeling provides less

complex and fast alternatives to traditional local modeling methods.

• discussed an outlier robust extension of Regional Models through the use of M -

estimation theory in the estimation of the parameters of (regional) linear models.

• compared the performance of the Regional Linear Models (RLM) in the task of

dynamic system identification against global and local models. In general, the regional

models were outperformed by the MLM, but in comparison to the other methods,

the performance is rather similar to the LLR methods (NN and NNi), and better

than the LLM and kSOM models. An important issue is that we have tested the

RLM without hyperparameter optimization. Rather, we provided results with the

standard configuration from the SOM toolbox.

The major contributions of this thesis are two novel methods: the Minimal Learning

Machine and Regional Models. We have focused on the description of a general framework

and its basic formulation. As a consequence, a number of extensions and variants can

be proposed for both methods. In what follows, we discuss the main directions on each

proposal.

6.1 Future Directions on the Minimal Learning Machine

The first aspect that can be explored in the MLM algorithm is the selection of

reference points. We have shown (in Appendices B and C) that the optimal number of

reference points does not grow at the same rate as the number of learning points. In those

cases, a random selection may provide a large variance in the results. Even though we have

already discussed some options in Section 3.5, a comprehensive evaluation of selection

approaches is still necessary. In this regard, we highlight the use of supervised pruning

strategies for selecting the reference points.

Outlier robust extension for the MLM is another important aspect of the proposed

method that should be further investigated. Since the MLM training step encompasses a

linear model between distances, the application of M -estimation would be straightforward.

Chapter 6. Conclusions and Future Directions 91

Also, robust estimation can be applied in the multilateration step. Still on the multilat-

eration step, fast procedures to provide outputs estimates are desired. This includes the

search for fast optimization methods or different strategies to locate the output estimate.

An important asset of the MLM is that it has only one hyperparameter to be

optimized, the number of reference points. However, we can assume a different distance

metric than the Euclidean one used throughout this thesis. How the MLM behaves when

we change its metric is an interesting topic that has not be answered yet.

Since the Minimal Learning Machine is a general supervised learning method, one

may consider to apply most of the variants already proposed for standard machine learning

methods. For example, regularization strategies can be adopted for the MLM, even though

we have not found serious problems in what concerns ill-conditioned matrices.

With regard to the application of the MLM to system identification, two main issues

arise: i) online system identification (parameter estimation); ii) performance evaluation

of MIMO systems. The first can be achieved by combining recursive (sequential) and/or

growing selection of reference points, and sequential estimation of the linear model between

distances. For the second issue, the MLM is able to handle multiresponse cases by definition.

Thus, its use in the modeling of MIMO system is direct, but still has not been evaluated.

6.2 Future Directions on Regional Modeling

The proposed RM models allow a number of different algorithmic options into

its steps. For instance, we have applied the k-means algorithm as the clustering method.

However, the k-means method suffers from a high variance estimate, i.e., the method is

unstable. Thus, the impact of clustering techniques into regional models is an open issue.

In this regard, we are particularly curious about the use of the correlation-based clustering

method (FUJIWARA; KANO; HASEBE, 2010), since the regression vectors in system

identification tasks present a correlated nature. Still, in the clustering procedure, different

cluster validity indices can be explored.

Another topic is online system identification with regional models, which has not

been explored yet. With respect to that, growing and hierarchical self-organizing maps

can be used in combination with the fitting of adaptive (sequential) linear models, such as

the LMS algorithm. As well, the evaluation of regional models on the modeling of MIMO

systems is important, even though the application would be straightforward.

While the Regional Models have been evaluated in the presence of outliers (SOUZA

JUNIOR; BARRETO; CORONA, 2015), our formulation handles only outliers in the

output space. However, robust strategies can also be employed during the SOM training.

To achieve this, robust self-organizing maps have been proposed (MORENO et al., 2004),

Chapter 6. Conclusions and Future Directions 92

and thus can be used in the regional modeling framework.

Finally, an extension of the regional models to classification problems is a prominent

research topic. In principle, there is no impediment for that, since the models used in each

region can be as general as any learning machine. Similarly, classification using local linear

models has already been proposed in the literature (ALPAYDIN; JORDAN, 1996).

93

Bibliography

ABONYI, J. et al. Process analysis and product quality estimation by self-organizing
maps with an application to polyethylene production. Computers in Industry, v. 52, n. 3,
p. 221–234, 2003. Cited on page 68.

AGUIRRE, L. A. Introdução à Identificação de Sistemas – Técnicas Lineares e
Não-Lineares Aplicadas a Sistemas Reais. 3rd. ed. [S.l.]: Editora UFMG, 2007. Cited 5
times on pages 17, 18, 20, 29, and 82.

AGUIRRE, L. A.; BILLINGS, S. Dynamical effects of overparametrization in nonlinear
models. Physics Letters D: Nonlinear Phenomena, v. 80, p. 26–49, 1995. Cited on page
21.

AGUIRRE, L. A.; LETELLIER, C. Modeling nonlinear dynamics and chaos: A review.
Mathematical Problems in Engineering, v. 2009, n. 1, 2009. Cited on page 22.

AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, v. 19, n. 6, p. 716–723, 1974. Cited on page 19.

ALPAYDIN, E.; JORDAN, M. I. Local linear perceptrons for classification. IEEE
Transactions on Neural Networks, v. 7, p. 788–792, 1996. Cited on page 92.

ALVES, G. B.; CORREA, M. V.; AGUIRRE, L. A. Steady-state performance constraints
for dynamical models based on radial basis function networks. Engineering Applications
of Artificial Intelligence, v. 7, n. 20, p. 924–935, 2007. Cited on page 33.

ATKESON, C. G.; MOORE, A. W.; SCHAAL, S. Locally weighted learning. Artificial
Intelligence Review, v. 3, n. 1-5, p. 11–73, 1997. Cited on page 34.

BARRETO, G. A.; ARAÚJO, A. F. R. Identification and control of dynamical systems
using the self-organizing map. IEEE Transactions on Neural Networks, v. 15, n. 5, p.
1244–1259, 2004. Cited on page 37.

BARROS, A. L. B. P. Revisitando o problema de classificação de padrões na presença de
outliers usando técnicas de regressão robusta. Tese (Doutorado) — Universidade Federal
do Ceará, 2013. Cited on page 68.

BENGIO, Y. Learning deep architectures for AI. Foundations and Trends in Machine
Learning, v. 2, n. 1, p. 1–127, 2009. Cited on page 32.

Bibliography 94

BEZDEK, J. C. Some new indexes of cluster validity. IEEE Transactions on Systems,
Man, and Cybernetics Part B, v. 28, n. 3, p. 301–315, 1998. Cited on page 104.

BHAT, N.; MCAVOY, T. J. Use of neural nets for dynamic modeling and control of
chemical process systems. Computers and Chemical Engineering, v. 14, n. 4, p. 573–583,
1990. Cited on page 76.

BILLINGS, S. A. Nonlinear System Identification: NARMAX methods in the time,
frequency, and spatio-temporal domains. [S.l.]: John Wiley & Sons, 2013. Cited 2 times
on pages 15 and 20.

BILLINGS, S. A.; CHEN, S.; KORENBERG, M. J. Identification of MIMO nonlinear
systems using a forward-regression orthogonal estimator. International Journal of Control,
v. 49, n. 6, p. 2157–2189, 1989. Cited 2 times on pages 16 and 27.

BILLINGS, S. A.; FAKHOURI, S. Y. Identification of systems containing linear dynamic
and static nonlinear elements. Automatica, v. 1, n. 18, p. 15–26, 1982. Cited on page 27.

BILLINGS, S. A.; VOON, W. S. F. Correlation based model validity tests for nonlinear
models. International Journal of Control, v. 44, n. 1, p. 235–244, 1986. Cited 2 times on
pages 21 and 71.

BILLINGS, S. A.; ZHU, Q. M. Rational model identification using an extended
least-squares algorithm. International Journal of Control, v. 54, n. 3, p. 529–546, 1991.
Cited on page 27.

BISHOP, C. M. Neural Networks for Pattern Recognition. New York, NY: Oxford
University Press, Inc., 1995. Cited 4 times on pages 28, 32, 108, and 111.

BISHOP, C. M. Pattern Recognition and Machine Learning. [S.l.]: Springer, 2006. Cited
2 times on pages 30 and 51.

BITTANTI, S.; PIRODDI, L. Nonlinear identification and control of a heat exchanger: A
neural network approach. Journal of Franklin Institute, v. 334B, n. 1, p. 135–153, 1996.
Cited on page 18.

BONTEMPI, G.; BIRATTARI, M.; BERSINI, H. Recursive lazy learning for modeling
and control. In: Proceedings of the 10th European Conference on Machine Learning. [S.l.:
s.n.], 1998. v. 1398, p. 292–303. Cited on page 59.

BONTEMPI, G.; BIRATTARI, M.; BERSINI, H. Lazy learning for modeling and control
design. International Journal of Control, v. 72, n. 7/8, p. 643–658, 1999. Cited on page
34.

BUHMANN, M. D. Radial Basis Functions. [S.l.]: Cambridge University Press, 2003.
Cited 3 times on pages 33, 108, and 111.

BUNKE, H. Structural and syntactic pattern recognition. In: Handbook of Pattern
Recognition & Computer Vision. River Edge, NJ, USA: World Scientific, 1993. p. 163–209.
Cited on page 43.

CAMPELLO, R. J. G. B.; FAVIER, G.; AMARAL, W. C. Optimal expansions of
discrete-time Volterra models using Laguerre functions. Automatica, v. 40, n. 5, p.
815–822, 2004. Cited on page 27.

Bibliography 95

CAO, L. et al. Predicting chaotic time series with wavelet networks. Physica D, v. 1, n. 1,
p. 225–238, 1995. Cited on page 27.

CHANG, C.-C.; LIN, C.-J. LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology, v. 2, n. 27, p. 1–27, 2011. Cited 2
times on pages 108 and 112.

CHEN, S.; COWAN, C. F.; GRANT, P. M. Orthogonal least squares learning algorithm
for radial basis function networks. IEEE Transactions on Neural Networks, v. 2, n. 2, p.
302–309, 1991. Cited 3 times on pages 34, 53, and 58.

CHO, J. et al. Modeling and inverse controller design for an unmanned aerial vehicle
based on the self-organizing map. IEEE Transactions on Neural Networks, v. 17, n. 2, p.
445–460, 2006. Cited on page 39.

CHO, J. et al. Quasi-sliding mode control strategy based on multiple linear models.
Neurocomputing, v. 70, n. 4-6, p. 962–974, 2007. Cited on page 39.

CORMEN, T. H. et al. Introduction to Algorithms. 3rd. ed. [S.l.]: The MIT Press, 2009.
Cited on page 49.

COURRIEU, P. Fast computation of Moore-Penrose inverse matrices. Neural Information
Processing Letters and Reviews, v. 8, p. 25–29, 2005. Cited on page 49.

CUADRAS, C.; ARENAS, C. A distance based regression model for prediction with
mixed data. Communication in Statistics-Theory and Methods, v. 19, n. 6, p. 2261–2279,
1990. Cited on page 43.

DAVIES, D. L.; BOULDIN, D. W. A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Ingelligence, v. 1, n. 2, p. 224–227, 1979. Cited 2 times on
pages 61 and 104.

DENG, W.; ZHENG, Q.; CHEN, L. Regularized extreme learning machine. In: Proceedings
of the IEEE Symposium on Computational Intelligence and Data Mining. [S.l.: s.n.], 2009.
p. 389–395. Cited on page 81.

FERRARI-TRECATE, G. et al. A clustering technique for the identification of piecewise
affine systems. Automatica, v. 39, n. 2, p. 205–217, 2003. Cited on page 68.

FOX, J.; WEISBERG, S. An R Companion to Applied Regression. 2nd. ed. [S.l.]: Sage
Publications, 2010. Cited on page 67.

FUJIWARA, K.; KANO, M.; HASEBE, S. Development of correlation-based clustering
method and its application to software sensing. Chemometrics and Intelligent Laboratory
Systems, v. 101, n. 2, p. 130 – 138, 2010. Cited on page 91.

GISBRECHT, A. et al. Linear time relational prototype based learning. International
Journal of Neural Systems, v. 22, n. 5, p. 1–11, 2012. Cited on page 44.

GOLUB, G. H.; LOAN, C. F. V. Matrix Computations. 3rd. ed. [S.l.]: Johns Hopkins
University Press, 1996. Cited on page 49.

GRAEPEL, T. et al. Classification on pairwise proximity data. In: JORDAN, M. I.;
KEARNS, M. J.; SOLLA, S. A. (Ed.). NIPS Proceedings. Cambridge, MA: MIT Press,
1999. v. 11, p. 438–444. Cited on page 44.

Bibliography 96

GRAEPEL, T.; OBERMAYER, K. A stochastic self-organizing map for proximity data.
Neural Computation, v. 11, n. 1, p. 139–155, 1999. Cited on page 43.

GREGORCIC, G.; LIGHTBODY, G. Nonlinear system identification: from multiple-model
networks to gaussian processes. Engineering Applications of Artificial Intelligence, v. 21,
n. 7, p. 1035–1055, 2008. Cited 2 times on pages 16 and 22.

GUPTA, M. R.; GARCIA, E. K.; CHIN, E. Adaptive local linear regression with
application to printer color management. IEEE Transactions on Image Processing, v. 17,
p. 936–945, 2008. Cited 3 times on pages 34, 40, and 41.

HABER, R.; UNBEHAUEN, H. Structure identification of nonlinear dynamic systems: a
survey on input/output approaches. Automatica, v. 26, n. 4, p. 651–677, 1990. Cited on
page 16.

HAGENBUCHNER, M.; SPERDUTI, A.; TSOI, A. C. A self-organizing map for adaptive
processing of structured data. IEEE Transactions on Neural Networks, v. 14, n. 3, p.
491–505, 2003. Cited on page 43.

HALKIDI, M.; BATISTAKIS, Y.; VAZIRGIANNIS, M. On clustering validation
techniques. Journal of Intelligent Information Systems, v. 17, n. 2-3, p. 107–145, 2001.
Cited on page 61.

HAMETNER, C.; JAKUBEK, S. Local model network identification for online engine
modelling. Information Sciences, v. 220, p. 210–225, 2013. Cited on page 34.

HAMMER, B.; HASENFUSS, A. Topographic mapping of large dissimilarity data sets.
Neural Computation, v. 22, n. 9, p. 2229–2284, 2010. Cited on page 43.

HAMMER, B. et al. Learning vector quantization for (dis-)similarities. Neurocomputing,
v. 131, p. 43–51, 2014. Cited on page 44.

HAMMER, B. et al. A general framework for unsupervised processing of structured data.
Neurocomputing, v. 57, p. 3–35, 2004. Cited on page 43.

HARDY, R. Multiquadric equations of topography and other irregular surfaces. Journal
of Geophysical Research, v. 76, n. 8, 1971. Cited on page 50.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. 2nd. ed. [S.l.]: Springer, 2009. Cited 2 times on
pages 19 and 48.

HAYKIN, S. Adaptive filter theory. 4th. ed. New Jersey, NJ: Prentice-Hall, 2001. Cited
on page 47.

HAYKIN, S. Neural Networks and Learning Machines. 3rd. ed. [S.l.]: Prentice Hall, 2009.
Cited 3 times on pages 30, 31, and 32.

HOFMANN, T.; BUHMANN, J. Pairwise data clustering by deterministic annealing.
IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 19, n. 1, p. 1–14,
1997. Cited on page 43.

HONG, X. et al. Model selection approaches for non-linear system identification: a review.
International Journal of Systems Science, v. 39, n. 10, p. 925–946, 2008. Cited on page
19.

Bibliography 97

HORATA, P.; CHIEWCHANWATTANA, S.; SUNAT, K. Robust extreme learning
machine. Neurocomputing, v. 102, n. 1, p. 31–44, 2013. Cited on page 77.

HUANG, G.-B.; WANG, D. H.; LAN, Y. Extreme learning machines: a survey.
International Journal of Machine Learning and Cybernetics, v. 2, p. 107–122, 2011. Cited
on page 32.

HUANG, G. B.; ZHU, Q. Y.; ZIEW, C. K. Extreme Learning Machine: Theory and
applications. Neurocomputing, v. 70, n. 1–3, p. 489–501, 2006. Cited 4 times on pages 28,
32, 108, and 111.

HUBER, P. J. Robust estimation of a location parameter. Annals of Mathematical
Statistics, v. 35, n. 1, p. 73–101, 1964. Cited 2 times on pages 66 and 68.

HUBER, P. J. Robust Statistics. [S.l.]: John Wiley & Sons, 2004. Cited 2 times on pages
24 and 51.

JACOBS, R. A. et al. Adaptive mixtures of local experts. Neural Computation, v. 3, n. 1,
p. 79–87, 1991. Cited on page 34.

JANG, J.-S. R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man, and Cybernetics, v. 23, p. 665–685, 1993. Cited on page
34.

KALHOR, A.; ARAABI, B. N.; LUCAS, C. Reducing the number of local linear models
in neuro-fuzzy modeling: A split-and-merge clustering approach. Applied Soft Computing,
v. 11, n. 1, p. 5582–5589, 2011. Cited on page 68.

KASHYAP, R. L. Bayesian comparison of different classes of dynamic models using
empirical data. IEEE Transactions on Automatic Control, v. 22, n. 5, p. 715–727, 1977.
Cited on page 19.

KATSIKIS, V. N.; PAPPAS, D.; PETRALIAS, A. An improved method for the
computation of the Moore-Penrose inverse matrix. Applied Mathematics and Computation,
v. 217, p. 9828–9834, 2011. Cited on page 49.

KAUFMAN, L.; ROUSSEEUW, P. J. Finding groups in data: An introduction to cluster
analysis. [S.l.]: Wiley, 1990. Cited 2 times on pages 52 and 103.

KEESMAN, K. J. System Identification: An Introduction. [S.l.]: Springer, 2011. (Advanced
textbooks in control and signal processing). Cited on page 15.

KOHONEN, T. Essentials of the self-organizing map. Neural Networks, v. 37, p. 52–65,
2013. Cited on page 35.

KOHONEN, T. K. et al. Engineering applications of the self-organizing map. Proceedings
of the IEEE, v. 84, n. 10, p. 1358–1384, 1996. Cited on page 36.

LAWRENCE, S.; TSOI, A. C.; BACK, A. D. Function approximation with neural
networks and local methods: Bias, variance and smoothness. In: Australian Conference on
Neural Networks (ACNN). [S.l.: s.n.], 1996. p. 16–21. Cited on page 27.

LI, X.; YU, W. Dynamic system identification via recurrent multilayer perceptrons.
Information Sciences, v. 147, n. 1–4, p. 45–63, 2002. Cited on page 27.

Bibliography 98

LICHSTEIN, J. W. Multiple regression on distance matrices: a multivariate spatial
analysis tool. Plant Ecology, v. 188, n. 2, p. 117–131, 2006. Cited on page 43.

LIMA, C. A. M.; COELHO, A. L. V.; VON ZUBEN, F. J. Hybridizing mixtures of experts
with support vector machines: Investigation into nonlinear dynamic systems identification.
Information Sciences, v. 177, n. 10, p. 2049–2074, 2007. Cited 2 times on pages 16 and 34.

LJUNG, L. System Identification: Theory for the user. 2nd. ed. Englewood Cliffs, NJ:
Prentice-Hall, 1999. Cited on page 29.

MACQUEEN, J. Some methods for classification and analysis of multivariate observations.
In: Le Cam, L. M.; NEYMAN, J. (Ed.). Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability. Berkeley, Califonia. University of California Press:
[s.n.], 1967. v. 1, p. 281–297. Cited 3 times on pages 34, 61, and 103.

MARQUARDT, D. W. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, v. 11, n. 2, p. 431–441,
1963. Cited on page 48.

MASSEY, F. J. The kolmogorov-smirnov test for goodness of fit. Neural Computation,
v. 46, n. 253, p. 68–78, 1951. Cited on page 53.

McArdle, B.; ANDERSON, M. Fitting multivariate models to community data: a
comment on distance-based redundancy analysis. Ecology, v. 82, n. 1, p. 290–297, 2001.
Cited on page 43.

MCAVOY, T. J.; HSU, E.; LOWENTHAL, S. Dynamics of pH in controlled stirred tank
reactor. Industrial & Engineering Chemistry Process Design and Development, v. 11, n. 1,
p. 68–70, 1972. Cited on page 76.

MICHE, Y. et al. OP-ELM: Optimally Pruned Extreme Learning Machine. IEEE
Transactions on Neural Networks, v. 21, n. 1, p. 158–162, 2010. Cited 2 times on pages 49
and 58.

MORENO, S. et al. Robust self organizing maps. In: CIARP. [S.l.]: Springer, 2004.
(Lecture Notes in Computer Science, v. 3287), p. 179–186. Cited on page 91.

MURRAY-SMITH, R. A local model network approach to nonlinear modelling. Tese
(Doutorado) — University of Strathclyde, 1994. Cited on page 34.

NARENDRA, K. S. Neural networks for control theory and practice. Proceedings of the
IEEE, v. 84, n. 10, p. 1385–1406, 1996. Cited on page 27.

NARENDRA, K. S.; PARTHASARATHY, K. Identification and control of dynamical
systems using neural networks. IEEE Transactions on Neural Networks, v. 1, n. 1, p. 4–27,
1990. Cited 5 times on pages 16, 20, 27, 30, and 71.

NELLES, O. Nonlinear system identification: from classical approaches to neural networks
and fuzzy models. [S.l.]: Springer, 2001. Cited 7 times on pages 18, 30, 31, 32, 34, 51,
and 53.

NEUMANN, K.; STEIL, J. J. Optimizing extreme learning machines via ridge regression
and batch intrinsic plasticity. Neurocomputing, v. 102, n. 15, p. 23 – 30, 2013. Cited on
page 77.

Bibliography 99

NIEWIADOMSKA-SZYNKIEWICZ, E.; MARKS, M. Optimization schemes for wireless
sensor network localization. International Journal of Applied Mathematics and Computer
Science, v. 19, n. 2, p. 291–302, 2009. Cited on page 47.

NORGAARD, M. et al. Neural Networks for Modelling and Control of Dynamic Systems.
[S.l.]: Springer-Verlag, 2000. Cited 3 times on pages 18, 20, and 30.

PAPADAKIS, S. E.; KABURLASOS, V. G. Piecewise-linear approximation of non-linear
models based on probabilistically/possibilistically interpreted intervals’ numbers (INs).
Information Sciences, v. 180, n. 24, p. 5060–5076, 2010. Cited on page 16.

POGGIO, T.; GIROSI, F. Networks for approximation and learning. Proceedings of the
IEEE, v. 78, n. 9, p. 1481–1497, 1990. Cited on page 28.

PRINCIPE, J. C. Information Theoretic Learning: Renyi’s Entropy and Kernel
Perspectives. [S.l.]: Springer, 2010. Cited on page 28.

PRINCIPE, J. C.; WANG, L.; MOTTER, M. A. Local dynamic modeling with
self-organizing maps and applications to nonlinear system identification and control.
Proceedings of the IEEE, v. 86, n. 11, p. 2240–2258, 1998. Cited on page 39.

QIN, A. K.; SUGANTHAN, P. N. A novel kernel prototype-based learning algorithm. In:
Proceedings of the 17th International Conference on Pattern Recognition (ICPR’2004).
[S.l.: s.n.], 2004. v. 4, p. 621–624. Cited on page 44.

RAO, C. R.; TOUTENBURG, H. Linear Models: Least Squares and Alternatives. 2nd. ed.
[S.l.]: Springer, 1999. Cited 2 times on pages 20 and 28.

RASMUSSEN, C. E.; WILLIAMS, C. K. I. Gaussian Processes for Machine Learning.
Cambridge, MA: The MIT Press, 2006. Cited 4 times on pages 28, 108, 111, and 112.

REZAEE, B.; FAZEL ZARANDI, M. H. Data-driven fuzzy modeling for Tak-
agi–Sugeno–Kang fuzzy system. Information Sciences, v. 180, n. 2, p. 241–255, 2010.
Cited on page 16.

ROJO-ALVAREZ, J. L. et al. Support vector method for robust ARMA system
identification. IEEE Transactions on Signal Processing, v. 52, n. 1, p. 155–164, 2004.
Cited on page 16.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
backpropagating errors. Nature, v. 323, n. 9, p. 533–536, 1986. Cited on page 28.

RUMELHART, D. E.; HINTONT, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. Nature, v. 323, n. 6088, p. 533–536, 1986. Cited on page 31.

SARRA, S. A.; KANSA, E. J. Multiquadric radial basis function approximation methods
for the numerical solution of partial differential equations. Advances in Computational
Mechanics, v. 2, 2009. Cited on page 34.

SCHALKOFF, R. J. Pattern Recognition: Statistical, Structural and Neural Approaches.
[S.l.]: John Wiley & Sons, 1992. Cited on page 43.

SCHLEIF, F.-M. et al. Efficient kernelized prototype based classification. International
Journal of Neural Systems, v. 21, n. 6, p. 443–457, 2012. Cited on page 44.

Bibliography 100

SJÖBERG, J. et al. Non-linear black-box modeling in system identification: a unified
overview. Automatica, v. 31, p. 1691–1724, 1995. Cited 3 times on pages 15, 16, and 80.

SMOLA, A. J.; SCHOLKOPF, B. A tutorial on support vector regression. Statistics and
Computing, v. 14, n. 3, p. 199–222, 2004. Cited 3 times on pages 28, 108, and 111.

SOHLBERG, B. Grey box modelling for model predictive control of a heating process.
Journal of Process Control, v. 13, n. 3, p. 225 – 238, 2003. Cited on page 16.

SOMERVUO, P.; KOHONEN, T. Self-organizing maps and learning vector quantization
for feature sequences. Neural Processing Letters, v. 10, n. 2, p. 151–159, 1999. Cited on
page 43.

SOUZA JUNIOR, A. H.; BARRETO, G. A.; CORONA, F. Regional models: A new
approach for nonlinear system identification via clustering of the self-organizing map.
Neurocomputing, v. 147, n. 5, p. 31 – 46, 2015. Cited 2 times on pages 61 and 91.

SOUZA JUNIOR, A. H. et al. Minimal learning machine: A new distance-based method
for supervised learning. In: Proceedings of the 12th International Work Conference on
Artificial Neural Networks (IWANN’2013). [S.l.]: Springer, 2013. (Lecture Notes in
Computer Science, v. 7902), p. 408–416. Cited on page 45.

SOUZA JUNIOR, A. H. et al. Extending the minimal learning machine for pattern
classification. In: Proceedings of the 1st BRICS countries conference on computational
intelligence. [S.l.: s.n.], 2013. v. 1, p. 1–8. Cited on page 44.

SOUZA, L. G. M.; BARRETO, G. A. On building local models for inverse system
identification with vector quantization algorithms. Neurocomputing, v. 73, n. 10-12, p.
1993–2005, 2010. Cited 2 times on pages 34 and 38.

TAKAGI, T.; SUGENO, M. Fuzzy identification of systems and its application to
modeling and control. IEEE Transactions on Systems, Man and Cybernetics, v. 15, n. 1,
p. 116–132, 1985. Cited 2 times on pages 16 and 34.

TAN, P.-N.; STEINBACH, M.; KUMAR, V. Introduction to Data Mining. [S.l.]:
Addison-Wesley Longman Publishing Co., Inc., 2005. Cited 2 times on pages 102 and 104.

VAN HULLE, M. Self-organizing maps. In: ROZENBERG, G.; BAECK, T.; KOK, J.
(Ed.). Handbook of Natural Computing: Theory, Experiments, and Applications. [S.l.]:
Springer-Verlag, 2010. p. 1–45. Cited on page 36.

VAPNIK, V. N. Statistical learning Theory. [S.l.]: Wiley-Interscience, 1998. Cited on
page 28.

VERDULT, V. Nonlinear system identification: A state-space approach. Tese (Doutorado)
— University of Twente, 2002. Cited on page 72.

VESANTO, J.; ALHONIEMI, E. Clustering of the self-organizing map. IEEE Transactions
on Neural Networks, v. 11, n. 3, p. 586–600, 2000. Cited 5 times on pages 60, 61, 62, 69,
and 90.

VESANTO, J. et al. Self-organizing map in Matlab: the SOM toolbox. In: Proceedings of
the Matlab DSP Conference. [S.l.: s.n.], 2000. p. 35–40. Cited 2 times on pages 64 and 71.

Bibliography 101

WALTER, J.; RITTER, H.; SCHULTEN, K. Non-linear prediction with self-organizing
map. In: Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN’90). [S.l.: s.n.], 1990. v. 1, p. 587–592. Cited 2 times on pages 34 and 36.

WANG, J. Classical multidimensional scaling. In: Geometric Structure of High-Dimensional
Data and Dimensionality Reduction. [S.l.]: Springer, 2011. p. 115–129. Cited on page 43.

WANG, X.; SYRMOS, V. L. Nonlinear system identification and fault detection using
hierarchical clustering analysis and local linear models. In: Proceedings of the 15th
Mediterranean Conference on Control & Automation (MED)’07. [S.l.: s.n.], 2007. p.
T23–015. Cited 2 times on pages 60 and 68.

WESTON, J. et al. Kernel dependency estimation. In: BECKER, S.; THRUN, S.;
OBERMAYER, K. (Ed.). NIPS Proceedings. Cambridge, MA: MIT Press, 2002. p.
873–880. Cited on page 51.

WIDROW, B. Thinking about thinking: The discovery of the LMS algorithm. IEEE
Signal Processing Magazine, v. 22, n. 1, p. 100–106, 2005. Cited 2 times on pages 36
and 47.

WILCOXON, F. Individual comparisons by ranking methods. Biometrics, v. 1, n. 6, p.
80–83, 1945. Cited 2 times on pages 109 and 112.

WU, Y. et al. Using radial basis function networks for function approximation and
classification. ISRN Applied Mathematics, v. 2012, n. ID324194, p. 1–34, 2012. Cited 3
times on pages 28, 108, and 111.

YIN, H. The self-organizing maps: Background, theories, extensions and applications. In:
FULCHER, J.; JAIN, L. C. (Ed.). Computational Intelligence: A Compendium. [S.l.]:
Springer-Verlag, 2008, (Studies in Computational Intelligence, v. 115). p. 715–762. Cited
on page 36.

YU, W. Nonlinear system identification using discrete-time recurrent neural networks
with stable learning algorithms. Information Sciences, v. 158, p. 131–157, 2004. Cited on
page 27.

ZHU, X.; SCHLEIF, F.-M.; HAMMER, B. Adaptive conformal semi-supervised vector
quantization for dissimilarity data. Pattern Recognition Letters, v. 49, p. 138–145, 2014.
Cited on page 44.

ZHU, Z. et al. Local linear regression for soft-sensor design with application to an
industrial deethanizer. In: Proceedings of the 18th World Congress of the International
Federation of Automatic Control. [S.l.: s.n.], 2011. p. 2839–2844. Cited on page 40.

102

APPENDIX A

Clustering algorithms

Clustering is the task of grouping a set of objects in such a way that objects in the

same group (called a cluster) are more similar to each other than to those in other groups

(clusters). In this regard, the similarity criterion takes a important role. Another important

issue related to clustering method is the number of clusters. For selecting the optimal

number of clusters, usually, we adopt a cluster validity index. Clustering techniques have

been subject of interest and has long played an important role in a wide variety of fields:

psychology and other social sciences, biology, statistics, pattern recognition, information

retrieval, machine learning, and data mining.

Different taxonomies for clustering strategies exist. For instance, we cite the one

proposed by Tan, Steinbach and Kumar (2005) that categorizes the clustering algorithms

into: i) partitional versus hierarchical, ii) exclusive versus overlapping versus fuzzy, iii)

complete versus partial. In this thesis, we are particularly interested in partitional algo-

rithms due to their wide usage and simplicity. Partitional clustering algorithms divide a

data set into a number of, usually non-overlapping, clusters.

In what follows, we describe two clustering techniques used in the thesis: k-means

algorithms (Section A.1) and k-medoids (Section A.2). In addition, we introduce the

Davies-Bouldies (DB) index for selecting the optimal number of clusters in Section A.3.

A.1 k-means algorithm

One type of partitional methods is centroid-based clustering, in which clusters are

represented by a central vector, which may not necessarily be a member of the data set.

When the number of clusters is fixed to K, k-means clustering gives a formal definition

as an optimization problem: find the K cluster centers and assign the objects to the

nearest cluster center, such that the squared distances from the cluster are minimized.

APPENDIX A. Clustering algorithms 103

The optimization problem itself is known to be NP-hard, and thus the common approach

is to search only for approximate solutions. A particularly well known approximative

method is the k-means algorithm (MACQUEEN, 1967). It does however only find a local

optimum, and is commonly run multiple times with different random initializations. Most

k-means-type algorithms require the number of clusters - K - to be specified in advance,

which is considered to be one of the biggest drawbacks of these algorithms. Furthermore,

the algorithms prefer clusters of approximately similar size, as they will always assign an

object to the nearest centroid. Still, the k-means algorithm is one of the most common

and simple clustering methods.

The k-means algorithm consists of:

1. Choose initial values for the K cluster centers pk, k = 1, . . . ,K. This can be

accomplished by picking randomly K data points from the available training samples.

2. Assign all data points to their nearest cluster prototype.

3. Compute the centroid prototype of each cluster. Set each cluster prototype to the

centroid of its cluster, that is,

pk =

∑
k∈Sk x(k)

Nk

(A.1)

where Sk denote the set the data points indices whose the nearest prototype is pk,

Nk is the number of elements in the set Sk.

4. If any cluster prototype has been moved in the previous step, go to Step 2; otherwise

the clustering process is done.

A.2 k-medoids algorithm

The k-medoids algorithm is a partitional clustering technique that attempt to

minimize squared error, the distance between points labeled to be in a cluster and a point

designated as the center of that cluster. In contrast to the k-means algorithm, k-medoids

chooses data points as centers (medoids) and is usually referred as more robust to noise

and outliers in comparison to k-means. A medoid is the most centrally located object in a

cluster.

The most common implementation of k-medoid clustering is the partitioning around

medoids (PAM) algorithm (KAUFMAN; ROUSSEEUW, 1990):

1. Initialization: randomly select K of the N data points as the medoids.

2. Assignment step: Associate each data point to the closest medoid.

APPENDIX A. Clustering algorithms 104

3. Update step: For each medoid k and each data point n associated to k, swap k and

n and compute the total cost of the configuration (that is, the average dissimilarity

of n to all the data points associated to k). Select the medoid n with the lowest cost

of the configuration.

4. Repeat alternating steps 2 and 3 until there is no change in the assignments.

A.3 Cluster validity indexes

There are two main types of clustering validation: internal and external ones.

Internal validation occurs when a clustering result is evaluated based on the data that

was clustered itself. These methods usually assign the best score to the algorithm that

produces clusters with high similarity within a cluster and low similarity between clusters.

In external validation, clustering results are evaluated based on data that was not used

for clustering, such as known class labels and external benchmarks (a set of pre-classified

items). The interested reader may see the text-book by Tan, Steinbach and Kumar (2005)

and Bezdek (1998) for a review of cluster validity indexes. In the experiments of this thesis,

we have adopted the Davies-Bouldies (DB) validity index to select the optimal number of

clusters.

A.3.1 Davies-Bouldin index

The Davies–Bouldin index (DAVIES; BOULDIN, 1979) can be calculated by the

following formula:

DB =
1

K

K∑

k=1

max
k 6=j

(
σk + σj
d(pk,pj)

)

where K is the number of clusters, px is the centroid of cluster x, σx is the average distance

of all elements in cluster x to centroid px, and d(pk,pj) is the distance between centroids

pk and pj. Since algorithms that produce clusters with low intra-cluster distances (high

intra-cluster similarity) and high inter-cluster distances (low inter-cluster similarity) will

have a low DB index, the clustering algorithm that produces a collection of clusters with

the smallest DB index is considered the best algorithm based on this criterion.

105

APPENDIX B

Minimal Learning Machine for

Classification

In this appendix, we formulate the Minimal Learning Machine for classification

problems (Section B.1); we illustrate its characteristics on a synthetic classification example

(Section B.2); and we report the performance results achieved on four benchmarking

classification problems (Section B.3).

B.1 Formulation

An important class of problems is classification, where we are concerned with

predicting categories usually denoted by qualitative outputs, also called class labels. For

the task, we are still given a set of N input points X = {xi}Ni=1, with xi ∈ RD, and the set

of their corresponding class labels L = {li}Ni=1, with li ∈ {C1, . . . , CS}, where Cj denotes

the j-the class; for S = 2, the problem is referred to as binary classification, whereas for

S > 2 we have multi-class applications.

The Minimal Learning Machine can be extended to classification problems in a

straightforward manner by representing the S class labels in a vectorial fashion through an

1-of-S encoding scheme. In such approach, a S-level qualitative variable is represented by a

vector of S binary variables or bits, only one of which is on at a time. Mathematically, the

set of outputs Y = {yi}Ni=1, with yi ∈ RS, that corresponds to the input points X is then

defined in such a way that the jth-component of yi is set to α if li = Cj and β otherwise,

where α and β are integer scalars such as α > β. An usual choice is α = 1 and β = −1.

In classification of a test observation x with unknown class label l ∈ {C1, . . . , CS},
the estimated class l̂ associated to the output estimate ŷ is given by l̂ = Cs∗ , where

s∗ = argmax
s=1,...,S.

{ŷ(s)}. (B.1)

APPENDIX B. Minimal Learning Machine for Classification 106

As one can easily notice, for binary classification problems, we may simplify the

approach by using a binary single output scheme where the outputs are represented by

scalars yi ∈ {α, β} in correspondence to the two classes.

Given this formulation, the Minimal Learning Machine provides unified implemen-

tation for regression, binary and multi-class applications.

B.2 Illustrative example

We illustrate the Minimal Learning Machine on a binary classification problem, the

Tai Chi symbol, where the Yin and Yang regions are the two non-convex and nonlinearly

separable classes. For the task, we generated 213 bidimensional input points uniformly

distributed in the Tai Chi symbol, and after assigning the class labels to the Yin an Yang

regions we purposely mislabeled 10% of the observations, Figure 38. Half of the dataset is

used for training the Minimal Learning Machines with a varying number N of learning

points and a number M of randomly selected reference points, again with M ≤ N . The

212 remaining samples are used for validation.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

Figure 38: The Tai Chi symbol: Data.

We evaluated the performance of the Minimal Learning Machine on the validation

set using the AMSE(δ) and the AMSE(y), Figure 39. Figure 39a and 39c depict with red

dots the configuration of the best MLMs for given sizes of the learning set and the circle is

used to depict the best model overall. As expected, for each size N of the learning set it

is again possible to select an optimal number M of reference points that minimizes the

validation error, from the point of view of both the distance regression and the output

estimation step. The overall best configuration of the MLM is found to be the one that is

based on the largest number of learning point (N = 212) and a number of reference points

equal to M = 28.

With respect to the estimation step, Figure 40 shows the estimated classes in

validation using the overall best MLM configuration. The classification accuracy achieved

APPENDIX B. Minimal Learning Machine for Classification 107

log
2
()

lo
g 2

(N
)

2 4 6 8 10 12

2

4

6

8

10

12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M

(a) AMSE(δ)

2 4 6 8 10 12

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

log2(N)

A
M

S
E
(δ
)

(b) Optimal AMSE(δ)

log2(K)

lo
g 2

(N
)

2 4 6 8 10 12

2

4

6

8

10

12 0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(c) AMSE(y)

2 4 6 8 10 12

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
(N)

A
M

S
E

(y
)

(d) Optimal AMSE(y)

Figure 39: The Tai Chi symbol: Figures of merit.

by this MLM is equal to 88%, which tends to the percentage of purposely mislabeled data.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

Figure 40: The Tai Chi symbol: Output estimation, with N = 212 and M = 28.

APPENDIX B. Minimal Learning Machine for Classification 108

B.3 Experiments

In this section, we present the results achieved by the Minimal Learning Machine

on four real-world datasets commonly used for benchmarking purposes in classification.

The performance of the MLM is then compared to what is achieved by five other reference

methods: The Extreme Learning Machine (ELM) (HUANG; ZHU; ZIEW, 2006), the Radial

Basis Function Network (RBF) (BUHMANN, 2003; WU et al., 2012), the Support Vector

Machine (SVM) (SMOLA; SCHOLKOPF, 2004), Gaussian Processes (GP) (RASMUSSEN;

WILLIAMS, 2006), and the MultiLayer Perceptron (MLP) (BISHOP, 1995).

Table 5: Description of the datasets: input/output dimensionality and number of train-
ing/test samples.

Dim # Samples
Dataset In Out Train Test

Wisconsin Breast Cancer 30 2 379 190

Pima Indians Diabetes 8 2 512 256

Iris 4 3 100 50

Wine 13 3 118 60

The datasets are available from the University of California at Irvine (UCI) Repos-

itory (www.ics.uci.edu/∼mlearn/) and a description of the datasets is summarized in

Table 5. The datasets have been chosen to object heterogeneity in the number of samples

and inputs. All the datasets have been preprocessed in the same way. Categorical variables

have been removed as well as samples containing missing values. Ten different random

permutations of the whole datasets are taken, and two thirds are used to create the training

set and the remaining for the test set. Then, the training set is normalized to zero mean

and unit variance, and the test set is normalized using the same mean and variance from

the training set. It may also be noticed that the proportions of the classes, for classification

cases, have been kept balanced: each class is represented in an equal proportion, in both

training and test sets.

The hyper-parameters for the SVM and the MLP are selected using 10-fold cross-

validation. The SVM is learned using the SVM toolbox (CHANG; LIN, 2011) with default

settings for the hyper-parameters and grid search: the grid is logarithmic between 2−2 and

210 for each hyper-parameter; nu-SVC has been used for classification and epsilon-SVR

for regression, with radial basis function kernel. The MLP is trained using Levenberg-

Marquardt optimization and a range of hidden units from 1 to 20. The learning of GP is

based on the default settings in the Matlab Toolbox (RASMUSSEN; WILLIAMS, 2006).

The ELM network uses sigmoid kernel and it has been validated with the number of hidden

units ranging from 10 to 100 with increments of 10. For the experiments with the RBF

network, the centers of the gaussian basis functions are selected by the k-means algorithm,

with the number of centers varying from 5% to 50% (step size of 5%) of the number of

APPENDIX B. Minimal Learning Machine for Classification 109

learning points. We also applied 10-fold cross-validation to select the optimal number

of centers. The only hyper-parameter of the Minimal Learning Machine, the number of

reference points M , has been optimized using 10-fold cross-validation with reference points

randomly selected in a range of 5% to 100% (with a step size of 5%) of the available

training samples.

B.3.1 Results

In order to evaluate the MLM performance for classification problems, we use the

mean success classification rate and the corresponding standard deviations. To assess statis-

tical significance for the results achieved by the MLM in comparison to the other methods,

we carried out the nonparametric Wilcoxon signed-ranks hypothesis test (WILCOXON,

1945) with significance level equal to 5%. The null hypothesis is that the difference between

MSE values comes from a distribution with zero median. The results are reported in Table

6.

Table 6: Test performance: accuracies (%), the corresponding standard deviations and
Wilcoxon signed-ranks test results (X: fail to reject, ×: reject). For each dataset, the best
performing models are in boldface.

Datasets Models
MLM ELM RBF SVM GP MLP

Wisconsin B. C. 97.7 95.7 95.6 91.6 97.3 96.6
0.6 1.2 1.4 1.7 0.9 1.9

× × × X ×
Pima I. D. 74.2 74.6 74.5 72.7 76.3 75.2

1.7 2.1 2.3 1.5 1.8 1.9
X X X × X

Iris 95.0 96.0 96.4 95.4 95.6 94.8
1.4 2.3 1.8 1.9 2.3 3.8

X × X X X
Wine 99.0 97.2 98.0 95.8 96.2 96.0

1.2 3.5 2.0 2.9 2.1 2.4
X × × × ×

From Table 6 we can observe that the MLM exhibits an equivalent or even better

generalization performance in comparison to the other models. Moreover, the MLM has

shown a stable performance since its standard deviations are smaller than those of the

other methods, particularly on the Wisconsin B. C. and Wine datasets. In opposite, the

SVM model presented the worst performances overall. Based on the hypothesis tests,

the MLM achieves performances that are statistically distinct from the other methods,

specially for the Wine and Wisconsin B. C. datasets. With regard to Iris and Pima I. D.

sets, the MLM provides results mostly equivalent to the state-of-the-art methods.

We report in Figure 41 the MLM performance during the cross-validation procedure.

From Figure 41, one may notice that it is not needed as many reference points as learning

points, particularly for large datasets, e.g., the Pima I. D. dataset. Although the optimal

APPENDIX B. Minimal Learning Machine for Classification 110

2 4 6 8 10

50

100

150

200

250

300

350

repetition

Wisconsin(379)
Pima(512)
Iris(100)
Wine(118)

M

(a) Optimal M value over different runs

20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

/N (%)

N
M

S
E

Wisconsin(379)
Pima(512)
Iris(100)
Wine(118)

M

(b) Error per number of reference points

Figure 41: MLM cross-validation performance on classification. Legends also contain the
total number of training samples.

number of reference points is about 100% of the learning points (M = N) for Wine and

Iris datasets (Figure 41a), we observe that 20-40% of the number of learning points has

provided a good threshold for selecting M , where the error measures (Normalized Mean

Squared Error, NMSE1) stabilize (Figure 41b), and then increasing M does not reduce

the error considerably.

1 The mean squared errors have been normalized to be between 0-1.

111

APPENDIX C

Minimal Learning Machine for

Regression

In this appendix, we present the results achieved by the Minimal Learning Machine

on eight real-world datasets commonly used for benchmarking purposes in regression.

C.1 Experiments

The performance of the MLM is then compared to what is achieved by five other

reference methods: The Extreme Learning Machine (ELM) (HUANG; ZHU; ZIEW, 2006),

the Radial Basis Function network (RBF) (BUHMANN, 2003; WU et al., 2012), the

Support Vector Machine (SVM) (SMOLA; SCHOLKOPF, 2004), Gaussian Processes (GP)

(RASMUSSEN; WILLIAMS, 2006), and the MultiLayer Perceptron (MLP) (BISHOP,

1995).

Table 7: Description of the datasets: input/output dimensionality and number of train-
ing/test samples.

Dim # Samples
Dataset In Out Train Test

Ailerons 5 1 4752 2377

Elevators 6 1 6344 3173

Breast Cancer 32 1 129 65

Boston Housing 13 1 337 169

Servo 4 1 111 56

Abalone 8 1 2784 1393

Stocks 9 1 633 317

Auto Price 15 1 106 53

The datasets are available from the University of California at Irvine (UCI) Repos-

itory (www.ics.uci.edu/∼mlearn/) and a description of the datasets is summarized in

APPENDIX C. Minimal Learning Machine for Regression 112

Table 7. The datasets have been chosen to object heterogeneity in the number of samples

and inputs. All the datasets have been preprocessed in the same way. Categorical variables

have been removed as well as samples containing missing values. Ten different random

permutations of the whole datasets are taken, and two thirds are used to create the training

set and the remaining for the test set. Then, the training set is normalized to zero mean

and unit variance, and the test set is normalized using the same mean and variance from

the training set. It may also be noticed that the proportions of the classes, for classification

cases, have been kept balanced: each class is represented in an equal proportion, in both

training and test sets.

The hyperparameters for the SVM and the MLP are selected using 10-fold cross-

validation. The SVM is learned using the SVM toolbox (CHANG; LIN, 2011) with default

settings for the hyper-parameters and grid search: the grid is logarithmic between 2−2 and

210 for each hyper-parameter; nu-SVC has been used for classification and epsilon-SVR

for regression, with radial basis function kernel. The MLP is trained using Levenberg-

Marquardt optimization and a range of hidden units from 1 to 20. The learning of GP is

based on the default settings in the Matlab Toolbox (RASMUSSEN; WILLIAMS, 2006).

The ELM network uses sigmoid kernel and it has been validated with the number of hidden

units ranging from 10 to 100 with increments of 10. For the experiments with the RBF

network, the centers of the gaussian basis functions are selected by the k-means algorithm,

with the number of centers varying from 5% to 50% (step size of 5%) of the number of

learning points. We also applied 10-fold cross-validation to select the optimal number

of centers. The only hyper-parameter of the Minimal Learning Machine, the number of

reference points M , has been optimized using 10-fold cross-validation with reference points

randomly selected in a range of 5% to 100% (with a step size of 5%) of the available

training samples.

C.1.1 Results

All the models are evaluated using the mean and standard deviation of the resulting

MSE over 10 independently drawn test sets. We also carried out a statistical evaluation of

the MLM performance against those achieved by the other models using the Wilcoxon

signed-ranks test (WILCOXON, 1945) with significance level equal to 5%. The null

hypothesis is that the difference between MSE values comes from a distribution with zero

median. In our case, we compare the MLM performance against each other method for

each dataset.

On the basis of the experimental results reported in Table 8, we can observe that

the state-of-the-art models seem to be able to achieve similar accuracies. In this regard, the

MLM also achieves performances that are comparable to such methods. The MLM presents

the smallest MSE (average) for five out of eight regression problems. Also, even though we

APPENDIX C. Minimal Learning Machine for Regression 113

Table 8: Test results: MSE, standard deviations (below the MSE) and Wilcoxon signed-
ranks test results (X: fail to reject, and ×: reject). The best performing models are in
boldface.

Datasets Models
MLM ELM RBF SVM GP MLP

Ailerons 2.7e−8 2.9e−8 3.0e−8 1.3e−7 2.7e−8 2.7e−7
1.6e−9 1.5e−9 1.8e−9 2.6e−8 1.9e−9 4.4e−9

× × × X ×
Elevators 2.0e−6 2.1e−6 2.1e−6 6.2e−6 2.0e−6 2.6e−6

6.1e−8 5.5e−8 6.8e−8 6.8e−7 5.0e−8 9.0e−8
X × × × X

Breast Cancer 1.1e+3 1.2e+3 1.2e+3 1.2e+3 1.3e+3 1.5e+3
1.8e+2 1.4e+2 1.8e+2 7.2e+1 1.9e+2 4.4e+2

X X X × ×
Boston 1.9e+1 2.2e+1 2.0e+1 3.4e+1 1.1e+1 2.2e+1

9.0 7.1 6.6 3.1e+1 3.5 8.8
X X X × X

Servo 4.6e−1 7.0 e−1 6.1e−1 6.9e−1 4.8e−1 6.0e−1
3.0e−1 2.5 e−1 3.4e−1 3.2e−1 3.5e−1 3.2e−1

× × × X X
Abalone 4.7 4.6 4.7 4.5 4.5 4.6

3.3e−1 2.4e−1 2.3e−1 2.7e−1 2.4e−1 5.0e−1
X X X X X

Stocks 4.1e−1 9.0e−1 7.1e−1 5.1e−1 4.4e−1 8.8e−1
5.8e−2 7.3e−2 2.0e−1 9.8e−2 5.0e−2 2.1e−1

× × × X ×
Auto Price 2.6e+7 1.3e+7 1.1e+7 9.8e+7 2.0e+7 1.0e+7

2.7e+7 4.1e+6 5.4e+6 8.4e+6 1.0e+7 3.9e+6
X X X X X

have applied random selection of reference points, the standard deviation of MSEs reported

by MLM is rather similar to the smallest values achieved by the state-of-the-art methods.

The hypothesis tests have shown that the MLM presents statistical difference to the other

methods. For the Stocks and Ailerons datasets, the MLM was the best performing model

and the null hypothesis can not be rejected only for the GP model. In contrast, the MLM

results are not statistically distinct from the other methods for the Auto Price and Abalone

datasets — cases in which the MLM is not the best performing model.

As noticed, the MLM performance is quite similar to the state-of-the-art methods.

Thus, the computational complexity takes an important role in the decision making process

of selecting the most appropriate method. In this regard, an essential aspect for fast MLM

training is the number of reference points, or more specifically, the property that the

optimal number of reference points does not grow at the same rate of the number of

learning points (dataset size). In order to illustrate such a property, we report in Figure 42

the results of the cross-validation phase in terms of selecting M for all the 10 independent

runs. Figure 42a shows that the rate between the optimal number of reference points

APPENDIX C. Minimal Learning Machine for Regression 114

2 4 6 8 10

100

200

300

400

500

600

700

repetition

Ailerons(4752)
Elevators(6344)
Breast C.(129)
Boston(337)
Servo(111)
Abalone(2784)
Stocks(633)
Auto P.(106)

M

(a) Optimal M value over different runs

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

/N (%)

N
M

S
E

Ailerons(4752)
Elevators(6344)
Breast C.(129)
Boston(337)
Servo(111)
Abalone(2784)
Stocks(633)
Auto P.(106)

M

(b) Error per number of reference points

Figure 42: MLM cross-validation performance on regression. Legends also contain the total
number of training samples.

per number of learning points is almost equal to one for small datasets (up to about

600 samples), and it is stable number. Concerning large datasets (Abalone dataset), our

experiments have shown that it is not needed as many reference points as learning points.

Figure 42b illustrates how the validation errors (Normalized Mean Squared Error, NMSE1)

change as a function of the proportion of reference points. Based on Figure 42b, using 20%

of the learning points as reference points seems to be a good choice for most datasets.

1 The mean squared errors have been normalized to be between 0-1.

	Title page
	Approval
	Dedication
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	The system identification problem
	Data acquisition
	Model structure selection
	Parameter estimation
	Model validation
	A synthetic example

	Objectives of the thesis
	Chapter organization and contributions
	Publications

	Global and Local Learning Models for System Identification
	Global modeling
	Least Squares and ARX models
	Single-hidden layer feedforward networks
	MultiLayer Perceptrons
	Extreme Learning Machines
	Radial Basis Function Networks

	Local modeling
	Modular architectures
	The Self-Organizing Map
	The Local Linear Map

	Local approximating models
	The VQTAM Approach
	The kSOM Model
	Local Linear Regression

	Conclusions

	The Minimal Learning Machine
	Basic formulation
	Parameters and computational complexity
	Links with Multiquadric Radial Basis Functions and Kernel Dependency Estimation
	Application to system identification
	On the selection of reference points
	Illustrative examples
	The smoothed parity
	Synthetic example

	Concluding remarks

	Regional Modeling
	Regional modeling by clustering of the SOM
	Illustrative example

	Outlier Robust Regional Models
	Related works
	Closing remarks

	Experiments
	Methodology
	Example: Narendra's plant
	Example: pH dynamics
	Identification of a hydraulic actuator
	Identification of a heater with variable dissipation
	Closing remarks

	Conclusions and Future Directions
	Future Directions on the Minimal Learning Machine
	Future Directions on Regional Modeling

	Bibliography
	Clustering algorithms
	k-means algorithm
	k-medoids algorithm
	Cluster validity indexes
	Davies-Bouldin index

	Minimal Learning Machine for Classification
	Formulation
	Illustrative example
	Experiments
	Results

	Minimal Learning Machine for Regression
	Experiments
	Results

