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Chapter 1

Introduction

In many engineering problems being able to estimate hidden states from noisy measure-

ments is important. In the simple case where everything is linear there exists an optimal closed-

form solution called the Kalman filter which was introduced in [17]. However, most real-world

problems are nonlinear making numerical approximations necessary. Unfortunately finding ef-

ficient methods which work also in high dimensions is not easy and there has been lots of

research on this subject.

In this thesis the continuous-time nonlinear filtering problem is investigated. A literature

survey on the basics of the theory is given. In the second part of the thesis the theory is applied

to practice in three different problems.

In the theoretical part three different methods for nonlinear filtering are derived. The parti-

cle filter introduced for the first time in [10] is a standard tool that has gained lots of attention

during the last 10 years. Galerkin’s method for continuous-time filtering on the other hand is

much more rare and has rarely been used in engineering applications. The third method, the

Gaussian linear-regression filter, is a generialization of the famous Extended Kalman Filter.

The theoretical approach of this thesis is mainly standard. However, to derive the Gaus-

sian filters a linear regression approach was adopted. This approach, presented for example in

[23], unifies different approximation methods and is intuitively clear. A heuristic approach for

estimating the quality of linear approximations is proposed basing on the theory.
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In the experimental part of the work the theory is tested on four simulations which model

real-world phenomena. Proposals for practical implementation of Galerkin’s method are given

based on the experiments. It is also pointed out that by replacing the EKF by a slightly more

sophisticated linear-regression filtering algorithm, improvements are possible often without

additional computational cost. This idea is applied to the problem of frequency and phase

tracking, where traditionally EKF-based techniques have been used.

The structure of the thesis is as follows. In chapters 2, 3 and 4 an introduction to stochas-

tic analysis and the theory of martingales is given. Main emphasis is on fixing notation and

concepts.

The nonlinear filtering problem is investigated in a very general setting in chapter 5. In

this chapter the famous Kushner-Stratonovitch equation is derived by using the theory of mar-

tingales. In chapter 6 a more specific model is introduced. This model allows the Kushner-

Stratonovich equation to be written in a more concrete form. In addition two other important

tools are introduced: the Kallianpur-Striebel formula and the Zakai equation.

In chapter 7 three numerical methods for solving the nonlinear filtering problem are intro-

duced. These are based on either approximating straightforwardly the Kushner-Stratonovitch

equation or on using time-discretization and the Kallianpur-Striebel formula. The approach in

this chapter is more practical than in previous chapters and no analysis of convergence is given.

In chapter 8 results of numerical simulations are given and analysed. For clarity the ex-

periments are divided into two parts. In the first one main emphasis is on testing Galerkin’s

method. In the second one the linear-regression filtering technique and the particle filter are

investigated though two different experiments.
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Chapter 2

Martingale Theory

In this chapter we will go through basics of martingale theory. Important tools for nonlinear

filtering are introduced.

2.1 Basic Definitions

We denote by (Ω,F , P) a probability space. We will assume the space to be complete. A
continuous-time stochastic process X = (Xt) is a mapping IR+ × Ω "→ IR so that each Xt is a

random variable. Correspondingly discrete-time processes are mappings X = (Xn) : ZZ+ ×Ω "→
IR with each Xn a random variable.

Definition 2.1 A stochastic process X = (Xt) is called measurable, if it is measurable as a

mapping X : [0,∞] × Ω "→ IR with respect to the σ-algebra B(IR+) × F . X is called integrable
if Xt ∈ L1(Ω,F , P) for all t > 0.

We denote by (Ft) a filtration on (Ω,F ). F X,0
t is defined asσ(Xs, s ≤ t), theσ-algebra generated

by the process (Xt). F X
t denotes the σ-algebra generated by F X,0

t ∪ {A ∈ F : P(A) = 0}. F̃ X,0
t is

the usual augmentation of F X,0
t and thus right continous and complete.

Definition 2.2 Let X = (Xt) be a stochastic process and (Ft) a filtration. If each Xt is Ft mea-
surable, the process is called adapted to (Ft).

By (Xt,Ft) we mean a measurable stochastic process adapted to (Ft)

Definition 2.3 (Xt,Ft) is called progressively measurable, if for each t > 0 it is B([0, t]) × Ft
measurable as a mapping X : [0, t] × Ω "→ IR.
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Definition 2.4 X = (Xt) is called continous if the paths Xt(ω) : IR+ "→ IR are continous a.s.

Similar definitions hold for right and left continuity and increasing/decreasing processes.

A right continuous process with left limits is called cadlag.

Definition 2.5 Processes X = (Xt) and Y = (Yt) are called indistinguisable if P({ω : Xt(ω) =
Yt(ω) ∀t ≥ 0}) = 1. X is said to be a version of Y if P(Xt = Yt) = 1 for all t ≥ 0.

The following proposition is quite obvious and shows that measurability poses no problems.

Proposition 1 Let (Xt, Ft) be right-continuous at every point on Ω. Then it is progressively

measurable.

Next we introduce the concept of stopping times which is very important.

Definition 2.6 A random variable τ : Ω→ IR+ is called a (finite) stopping time with respect to

(Ft), if {τ ≤ t} ∈ Ft for all t ≥ 0.

Fτ = {A ∈ F |A ∩ {τ ≤ t} ∈ Ft ∀t ≥ 0} is the σ-algebra generated by the stopping time
τ. It is easy to prove that Xτ is Fτ measurable if X = (Xt) is progressively measurable and
F -measurable, if X is measurable. Often it is useful to allow the value∞ for a stopping time.

Definition 2.7 A stochastic process (Xt,Ft) is called Lp-bounded if supt E[|X|pt ] < ∞.

Generalizations to higher dimensions are obvious. It should be clear from the context when we

use vector valued processes. The definitions in this section have obvious discrete-time versions.

To fix some notation, the i:th component of a vector x will be denoted by xi. We will use

the notation x∗ for transpose. We adopt the convention inf{φ} = ∞.

2.2 Discrete-time Martingales

The theory of discrete-time martingales is the basis for understanding continuous-time pro-

cesses. Many of the results for continuous-timemartingales can be derived using corresponding

discrete-time results.
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Definition 2.8 The process (Xn,Fn)n≥0 is a supermartingale, if Xn ∈ L1(Ω,F , P) for n ≥ 0 and
E[Xn|Fm] ≤ Xm for n ≥ m ≥ 0. Correspondingly, it is a submartingale if −Xn is a supermartin-
gale and a martingale if it has both properties.

The following theorem is useful as it allows us to decompose a stochastic process into noise

(the martingale part) and a regular component.

Theorem 2.9 (Doob decomposition). Let (Xn,Fn) be an integrable stochastic process. Then it
has the following unique decomposition:

Xn = X0 + Mn + An,

where (Mn,Fn) is a martingale and E[An|Fn−1] = An. Moreover, M0 = 0 and A0 = 0.

Proof Define

Mn = Xn − X0 −
n∑

i=1
E[Xi − Xi−1|Fi−1].

Clearly Mn has the required properties. We define An = Xn − Mn.

Suppose Xn = X0 + Mn + An = X0 + M̃n + Ãn are two different decompositions of X. Then

Mn − M̃n is a martingale and Fn−1 measurable. Because M0 = M̃0, it is clear that Mn = M̃n a.s.

Corollary 2.10 Let (Xn,Fn) be a supermartingale. Then Xn has the Doob decomposition

Xn = X0 + Mn + An,

where (An) is a.s. decreasing.

The following lemma can be proved using Fubini’s theorem (see [29] for the proof):

Lemma 2.11 Let X, Y ≥ 0 be random variables for which the following inequality holds for
all c ≥ 0:

cP(X ≥ c) ≤
∫

{ω∈Ω: X(ω)≥c}
Y dP.

Then ∥X∥p ≤ q∥Y∥p where 1/p + 1/q = 1 and p > 1
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Theorem 2.12 (Doob’s maximal inequality). Let (Xn,Fn) be a nonnegative submartingale.
Then

cP( sup
n∈[0,N]

Xn ≥ c) ≤
∫

{ω∈Ω: supn∈[0,N] Xn(ω)≥c}
XN dP.

Proof This theorem is a fundamental one and can be found in most introductory books on

stochastic calculus.

The next strong theorem is important. It follows straightforwardly from lemma 2.11 and theo-

rem 2.12 taking into account that if (Xn) is a martingale, then |Xn| is a submartingale.

Theorem 2.13 (Doob’s Lp-inequality). Let (Xn,Fn) be a martingale. For all p > 1 we have the
inequality

∥ sup
n∈[0,N]

|Xn| ∥p ≤ q∥XN∥p.

The supermartingale convergence theorem is another important theorem.

Theorem 2.14 (Doob’s Supermartingale Convergence Theorem). Let (Xn,Fn) be a supermartin-
gale and supn≥0 E[|Xn|] < ∞. Then there exists a random variable X∞ ∈ L1(Ω,F , P) so that
(P-a.s.)

X∞ = limn→∞ Xn.

There exist also other convergence results. The one for square integrable martingales is espe-

cially useful from our point of view.

Theorem 2.15 Let (Xn,Fn) be a square-integrable martingale for which supn≥0 X2n < ∞. Then
there exists a random variable X∞ ∈ L2(Ω,F , P) so that limn→∞ ∥X∞−Xn∥2 = 0 and limn→∞ Xn =

X∞ a.s.

The proofs can be found in [29].
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2.3 Martingale Theory for Continuous-parameter Processes

In this section we will recall some basic theorems and definitions for continuous-parameter

martingales. The main point is to present a couple of theorems which are skipped in many

books on stochastic calculus but are still important.

The definition of continuous-parameter submartingales, supermartingales and martingales

is similar to that of discrete-parameter processes.

Theorem 2.16 Assume that (Xt,Ft) is a supermartingale and the filtration (Ft) satisfies the
usual conditions. If the function f (t) = E[Xt] is right-continuous, then (Xt) has a cadlag version.

Proof See [29].

Next we examine stopped supermartingales.

Theorem 2.17 Let (Xt,Ft) be a stochastic process and τ a stopping time. Then the stopped
process (Xt∧τ) is adapted to (Ft) if and only if it is adapted to (Ft∧τ). In addition, (Xt∧τ) is a
(Ft)-martingale if and only if it is a (Ft∧τ)- martingale.

Proof The proof is quite simple, see [16].

Theorem 2.18 Let (Xt,Ft) be a cadlag martingale and τ a stopping time. If (Ft) satisfied the
usual conditions, then (Xt∧τ) is a (Ft)-martingale.

The next theorem will also be used regularly.

Theorem 2.19 Let (Ft) satisfy the usual conditions. Assume that (Xt,Ft) is a cadlag martingale
and S ≥ T ≥ 0 bounded stopping times. Then

E[XT |FS ] = XS .

Proof See [29]. This is the famous optional stopping theorem.

The inequalities and convergence theorems for discrete time martingales may easily be gener-

alized to the continuous-parameter case.
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Definition 2.20 A measurable process (Xt,Ft) is called a local martingale, if there exists a
sequence of (finite) stopping times (τn) so that τn → ∞ a.s. and (Xt∧τn ) is a martingale for all
n > 0.

Definition 2.21 Suppose that X = (Xt,Ft) is a continuous process. X is a semimartingale, if

Xt = X0 + Mt + At,

where M0 = A0 = 0, (Mt) is a continuous local (Ft)-martingale and (At) is P-a.s. of finite
variation.

Definition 2.22 The space of continuous L2-bounded martingales (with respect to some filtra-

tion) is denoted by M2
c .

Theorem 2.23 Given a filtration satisfying the usual conditions, M2
c is a hilbert space with the

inner product

(Mt,Nt) = E[M∞N∞].

2.4 Potentials

Definition 2.24 A positive supermartingale (Xn,Fn) is a discrete-parameter potential, if E[Xn]→
0 when n→ ∞.

Definition 2.25 (Xt,Ft) is a continuous-parameter potential if it is cadlag, positive and E[Xt]→
0.

Theorem 2.26 Let (Xn,Fn) be a potential. Then there exists an L1-bounded, increasing (Fn)-
adapted process An so that

Xn = E[A∞|Fn] − An.

Here An → A∞ a.s. and in the L1-norm. In addition, A0 = 0, An is Fn−1 measurable and the
decomposition is (a.s.) unique.
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Proof Let Xn = X0 − An + Mn be the Doob decomposition for Xn. Clearly (An) is increasing

and positive. An → A∞ P-a.s., where A∞ is F∞ measurable. Using the monotone convergence
theorem we see that E[A∞] < ∞. By Doob’s Supermartingale Convergence Theorem Mn →
M∞, where M∞ ∈ L1(Ω,F∞, P). Noting that Xn → 0 P-a.s., it is obvious that X0 + M∞ = A∞
P-a.s. from which the claim follows.

We are more interested in the continuous-parameter case. In the rest of the chapter we suppose

that the filtration (Ft) satisfies the usual conditions unless otherwise said.

Definition 2.27 Let (At,Ft) be an increasing, L1-bounded cadlag process and A0 = 0. It is
called natural if

E[
∫ ∞

0
Mt − M−t dAt] = 0

for all bounded cadlag-martingales (Mt).

Definition 2.28 A cadlag supermartingale (Xt,Ft) is of class D, if for all ϵ > 0 there exists
δ > 0 so that

P(A) < δ⇒
∫

A
|Xτ| dP < ϵ

for all finite stopping times τ.

Now we are ready to formulate and prove the continuous-parameter version of theorem 2.26.

Theorem 2.29 Let (Xt,Ft) be a potential of class D. Then

Xt = E[A∞|Ft] − At,

where (At) has the following properties:

1. (At) is adapted to (Ft), cadlag and increasing
2. supt≥0 E[|At|] < ∞
3. E[A∞ − At]→ 0 as t → ∞
4. At → A∞ P-a.s.

5. A0 = 0.
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Proof We define discrete-parameter potentials by

X j
n = Xn2− j (n ≥ 0, j > 0).

Let (Aj
n) be the corresponding increasing L1-bounded processes. By taking the limit for each

j, we get a sequence (Aj
∞) ∈ L1(Ω,F∞, P). Next we show that the collection (A j

∞) is uniformly

integrable.

Define the stopping times

τ jN = infn≥0
{Aj

n+1 > N}.

Choose 0 < ϵ < 1 and N so that

P(Aj
∞ > N) ≤

1
N
E[Aj

∞] =
1
N
E[X0] < ϵ

Next we see that

E[Aj
∞ − Aj

τ jN
] = E[Xτ jN ] =

∫

{τ jN<∞}
Xτ jN dP = lim

M→∞

∫

{Aj∞>N}
Xτ jN∧M dP < δ,

where δ > 0 may be chosen arbitrarily small by choosing a small enough ϵ. The last equality

follows from the fact that the sequence (Xτ jN∧M)M≥0 is uniformly integrable. Using again the

Tsebychev-inequality it is seen that

P(Aj
∞ > N + M) = P(Aj

∞ − Aj
τ jn
+ Aj

τ jn
> N + M)

≤ P(Aj
∞ − Aj

τ jn
> M) ≤ 1

M
E[Aj

∞ − Aj
τ jn
] <

δ

M
.

The uniform integrability of (A j
∞) is seen from the following inequality which holds for all

j > 0: ∫

{Aj∞>N+M}
Aj
∞ dP ≤ δ +

∫

{Aj∞>N+M}
Aj
τ jN
dP ≤ δ + Nδ

M
.

Using the uniform integrability it may be proved that there exists a subsequence so that (A jk
∞)→

A∞ in the weak topology of L1(Ω,F∞, P).

Let r > s be rational numbers of the form l2−r, where l ≥ 0 and r > 0. Then (P-a.s.)

E[A∞|Fs] − Xs =
weak
lim
k→∞

E[Ajk
∞|Fs] − Xs

≤
weak
lim
k→∞

E[Ajk
∞|Fr] − Xr = E[A∞|Fr] − Xr.

DRAFT: Do Not Distribute 17:37 12th July 2005



15

We choose a cadlag version of E[A∞|Ft] and define At = E[A∞|Ft] − Xt completing the proof.
The concept of natural processes may seem unnecessary at this point but is important in the

next section where we define the dual predictable projection.

Theorem 2.30 (At) in the previous theorem is natural.

Proof Let (Mt) be any bounded cadlag martingale. By equation (7.1) in [7]

E[
∫ ∞

0
Mt dAt] = E[M∞A∞].

The previous equation is a quite straightforward consequence of the Lebesgue Dominated Con-

vergence Theorem. We approximate Mt− by

Mj
t = Mn2− j if t ∈ [n2− j, (n + 1)2− j) (n ≥ 0, j > 0).

Then
∫ ∞

0
Mj

t dAt = E[
∞∑

n=0
Mn2− j(A2− j(n+1) − A2− jn)] =

∞∑

n=0
E[Mn2− j(X2− j(n+1) − X2− jn)]

=

∞∑

n=0
E[Mn2− j(Aj

n+1 − Aj
n)] =

∞∑

n=0
E[M(n+1)2− j A j

n+1 − Mn2− jA j
n] = E[Aj

∞M∞],

where (Aj
n) is defined as in the previous theorem. Note that in the fourth equality, the fact that

Aj
n+1 isFn2− j measurable was used. By choosing an appropriate weakly convergent subsequence
( jk) and using the Lebesgue Dominated Convergence Theorem it follows that

E[
∫ ∞

0
Mt− dAt] = E[M∞A∞].

Theorem 2.31 (At) in theorem 2.29 is unique in the sense that if (At) and (Ãt) satisfy the

properties given in theorems 2.29 and 2.30, then they are indistinguisable.

Proof

Xt = E[A∞|Ft] − At = E[Ã∞|Ft] − Ãt

Let Mt be any bounded cadlag martingale. We again approximate Mt− by

Mj
t = Mn2− j if t ∈ [n2− j, (n + 1)2− j) (n ≥ 0, j > 0).
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Because At is natural,

E[M∞A∞] = lim
j→∞

E[
∞∑

n=0
Mj

n(A(n+1)2− j − An2− j)]

= lim
j→∞

E[
∞∑

n=0
Mj

n(Ã(n+1)2− j − Ãn2− j)] = E[Ã∞M∞].

The claim follows because M∞ ∈ L1(Ω,F∞, P) may be chosen freely.

Theorem 2.32

E[A2∞] = E[
∫ ∞

0
Xt + Xt− dAt]

Proof Define the cadlag martingales

Mt = E[A∞|Ft]

and

Mn
t = E[A∞I{ω: A∞(ω)<n}|Ft].

Both martingales are a.s. nonnegative. Also Mn
t ≤ Mn+1

t ≤ Mt and Mn
t ≤ n P-a.s. By Doob’s

maximal inequality

P( sup
t∈[0,T ]

|Mt − Mn
t | > ϵ) ≤

1
ϵ
E[MT − Mn

T ] ≤
1
ϵ
E[A∞I{ω: A∞(ω)>n}].

for all T > 0. Thus supt∈IR+ |Mt − Mn
t | → 0 in probability. We may choose a subsequence (nk)

so that supt∈IR+ |Mt − Mnk
t |→ 0 P-a.s. as k → ∞.

∫ ∞

0
Xt + Xt− dAt =

∫ ∞

0
Mt + Mt− − At − At− dAt =

∫ ∞

0
Mt + Mt− dAt − A2∞.

By the Monotone Convergence Theorem and theorem 7 in section 2.4.7. in [7]

E[
∫ ∞

0
Mt + Mt− dAt] = E[lim

k→∞

∫ ∞

0
Mnk

t + M
nk
t− dAt]

= lim
k→∞

E[
∫ ∞

0
Mnk

t + M
nk
t− dAt] = limk→∞ 2E[M

nk
∞A∞] = 2E[A2∞].
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2.5 The Dual Predictable Projection

The dual predictable projection is useful in filtering theory. It is for example used to de-

compose an observation process into an innovation process and a noise component.

Definition 2.33 Let (Xt,Ft) be a stochastic process. It is called predictable, if it is measurable
w.r.t. the σ-algebra generated by sets of the form A × (s, t] and B × {0}, where s > 0, A ∈ Fs
and B ∈ F0.

We need the following theorem:

Theorem 2.34 Let (At,Ft) be an increasing nonnegative L1-bounded cadlag process. It is pre-
dictable if and only if it is natural.

Proof See [7]. The proof is not given here because to prove the result, a fair amount of stopping

time theory is needed. In our case the direction⇐ is more relevant.

Theorem 2.35 Let (Vt) be an increasing nonnegative L1-bounded cadlag process. (Ft) is a
filtration containing all the null sets in F but is not necessarily right-continuous. (Vt) need

not be adapted to (Ft). Then there exists a unique natural and predictable (w.r.t. (Ft+)) process
(Ut,Ft) so that

E[Vt − Vs|Fs] = E[Ut − Us|Fs] (t ≥ s ≥ 0).

Proof Clearly E[V∞ − Vt|Ft+] is a potential of class D. Choose (Ut) as the process with the

properties given in theorem 2.29. It may be shown using the monotone class theorem that

because (Ut) is predictable, adapted to (Ft+) and U0 = 0, it is also adapted to (Ft). Also

E[Vt − Vs|Fs+] = E[Ut − Us|Fs+]

(Ut) is called the dual predictable projection of (Vt).

Theorem 2.36 Let (Vt) be a process with the properties given in theorem 2.35 and (Ut) its dual

predictable projection. If supt∈IR+ E|Vt|2 < ∞, then (Ut) is L2-bounded.
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Proof Define Mt = E[V∞|Ft]. Recall that

Xt = E[V∞ − Vt|Ft] = E[U∞|Ft] − Ut.

Now by theorem 2.32 and its proof

E[U2
∞] ≤ E[

∫ ∞

0
Mt + Mt− dUt] = E[2

∫ ∞

0
Mt− dUt]

The inequality follows from the fact that Xt ≤ Mt. By Fatou’s lemma

E[
∫ ∞

0
Mt− dUt] = E[lim

δ→0

∞∑

i=0
Miδ(U(i+1)δ − Uiδ)

≤ lim inf
δ→∞

E[
∞∑

i=0
Miδ(V(i+1)δ − Viδ)]

≤ (E[ sup
t∈IR+

M2
t ])1/2(E[V2∞])1/2 < ∞.

The last inequality follows from Doob’s Lp-inequality.

2.6 Quadratic Variations

In this section we will recall the definition and some other things concerning quadratic

variations. The purpose is mainly to fix concepts and notation.

Theorem 2.37 Let M = (Mt,Ft) be a M2
c -martingale. Then there exists an (Ft)-adapted in-

creasing continuous process ⟨M⟩ so that

M2
t − ⟨M⟩t

is a uniformly integrable martingale and ⟨M⟩0 = 0. Moreover, ⟨M⟩ is unique.

Proof See for example [16].

Using localisation, a similar result for local martingales may be proved.

Theorem 2.38 If M = (Mt,Ft) is a continuous local martingale, there exists an (Ft) adapted
increasing continuous process ⟨M⟩ so that

M2
t − ⟨M⟩t

is a local martingale and ⟨M⟩0 = 0. ⟨M⟩ is unique.
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⟨M⟩ is the quadratic variation of (Mt).

Definition 2.39 Let M = (Mt) and N = (Nt) be local martingales. The covariation between M

and N is defined as

⟨M,N⟩ = 1
4
(⟨M + N⟩ − ⟨M − N⟩).

2.7 Stochastic Integration with Respect to Brownian motion

For an introduction to stochastic integration with respect to local martingales, see [16]. In

this section we present an extended definition for integrals with respect to Brownian motion.

This extension removes the predictability requirement.

Definition 2.40 A continuous process (Wt) is called a Brownian motion with respect to the

filtration (Ft), if
1. W0 = 0

2. Wt −Ws is independent of Fs for all t ≥ s ≥ 0.
3. Wt −Ws is normally distributed with mean 0 and variance t − s.

Correspondingly, (Wt) is an IRn-Brownian motion, if the components (Wi
t ) are independent

Brownian motions w.r.t. (Ft). Unless otherwise said, we choose (F W
t ) as the filtration (Ft)

in the definition 2.40.

When integrating with respect to a local martingale, the property of local predictability

of the integrand is essential. However, in the case of Brownian motion the definition can be

extended to the following class of processes:

Definition 2.41 Let (Ft) be a filtration satisfying the usual conditions. L2W is defined as the
class of measurable (Ft)-adapted processes X : [0,∞] × Ω→ R with the property

∫

IR+×Ω
|X|2 λ(dt) × P(dω) < ∞.

L2W is a Hilbert space of equivalence classes.
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Definition 2.42 For i ≥ 0 let Hi be Fti-measurable uniformly bounded functions. Functions of
the form

s =
∞∑

i=0
HiI(ti ,ti+1],

where s ∈L2W and ti+1 > ti, are called simple functions.

We define the subspace

L = {s ∈ L2W : s is simple}.

The following theorem shows that for every equivalence class in L2W , there corresponds a pre-

dictable process.

Theorem 2.43 L is dense in L2W .

Proof The proof is given in [16].

Thus stochastic integration may be defined in the space L2W and is a M2
c -martingale for those

functions.

2.8 A Representation Theorem for Martingales

Theorem 2.44 Let W = (Wt) be an IRn-valued Brownian motion. Then every cadlag L2-

bounded martingale (Mt,F W
t ) has a representation

Mt = M0 +

∫ t

0
f ∗s dWs,

where ∗ denotes transpose and ft ∈ L2W (see previous section, definition of L2W for vector valued
processes is similar).

Proof Let S be the subspace of functions in L2(Ω,F W
∞ , P) which are of the form

a +
∫ ∞

0
f ∗t dWt,

where ft has the required properties and a ∈ IR. S is closed because stochastic integration
preserves norm. Set st = [s1t , . . . , snt ]∗ ∈ L2((IR+)n), where sit:s are bounded step functions. The
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idea of the proof is to show that if Y ∈ L2(Ω,F W
∞ , P), E[Y] = 0 and Y⊥S , then Y=0. But this is

easy once we have recalled that by Ito’s formula

Z∞ = exp(
∫ ∞

0
st dWt −

∫ ∞

0
s2t dt) = 1 +

n∑

j=0

∫ ∞

0
Zt dW j

t .

In addition, E[Z2∞] < ∞. Thus Z∞ ∈ S. Choose a bounded random variable Y ∈ S. By choosing
appropriate step functions, for any t j > t j−1 . . . > t0 we see that

E[exp(
n∑

j=1
a∗jWtj)Y] = 0

for all a j ∈ IRn . But Y defines a finite measure on (Ω,F Wt1 ,...,Wtj ) and it can be proved that

E[Y |Wt1 . . .Wtj] = 0 for example by analytic continuation. This can only be true if Y = 0.

Now we have proved that all functions in L2(Ω,F W
∞ , P) with mean 0 belong to S which

proves the claim of the theorem.
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Chapter 3

Stochastic Differential Equations

Stochastic differential equations are a standard modelling tool in continuous time. Even

though they do not allow as general models as Markov chains in discrete-time, they are still

quite general. In continuous-time filtering, both coming observation and hidden states are mod-

elled as stochastic differential equations.

3.1 Strong Solutions

A stochastic differential equation is an equation of the form

Xt = ζ +
∫ t

0
b(s, Xs) ds +

∫ t

0
σ(s, Xs) dWs [3.1]

with the initial condition X0 = ζ ∈ L2. ζ is assumed to be independent of (FW
t ). b : [0,∞)×IRn →

Rn and σ : [0,∞) × IRn → Rn×r are Borel measurable. (Wt) is an Rn-dimensional Brownian

motion. By (Ft) we denote the augmented σ-algebra generated by (Wt) and X0.

Definition 3.1 If A ∈ IRn × IRr, we define

∥A∥2 =
n∑

i=1

r∑

j=1
|Ai j|2

Definition 3.2 A stochastic process (Xt,Ft) is a strong solution to the stochastic differential
equation 5.3, if

1. (Xt) is continuous.

2.
∫ t
0
∑n
i=1 ∥bi(s, Xs)∥ ds +

∫ t
0 ∥σ(s, Xs)∥

2 ds < ∞ P-a.s. for all t ≥ 0.
3. Xt = ζ +

∫ t
0 b(s, Xs) ds +

∫ t
0 σ(s, Xs) dWs
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Theorem 3.3 Suppose that there exists K > 0 so that for all t ≥ 0

∥b(t, x) − b(t, y)∥ + ∥σ(t, x) − σ(t, y)∥ ≤ K∥x − y∥

and

∥b(t, x)∥ + ∥σ(t, x)∥ ≤ K(1 + ∥x∥).

Then the stochastic differential equation 3.1 has a unique strong solution. In addition,

sup
t∈[0,T ]

E[X2t ] < ∞ (T > 0).

The proof of this important result can be found in any book on stochastic calculus. It is also

possible to define weak solutions but from our point of view the assumptions in theorem 3.3

are not too restrictive.

3.2 Infinitesimal Generators

Assume that (Xt) is a strong solution to equation 3.1, where b(s, Xs) and σ(s, Xs) satisfy

the Lipschitz and growth conditions. Let f ∈ C2c (IRn), where C2c (IRn) is the vector space of

continuous twice differentiable functions with compact support. By Ito’s formula

f (Xt) = f (X0) +
n∑

i=1

∫ t

0
bi(s, Xs)∂xi f (Xs) ds +

n∑

i=1

n∑

j=1

∫ t

0
∂xi f (Xs)σi j(s, Xs) dW j

s

+
1
2

n∑

i=1

n∑

j=1

∫ t

0
∂xi x j f (Xs) d⟨Xi, X j⟩s.

On the other hand,

⟨Xi, X j⟩t =
∫ t

0
(σ(s, Xs)σ∗(s, Xs))i j ds.

Define the linear operator

A f =
n∑

i=1
bi(s, x)∂xi f (x) +

1
2

n∑

i=1

n∑

j=1
(σ(s, Xs)σ∗(s, Xs))i j∂xi x j f (x).

Then f (Xt) − f (X0) −
∫ t
0 A f (Xs) ds is a martingale.

Definition 3.4 The operator A is called the (infinitesimal) generator for (Xt).
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The operator A is of course related to the theory of analytic semigroups. Discussion on this

point can for example be found in [16] or [29]. The infinitesimal generator is certainly very

useful, because it gives a nice decomposition of (Xt) into martingale and finite variation parts.

3.3 Numerical Methods for Solving SDEs

In this section we derive briefly two numerical methods for approximating solutions of

stochastic differential equations. The derivations are meant to be as simple as possible, as we

do not want to go too deep into this complicated subject.

Consider the equation

Xt = X0 +
∫ t

0
b(s, Xs) ds +

∫ t

0
σ(s, Xs) dWs. [3.2]

In most cases there are no closed form solutions and numerical approximations of the process

(Xt) are necessary. This means that (Xt) is replaced by a simpler process which is close to the

original one and is such that realizations of it can be simulated. The first method which comes

to mind is a generialization of the deterministic Euler method to the stochastic case. This is

defined by choosing a step size h and defining the Markov chain

Xhn = Xhn−1 + hb((n − 1)h, X(n−1)h) + σ((n − 1)h, X(n−1)h)(Wnh −W(n−1)h).

Next suppose that the initial condition is known perfectly. Then we have the following general

error bound which also shows that the Euler method is not necessarily as good as its determin-

istic counterpart and thus not entirely satisfying.

Theorem 3.5 If the conditions

E[∥X0∥2] < ∞

∥b(t, x) − b(t, y)∥ + ∥σ(t, x) − σ(t, y)∥ ≤ K1∥x − y∥

∥b(t, x)∥ + ∥σ(t, x)∥ ≤ K2∥x∥

∥a(t, x) − a(s, x)∥ + ∥b(s, x) − b(t, x)∥ ≤ K3(1 + ∥x∥)|s − t|
1
2
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hold for all t, s ≥ 0 and x ∈ Rn, then

E[∥Xnh − Xhn∥2] = O(h)

Proof The proof is given in [18].

Time-discretization of an SDE is not the most error-sensitive phase of a nonlinear filter. How-

ever, it may often be a good idea to use an order 1 method instead of the simple Euler-scheme.

If we take one more term from the Ito-Taylor expansion of (Xt), we get the method

Xin = Xin−1 + hb
i((n − 1)h, Xn−1)

+

n∑

r=1

n∑

l=1

n∑

k=1
σkl((n − 1)h, Xn−1)∂xkσir((n − 1)h, Xn−1)

∫ nh

(n−1)h

∫ t

(n−1)h
1 dWl

sdWr
t .

It can be proved under quite general assumptions that E[∥Xnh − Xhn∥2] = O(h2). In case b and σ
are smooth enough the Milstein scheme is preferable to the Euler method. However, evaluation

of multiple Ito-integrals is not totally simple. See [18] for more information on this subject. In

numerical experiments we will use the Euler method because of its simplicity (except in one

deterministic case). Also our models are relatively simple and there was no need for higher

order approximations. In fact, if b is a constant matrix, then the error bound for the Euler

method is of order 1 instead of 0.5.

Higher order approximations can be obtained by taking more terms from the Ito-Taylor

expansion. There exist also numerous implicit and explicit algorithms for solving SDEs. An

extensive introduction to these matters can be found in [18].
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Chapter 4

Girsanov’s Theorem

In this chapter we present Girsanov’s Theorem. It is necessary when deriving the filtering

equations and the Kallianpur-Striebel formula. We do not present the most general case, for a

more general version of the theorem see [16].

Stochastic processes are defined with respect to a filtration (Ft) that satisfies the usual con-
ditions.

Theorem 4.1 Let M = (Mt) be a continuous local martingale. Then

Zt = exp(Mt −
1
2
⟨M⟩t)

is a local martingale. Moreover, if E[Zt] = 1 for all t ≥ 0, then (Zt) is a martingale.

Proof By Ito’s formula,

Zt − 1 =
∫ t

0
Zs dMs −

1
2

∫ t

0
Zs d⟨M⟩s +

1
2

∫ t

0
Zs d⟨M −

1
2
⟨M⟩⟩s =

∫ t

0
Zs dMs

from which the first claim follows. Choose a sequence of stopping times (τn) → ∞ so that

(Zτn∧t) is a martingale. By Fatou’s lemma,

E[Zt |Fs] ≤ lim inf
n→∞

E[Zτn∧t|Fs] = Zs

when s ≤ t. Thus Zt is a supermartingale and the last claim follows for example from Doob’s
decomposition. Choose any numerable subset of [0,∞) and denote the corresponding discrete-
time supermartingale by (Zn). Then Zn = Z0 + Mn − An, where (An) is monotone and negative.
Because E[Zn] = Z0 − E[An] = 1, (An) must be a constant and (Zn) a martingale.
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Theorem 4.2 Let P and P̃ be equivalent probability measures. Then the process defined by

Lt =
dP̃|Ft
dP|Ft

is an (Ft)-martingale (w.r.t. P).

Proof Choose any A ∈ Fs and t ≥ s ≥ 0. Then
∫

A
Lt dP = P̃(A) =

∫

A
Ls dP

Theorem 4.3 Assume that P and P̃ are equivalent probability measures on F∞ and the process
Lt defined in the previous theorem is an uniformly integrable martingale. Then a continuous

process (Xt,Ft) is a local martingale w.r.t. P̃ if and only if (XtLt) is a P-local martingale.

Proof The proof is not hard and it is left to the reader. It can also be found in [16].

Theorem 4.4 Let (Mt,Ft) be a continuous P-local martingale. Assume that the exponential
local martingale

Zt = exp(Mt −
1
2
⟨M⟩t)

has a constant mean. Let P and P̃ be probability measures on F∞ so that

dP̃
dP
= Z∞

If V = (Vt) is a continuous local martingale, then

Xt = Vt − ⟨V,M⟩t

is a P̃-local martingale so that the quadratic variation of (Xt) is ⟨V⟩.

Proof That Z∞ exists and is integrable follows from the supermartingale convergence theorem

and Fatou’s lemma.

ZtXt =
∫ t

0
Xs dZs +

∫ t

0
Zs dXs + ⟨Z, X⟩s

=

∫ t

0
ZsXs dMs +

∫ t

0
Zs dVs −

∫ t

0
Zs d⟨V,M⟩s + ⟨X, Z⟩s.
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Using the Kunita-Watanabe identity (see for example [28])

⟨X, Z⟩t =
∫ t

0
Zs d⟨V,M⟩s.

Thus

XtZt =
∫ t

0
ZsXs dMs +

∫ t

0
Zs dVs.

From theorem 4.3 it follows that (Xt) is a P̃ local martingale. Choose t > 0 and a partition

t = tn > tn−1 . . . > t0. Then it is standard knowledge that

n∑

i=1
(Vti − Vti−1)2 → ⟨V⟩t [4.1]

in probability as maxi |ti − ti−1| → 0. This holds in both spaces (Ω, P) and (Ω, P̃). By choosing

an appropriate subsequence we may assume that the convergence is pointwise w.r.t. P. Now

noting that P and P̃ are equivalent probability measures, it is obvious that the limit 4.1 does not

depend on the choice of measure. Thus ⟨X⟩P̃ = ⟨V⟩P̃ = ⟨V⟩P.

This theorem is significant in filtering theory. It can be used for a change of probabilitymeasure.

It is used to make a process of the form Wt + S t, where Wt is a brownian motion, a Brownian

motion with respect to a new probability measure.
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Chapter 5

Nonlinear Filtering - A General Case

In this chapter we will derive the important Kushner-Stratonovitch equation. The theory

is quite complicated, but the basic idea is clear. Consider a process (Xt) and a continuous

measurement signal (yt). The measurements are given by

yt = h(t, Xt) + vt,

where vt is white noise. Note that white noise exists only in an abstract sense and the notation is

formal. vt is thought as the derivative of a Brownian motion (in practice continuous-time noise

is close to it). By integrating we get

Yt =
∫ t

0
ys ds =

∫ t

0
h(s, Xs) ds + Vt,

where Vt is a Brownian motion. Without losing any information, the filtering problem can be

stated as finding the conditional distribution of (Xt) when the process (Yt) is known.

5.1 The Innovation Process

We adopt the same quite general setting as in [16]. The observation process is defined as an

IRn-valued process

Yt = S t +Wt

The observation σ-algebra is defined as Yt = σ(σ(Ys, s ≤ t) ∪ {A ∈ F : P(A) = 0}). By (Ft)
we denote a filtration satisfying the usual conditions.
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The following assumptions are assumed to hold in the rest of the thesis:

1.

S t(ω) =
∫ t

0
hs(ω) ds, [5.1]

where (ht) is adapted to (Ft), progressively measurable and

E[
∫ ∞

0
h2t dt] < ∞.

2. E[|ht|] < ∞ for all t > 0.
3. (Wt,Ft) is an IRn-Brownian motion.

The goal of nonlinear filtering is to compute E[ f (Xt)|Yt] where (Xt) is the state process and

f (x) a measurable function. (Xt) is assumed to be adapted to (Ft) and take its values in a Polish
space. The state-space is denoted by E.

S t may be written as

S t = S +t − S −t =
∫ t

0
h+s ds −

∫ t

0
h−s ds.

S̃ t is defined as

S̃ t = U1
t − U2

t ,

where (U1
t ) is the dual predictable projection of (S +t ) on (Yt). Correspondingly, (U2

t ) is the dual

predictable projection of S −t . It may be proved that

S̃ t =
∫ t

0
E[hs|Ys] ds

where a progressively measurable version of the process (E[ht|Yt]) is chosen. A proof that such

a version exists is given in [16], Theorem 2.7.1.

Definition 5.1 The innovation process is defined as

vt = Yt − S̃ t.

Some basic properties of the innovation process could be proved without the restrictive as-

sumption of equation 5.1. The next theorem is not so surprising once it is noted that (v t) is a

martingale.
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Theorem 5.2 (vt,Yt) is a Brownian motion.

Proof For simplicity only the proof of the scalar case is given here. That (vt) is a continuous

martingale is easy to prove by an elementary calculation. Choose t > 0 and points t = tn >

tn−1 > . . . > t0 = 0. It is a well known fact that
n∑

i=1
(vi − vi−1)2 =

n∑

i=1
(S ti − S̃ ti − S ti−1 + S̃ ti−1)2

+

n∑

i=1
2(S ti − S̃ ti − S ti−1 + S̃ ti−1)(Wti −Wti−1)

+

n∑

i=1
(Wti −Wti−1)2 → ⟨S ⟩t (in probability)

as n→ ∞ and maxi |ti − ti−1|→ 0. But the second term in the right side may be bounded by
n∑

i=1
2(S ti − S̃ ti − S ti−1 + S̃ ti−1)(Wti −Wti−1) ≤ 2(vart(S ) + vart(S̃ ))(maxi |Wti −Wti−1 |)

and thus converges to 0 in probability as n→ 0 and maxi |ti − ti−1|→ 0. The same holds for the

first term. The last sum converges to ⟨W⟩t = t. By Levy’s Characterisation of Brownian Motion
(see for example [28]) (vt) is a Brownian Motion with respect to (Yt).

The previous theorem shows why innovation processes are interesting. The proof of the

next theorem follows closely that of theorem 8.3.1. in [16]. Again this result is not surprising

taking into account the martingale representation theorem 2.44.

Theorem 5.3 Any square integrable cadlag martingale (Mt,Yt) (M0 = 0) may be represented

as

Mt =

∫ t

0
ψ∗s dvs, [5.2]

where (ψt) satisfies the usual measurability and integrability conditions.

Proof First an exponential local martingale is defined as

Zt = exp(−
∫ t

0
E[hs|Ys]∗ dvs −

1
2

∫ t

0
∥E[hs|Ys]∥2 ds).
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To make (Zt) a martingale and to bound it, we define the stopping times

τ j = inf
t
{t ≥ 0 : Zt > j or Zt < 1/j}.

Choose any j > 0. We get the exponential martingale

Zt∧τ j = exp(−
∫ t∧τ j

0
E[hs|Ys]∗ dvs −

1
2

∫ t∧τ j

0
∥hs∥2 ds).

Now by Girsanov’s theorem (theorem 4.4)

Ỹt = vt +
∫ t∧τ j

0
E[hs|Ys] ds

is a Brownian motion with respect to the filtration (Yt) and the probability measure P̃. This

may be seen by considering the covariations and quadratic variations of the components. By

theorem 4.4 it is easy to see that they are the same as those of a Brownian Motion. It then

follows from Levy’s Characterisation of Brownian Motion that (Ỹt) is a Brownian Motion.

Let (F Ỹ
t ) be the σ-algebra generated by (Ỹt) augmented with 0-measurable sets. It can be

proved that

F Ỹ
t∧τ j = σ̃(Ỹt∧τ j , 0 ≤ s ≤ t) = σ̃(Yt∧τ j , 0 ≤ s ≤ t) = Yt∧τ j ,

where σ̃ denotes the completion of the generated σ-algebra. Next note that τ j is an (Yt∧τ j )

stopping time and thus an (F Ỹ
t ) stopping time.

Let (Mt,Yt) be a square integrable cadlag martingale (w.r.t. P̃) so that M0 = 0. Then (Mt∧τ j )

is a (F Ỹ
t )-martingale by theorems 2.17 and 2.18.

Thus by theorem 2.44 (the integral is w.r.t. P̃)

Mt∧τ j =

∫ t

0
f̃ ∗s dỸs,

where ( f̃t) is predictable and satisfies the integrability conditions. On the other hand,

Mt∧τ j =

∫ t∧τ j

0
f̃ ∗s dỸs =

∫ t∧τ j

0
f ∗s dYs, [5.3]

where ( fs) is adapted and measurable wrt. (Ys). 5.3 follows straightforwardly from the basic

formulas of stochastic integration.
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We are interested in P-martingales (Mt,Yt). Switching back to using P, by Ito’s formula

and representation 5.3 we get

Zt∧τ j Mt∧τ j = Zt∧τ j
∫ t∧τ j

0
f ∗s dvs =

∫ t∧τ j

0
Zs∧τ j f ∗s + Zs∧τ j M∗s∧τ j dvs =

∫ t

0
(Ψ j

s)∗ dvs.

because Mt∧τ j is a martingale with respect to the measure P̃. This means that Zt∧τ j Mt∧τ j is a

martingale in the space (Ω, P,Yt). On the other hand, a continuousmartingale of finite variation

is constant, which in this case means that all terms of finite variation could be omitted.

Clearly the sequence (Ψ j
t ) is unique in the sense that (Ψ

j
t∧τ j ) = (Ψ

j+1
t∧τ j) λ(dt) × P(dω)-a.s.

Thus by localisation we may define (Ψt) which satisfies all the conditions required.

5.2 The Kushner-Stratonovitch Equation

In this section we derive an equation for the conditional expectations E[ f (Xt)|Yt] where f

is measurable and smooth enough. This is done by decomposing f (Xt) into a martingale and a

finite variation part. The finite variation part is easy to characterize but the martingale is more

difficult.

Assume that f (Xt) is cadlag and L2-bounded. We also assume that

f (Xt) = E[ f (X0)] + Mt( f ) + At( f ),

where Mt( f ) = f (Xt) − At( f ) − E[ f (X0)] is a cadlag martingale. From A( f ) = (At( f )) it is

assumed that A0 = 0 and

E[var∞(A( f ))2] < ∞

A typical choice for (At( f )) is the infinitesimal generator for a stochastic differential equation.

It can be quite easily proved that

E[ f (Xt)|Yt] = E[ f (X0)] + M̃t( f ) + Ãt( f ),

where (Ãt( f )) is obtained by taking the dual predictable projections of positive and negative

parts of (At( f )). (M̃t( f ),Yt) is an L2-bounded cadlag martingale. From theorem 2.36 it follows

that

E[var∞(Ã( f ))2] < ∞
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Using equation 5.2 we may write

M̃t( f ) =
∫ t

0
ψs( f )∗ dvs,

where (ψt( f )) is predictable, adapted to (Yt) and

E[
∫ ∞

0
∥ψs( f )∥2 ds] < ∞.

Theorem 5.4 There exists a predictable process (Dt( f ),Ft) for which

E[
∫ ∞

0
∥Dt( f )∥2 ds] < ∞

and

MtWt −
∫ t

0
Ds( f ) ds

is a martingale.

Proof This theorem is a straightforward consequence of theorem 6.8.1. and its proof in [16].

Note that Kallianpur defines the quadratic variation for all cadlag processes. We are mainly

interested in continuous processes, though the proof of the Kushner-Stratonovitch equation is

given assuming that f (Xt) is cadlag.

Lemma 5.5 Assume that ( ft,Yt) is a predictable process so that

E[
∫ ∞

0
f 2s ds] < ∞.

Let (Bt,Ft) and (Zt,Yt) be cadlag processes for which

E[var∞(B)2] < ∞

and

Zt =
∫ t

0
fs dvs.

Let T = tk > tk−1 > . . . > t0 = 0 be a partition of the interval [0, T ]. Then

E[
k∑

i=1
(Bti − Bti−1)

∫ ti

ti−1
fs dvs]→ 0

as k → ∞ and maxi |ti − ti−1|→ 0.
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Proof We have the following obvious estimate

|
k∑

i=1
(Bti − Bti−1)

∫ ti

ti−1
fs dvs| ≤ max

i
|
∫ ti

ti−1
fs dvs|varT (B)→ 0 P-a.s. as k → ∞.

Moreover,

max
i
|
∫ ti

ti−1
fs dvs| ≤ 2 sup

t∈[0,T ]
|
∫ t

0
fs dvs|.

By Doob’s inequality

2E[( sup
t∈[0,T ]

|
∫ t

0
fs dvs|)2] ≤ 8E[(

∫ T

0
fs dvs)2] = 8E[

∫ T

0
f 2s ds].

Using the Hölder inequality we see that

E[varT (B) sup
t∈[0,T ]

|
∫ t

0
fs dvs|] ≤ 2(E[varT (B)2])

1
2 (E[
∫ T

0
f 2s ds])

1
2 < ∞.

Thus by the Dominated Convergence Theorem

E[|
k∑

i=1
(Bti − Bti−1)

∫ ti

ti−1
fsdvs|]→ 0

as k → ∞.

Now we state the main result of this chapter.

Theorem 5.6 Choose any f ∈ Cb(E). Then the following equality holds:

E[ f (Xt)|Yt] = E[ f (X0)] + Ãt( f ) +
∫ t

0
E[ f (Xs)hs|Ys]∗ dvs

−
∫ t

0
E[ f (Xs)|Ys]E[hs|Ys]∗ dvs +

∫ t

0
E[Ds( f )∗|Ys] dvs [5.4]

Proof Choose any S∞ ∈ L∞(Ω,Y∞, P) and let (S t) be the corresponding martingale. By theo-
rem 5.3

S t =
∫ t

0
ψ∗s dvs.

Using a density argument we may assume that ψs is bounded. To prove the formula 5.4 we only

need to examine

E[M̃t( f )S t] = E[Mt( f )S t] + E[(M̃t( f ) − Mt( f ))S t]. [5.5]

DRAFT: Do Not Distribute 17:37 12th July 2005



36

The proof consists of two parts. First we will examine the term E[Mt( f )S t].

E[Mt( f )S t] = E[Mt( f )(
∫ t

0
ψ∗s dYs −

∫ t

0
ψ∗sE[hs|Ys] ds)]

= E[Mt( f )
∫ t

0
ψ∗s dWs] + E[Mt( f )

∫ t

0
ψ∗s(hs − E[hs|Ys]) ds]

The first term is easy

E[Mt( f )
∫ t

0
ψ∗s dWs] =

n∑

i=0
E[
∫ t

0
ψisDi

s( f ) ds]

=

n∑

i=0
E[
∫ t

0
ψisE[Di

s( f )|Ys] ds]

= E[S t
∫ t

0
E[Ds( f )|Ys]∗ dvs].

Note that

E[
∫ t

0
(Mt( f ) − Ms( f ))ψ∗s(hs − E[hs|Ys]) ds] = 0.

Thus for the second term we have

E[Mt( f )
∫ t

0
ψ∗s(hs − E[hs|Ys]) ds]

= E[
∫ t

0
Ms( f )ψ∗s(hs − E[hs|Ys]) ds]

= E[−
∫ t

0
As( f )ψ∗s(hs − E[hs|Ys]) ds] + E[

∫ t

0
f (Xs)ψ∗s(hs − E[hs|Ys]) ds].

On the other hand

E[
∫ t

0
f (Xs)ψ∗s(hs−E[hs|Ys]) ds] = E[S t

∫ t

0
E[ f (Xs)hs|Ys]∗ dvs]−E[S t

∫ t

0
E[ f (Xs)|Ys]E[hs|Ys]∗ dvs].

Next we examine the second term in 5.5. First note that

E[(M̃t( f ) − Mt( f ))S t] = E[(E[ f (Xt)|Yt] − f (Xt))S t] + E[(At( f ) − Ãt( f ))S t]

= E[(At( f ) − Ãt( f ))S t]. [5.6]

Choose points t = tk > tk−1 > . . . > t0 = 0. Equation 5.6 can be written as a sum

E[(At( f ) − Ãt( f ))S t] = E[
k∑

i=1
(∆Ati( f ) − ∆Ãti( f ))S ti−1 +

k∑

i=1
(∆Ati( f ) − ∆Ãti( f ))(S t − S ti−1)],
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where ∆Ati( f ) = Ati( f ) − Ati−1( f ). Remembering that

E[∆Ati( f ) − ∆Ãti( f )|Yti] = 0

it is obvious that

E[
k∑

i=1
(∆Ati( f ) − ∆Ãti( f ))S ti−1] = 0.

Thus we have

E[(M̃t( f ) − Mt( f ))S t] =
k∑

i=1
E[(∆Ati ( f ) − ∆Ãti( f ))

∫ t

ti−1
ψ∗s dWs

+ (∆Ati( f ) − ∆Ãti( f ))
∫ t

ti−1
ψ∗s(hs − E[hs|Ys]) ds].

On the other hand,

E[(∆Ati( f ) − ∆Ãti( f ))
∫ t

ti
ψ∗s dWs] = E[(∆Ati ( f ) − ∆Ãti( f ))E[

∫ t

ti
ψ∗s dWs|Fti]] = 0.

By lemma 5.5
k∑

i=1
E[(∆Ati( f ) − ∆Ãti ( f ))

∫ ti

ti−1
ψ∗s dvs]→ 0

when k → ∞ and max1≤i≤k |ti − ti−1| → 0. Using Fubini’s theorem we can get rid of one more

term:

E[∆Ãti ( f )
∫ t

ti
ψ∗s(hs − E[hs|Ys]) ds] =

∫ t

ti
E[∆Ãti( f )ψ∗s(hs − E[hs|Ys])] ds = 0.

Thus what we have left is

E[(Ãt( f ) − At( f ))S t] =
k∑

i=1
E[∆Ati( f )

∫ t

ti
ψ∗s(hs − E[hs|Ys]) ds].

By an elementary manipulation

k∑

i=1
E[∆Ati( f )

∫ t

ti
ψ∗s(hs − E[hs|Ys]) ds] =

k−1∑

i=1
E[Ati( f )

∫ ti+1

ti
ψ∗s(hs − E[hs|Ys]) ds].
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Thus we have

|E[
k∑

i=1
∆Ati( f )

∫ t

ti
ψ∗s(hs − E[hs|Ys]) ds −

∫ t

0
As( f )ψ∗s(hs − E[hs|Ys]) ds]|

≤
k−1∑

i=0
E[
∫ ti+1

ti
|ψ∗s(hs − E[hs|Ys])]|(varti+1(A( f )) − varti(A( f ))) ds

≤ E[vart(A( f )) max
1≤i≤k−1

∫ ti+1

ti
|ψ∗s(hs − E[hs|Ys])| ds]→ 0

by the Lebesgue Dominated Convergence Theorem.

Now by summing the terms from the first and the second parts of the proof we see the

desired result.

At the first sight the KS-equation may seem a bit too abstract to be useful. But in the next

section it will be seen that the terms have a concrete form once the model has a bit more

structure. The KS-equation has lots of theoretical significance and knowing it is essential to

anyone who is interested in the theory of continuous-time filters.
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Chapter 6

Filtering of Stochastic Differential Equation Models

In this chapter we adopt the same general assumptions and notation as in the previous

chapter. The theory is simplier than that of the previous section.

6.1 A Modification of the Kushner-Stratonovitch Equation

We will examine the model

Xt = X0 +
∫ t

0
a(s, Xs, Ys) ds +

∫ t

0
b(s, Xs, Ys) dWs [6.1]

Yt =
∫ t

0
c(s, Xs, Ys) ds + Vt. [6.2]

(Wt,Ft) and (Vt,Yt) are independent Brownian motions. Assuming independence is not nec-

essary but slightly simplifies the equations. We chose not to examine the correlated case be-

cause the uncorrelated case is general enough for most purposes. Also to derive the Kallianpur-

Striebel formula the assumption that (Xt) and (Wt) are independent is necessary.

We also assume that X0 is independent of (Wt) and (Vt). To ensure the existence and unique-

ness of solutions to equations 6.1 and 6.2, a(s, x, y), b(s, x, y) and c(s, x, y) are assumed to sat-

isfy the Lipschitz and growth conditions.

For f ∈ C2b(IRN), define At f as

At f =
n∑

i=1
ai(t, Xt, Yt)∂xi f +

1
2

N∑

i=1

N∑

j=1
(bb∗)i j(t, Xt, Yt)∂xi x j f .

We assume that At f ∈ L2W . This should not be a problem, see for example chapter 5 in [16] on
the scalar case. By At f (t, x,ω) we mean the function of three variables when Xt is replaced by
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x. The definition of At f is of course motivated by the definition of the infinitesimal generator

in section 3.2. If a and b are smooth enough, we may define

A∗t f = −
n∑

i=1
∂xi(ai(t, x, Yt(ω)) f ) +

1
2

N∑

i=1

N∑

j=1
∂xi x j ((bb∗)i j(t, x, Yt(ω)) f ).

Assume that for any t > 0

P(Xt ∈ A|Yt) =
∫

A
φ(t, x,ω) dx,

where φ(t, x,ω) is positive, measurable and fixing any (t, x) we get anYt-measurable mapping.

Define

H(t, x,ω) = φ(x,ω, t)c(t, x, Yt(ω)) + φ(x,ω, t)
∫

IRN
c(t, x, Yt(ω))φ(x,ω, t) dx.

H(t, x,ω) is well defined because

E[
∫ T

0

∫

IRN
∥c(t, x, Yt(ω))∥φ(x,ω, t) dx dt] ≤

∫ T

0
E[∥c(t, Xt(ω), Yt(ω))∥] dt] < ∞.

H(t, ·,ω) is continuous for almost all t ≥ 0 and ω ∈ Ω.

Theorem 6.1 Assume that the assumptions stated earlier in this chapter hold. We also assume

that φ, a, b and c are a.s. smooth enough for t > 0,
∫ t

0

∫

IRN
|A∗φ(s, x,ω)| dx ds < ∞ (a.s.)

and ∫ t

0

∫

IRN

∫

Ω

∥H(s, x,ω)∥2 dP dx ds < ∞.

Then we have for each t > 0 the equation

φ(t, x,ω) = φ(0, x,ω) +
∫ t

0
A∗sφ(s, x,ω) ds +

∫ t

0
H(s, x,ω)∗ dvs [6.3]

which holds almost surely for almost every x.

DRAFT: Do Not Distribute 17:37 12th July 2005



41

Proof Choose f ∈ C∞c . By theorem 5.6

E[ f (Xt)|Yt] = E[ f (X0)] +
∫ t

0
E[As f |Ys] ds +

∫ t

0

∫

IRN
f (x)c(s, x, Ys(ω))φ(s, x,ω) dx dvs

+

∫ t

0

∫

IRN
f (x)φ(s, x,ω) dx

∫

IRN
c(s, x, Ys(ω))φ(s, x,ω) dx dvs

=

∫

IRN
φ(0, x,ω) f (x) dx +

∫ t

0

∫

IRN
As f (s, x,ω)φ(s, x,ω) dx ds

+

∫ t

0

∫

IRN
f H(s, x,ω) dx dvs. [6.4]

By the stochastic Fubini theorem (in [27] it is given in a very general setting)
∫ t

0

∫

IRN
f H(s, x,ω) dx dvs =

∫

IRN

∫ t

0
f H(s, x,ω) dvs dx.

The same theorem ensures that both sides are well defined.

For the other term in the right hand side of the equation 6.4 we have
∫ t

0

∫

IRN

As f (s, x,ω)φ(s, x,ω) dx ds =
∫

IRN

∫ t

0
f (x)A∗sφ(s, x,ω) ds dx [6.5]

by Fubini’s Theorem.

The right hand side of equation 6.3 belongs almost surely to L1(IRN). Because L1(IRN) is

separable, it is easy to see using equations 6.4 and 6.5 by choosing a countable dense subset

that equation 6.3 holds a.s. for almost every x.

Note that if there exists a (t, x) continous versions of the terms in the equation, then the

claim holds a.s. for all (t, x). More discussion on this point can be found in [30]. In the simula-

tion part these conditions hold even though no formal proof is given.

The existence and uniqueness of solutions to the KS-equation is a deep question and

is not discussed here. In the literature on continuous-time nonlinear filtering the Kushner-

Stratonovitch equation is often given in the modifed form derived in this section. The mod-

ified equation is a stochastic partial differential equation and standard numerical techniques for

solving PDEs can be used.
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6.2 The Kallianpur-Striebel Formula

In the previous section we derived an equation for the conditional densities of p(dx|Y t). An

alternative and theoretically easier way to investigate is to use the Kallianpur-Striebel formula.

We will examine the following slightly less general model than in section 6.1:

Xt = X0 +
∫ t

0
a(s, Xs) ds +

∫ t

0
b(s, Xs) dWs

Yt =
∫ t

0
c(s, Xs) ds + Vt

The state-space is IRN and Yt takes its values in IRM. This model is of course a special case of

the previous one and thus we may adopt the same setting as before.

The following theorem tells us that the exponential local martingale is a martingale. This is

important, because it will be used for a change of measure.

Theorem 6.2 Define

Zt = exp(−
∫ t

0
c(s, Xs)∗ dVs −

1
2

∫ t

0
∥c(s, Xs)∥2 ds).

Then Zt is a martingale.

Proof By theorem 4.1 it suffices to prove that E[Zt] = 1 for all t > 0. Denote by (Gt) the
σ-algebra

Gt = σ(F V
t ∪ (∪t∈IR+F

W
t ) ∪ σ(X0)).

Clearly (Vt,Gt) is a Brownian motion. Thus we may change the filtration to (Gt) and examine
the local martingale (Zt,Gt). The set

AN = {ω : ∥Xs(ω)∥ ≤ N for all s ∈ [0, t]}

belongs to G0. It is easy to prove that

IAN
∫ t

0
c(s, Xs)∗ dVs =

∫ t

0
IANc(s, Xs)∗ dVs.
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By defining ZNt = IANZt we obtain

E[ZNt ] =
∫

Ω

IANZt dP =

∫

Ω

exp(−IAN
∫ t

0
c(s, Xs)∗ dVs −

1
2
IAN
∫ t

0
∥c(s, Xs)∥2 ds) dP − P(AcN)

=

∫

Ω

exp(−
∫ t

0
IANc(s, Xs)∗ dVs −

1
2

∫ t

0
IAN∥c(s, Xs)∥2 ds) dP − P(AcN).

It is clear that

P(AcN)→ 0

and ∫

AN
Zt dP→

∫

Ω

Zt dP

as N → ∞. Because IAN∥c(s, Xs)∥ ≤ K(1 + N) for some constant K > 0, it is not hard to prove
that E[ZNt ]→ 1 (the proof can be found in most books on stochastic calculus) which concludes

the proof.

Choose T > 0 and define the probability measure P̃ on FT by

P̃(A) =
∫

A
ZT dP.

An interesting fact about this measure is that by theorem 4.4 (Yt) is a Brownian motion in

the space (Ω,FT , P̃). Note also that if U is an integrable Fs measurable random variable, then
EP̃[U |Ys] = EP̃[U |YT ]. This follows from the facts that

YT = σ(Ys ∪ (∪T≥t>sσ(Yt − Ys)))

and Yt − Ys ! Fs (w.r.t. P̃). This formula is of course natural as (Yt) is a Brownian motion and
doesn’t bring any new information about U after t = s.

Another thing which motivates the change of measure is the following:

Theorem 6.3 (Xt) and (Yt) are independent under the measure P̃.

Proof Clearly [W∗t Y∗t ]∗ is a Brownian motion with respect to the history (Ft) and thus FW
T !

FY
T . It is also easy to see that X0 ! FW,Y

T . The claim is clear after noting that (Xt) is adapted to

the σ-algebra generated by X0 and (Wt).
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By elementary manipulation

Z−1t = exp(
∫ t

0
c(s, Xs) dVs +

1
2

∫ t

0
∥c(s, Xs)∥2 ds) = exp(

∫ t

0
c(s, Xs) dYs −

1
2

∫ t

0
∥c(s, Xs)∥2 ds).

Nowwe will state a result which is important from both practical and theoretical point of views.

Theorem 6.4 (Kallianpur-Striebel)

For any bounded measurable function φ(x) we have

EP[φ(Xt)|Yt] =
EP̃[φ(Xt)Z−1t |Yt]
EP̃[Z−1t |Yt]

Proof The proof is straightforward. Choose any A ∈ Yt. Then
∫

A
EP[φ(Xt)|Yt]EP̃[Z−1t |Yt] dP̃ =

∫

A
φ(Xt) dP

=

∫

A
EP̃[φ(Xt)Z−1t |Yt] dP̃

The Kallianpur-Striebel formula will be used to derive an algorithm for numerically solving

the filtering problem.

6.3 The Zakai Equation

It is possible to use the Kushner-Stratonovitch equation for solving the filtering problem.

Another approach is to use the Zakai equation which will be derived here for the model given

in the previous section.

First we define an exponential local martingale (Zt,Yt):

Zt = exp(
∫ t

0
E[c(s, Xs)|Ys]∗ dYs −

1
2

∫ t

0
∥E[c(s, Xs)|Ys]∥2 ds)

= exp(
∫ t

0
E[c(s, Xs)|Ys]∗ dvs +

1
2

∫ t

0
∥E[c(s, Xs)|Ys]∥2 ds).

By Ito’s formula

dZt =
N∑

i=1
ZtE[ci(t, Xt)|Yt] dvit + Zt∥E[c(t, Xt)|Yt]∥2 dt. [6.6]
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Define

πt( f ) = E[ f (Xt)|Yt]

and

σt( f ) = ZtE[ f (Xt)|Yt],

where f ∈ Cb(IRN). Now again by Ito’s formula we have

σt( f ) = E[ f (X0)] +
∫ t

0
Zs dπs( f ) +

∫ t

0
E[ f (Xs)|Ys] dZs + ⟨π( f ), Z⟩t.

By equation 6.6
∫ t

0
πs( f ) dZs =

∫ t

0
ZsE[ f (Xs)|Ys]E[c(s, Xs)|Ys]∗ dvs +

∫ t

0
∥E[c(s, Xs)|Ys]∥2ZsE[ f (Xs)|Ys] ds

and by the Kushner-Stratonovitch equation (equation 5.4)
∫ t

0
Zs dπs( f ) =

∫ t

0
ZsE[As f |Ys] ds −

∫ t

0
ZsE[ f (Xs)|Ys]E[c(s, Xs)|Ys]∗ dvs

+

∫ t

0
ZsE[ f (Xs)c(s, Xs)|Ys]∗ dvs.

For the last term we get

⟨π( f ), Z⟩t =
N∑

i=1

∫ t

0
ZsE[ci(s, Xs)|Ys]E[ f (Xs)ci(s, Xs)|Ys] ds

−
N∑

i=1

∫ t

0
ZsE[ f (Xs)|Ys]|E[ci(s, Xs)|Ys]|2 ds.

Recall that

vt = Yt −
∫ t

0
E[c(s, Xs)|Ys] ds.

What we have left after summing the terms is

σt( f ) = E[ f (X0)] +
∫ t

0
ZsE[As f |Ys] ds +

∫ t

0
ZsE[ f (Xs)c∗(s, Xs)|Ys] dYs

= E[ f (X0)] +
∫ t

0
σs(As f ) ds +

∫ t

0
σs( f (Xs)c∗(s, Xs)) dYs.

In practice, the solution of the Zakai equation is slightly easier to compute than that of equa-

tion 5.4. Linearity makes it theoretically easier than the Kushner-Stratonovitch equation. Again
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uniqueness of solutions to this equation is a difficult question. A powerful tool for obtaining an-

swers to it is the theory of stochastic differential equations in Hilbert spaces. A good reference

on this interesting subject is [27].

However, in [13] it is stated that numerical instability may be a problem with the Zakai

equation. On the other hand, according to the same paper the Kushner-Stratonovitch equa-

tion does not have similar problems. Because the additional work needed for solving the KS-

equation is not significant we chose to use it for numerical calculations.
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Chapter 7

Numerical Methods for Continuous-time Nonlinear Filtering

We will again examine the model (see chapter 6):

Xt = X0 +
∫ t

0
a(s, Xs) ds +

∫ t

0
b(s, Xs) dWs [7.1]

Yt =
∫ t

0
c(s, Xs) ds + Vt. [7.2]

In addition to the Lipschitz and growth conditions we assume that a, b and c are smooth enough

when necessary. Often in theory a boundeness assumption is made but in practice this may be

too restrictive.

We will first derive a method for time discretization of the filtering problem. After that three

numerical methods are presented. One of these is based on solving the Kushner-Stratonovitch

equation and the other two are based on time discretization.

7.1 Time Discretization

At this point it is easier to examine the processes in a canonical probability space. For

simplicity X0 is assumed to be constant. Let (Wt) and (Yt) be independent Brownian motions

on some probability space. We define the spaces (ΩW ,FW , PW) and (ΩY ,FY , PY) where ΩW =
ΩY = C([0, T ]) and FW = FY is the Borel σ-algebra w.r.t. the sup-norm. PW and PY are Wiener
measures. Next we choose Ω = ΩW × ΩY and F as the completion of F W

T × F Y
T . By defining

P̃ = PW × PY we get the probability space (Ω,F , P̃). Each ω ∈ Ω is of the form (ωW ,ωY). The

filtration (Ft) is that generated by (Wt) and (Yt) augmented with null sets.
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We would like to place emphasis on the fact that the observation process (Yt) is a Brown-

ian motion on this probability space. The basic properties of Brownian motions will be used

without warning. For example the independence of increments will be used a lot.

(Xt) is defined as the solution of equation 7.1 on (Ω,F , P̃). Then from theorem 6.2 it follows
that

Zt = exp(
∫ t

0
c(s, Xs)∗ dYs −

1
2

∫ t

0
∥c(s, Xs)∥2 ds)

is an (Ft)-martingale and if we define the probability measure P by dP = ZTdP̃ then

Vt = Yt −
∫ t

0
c(s, Xs) ds

is a Brownian motion independent of (Wt). Note that we use the same techniques as in section

6.2 but to another direction. For future use, we define

Lht = exp(
∫ t+h

t
c(s, Xs)∗ dYs −

1
2

∫ t+h

t
∥c(s, Xs)∥2 ds).

The unnormalized conditional distribution is defined as the conditional measure

πt(A) = EP̃[IAZt|Yt].

The relation between EP[IA|Yt] and πt(A) is given by the Kallianpur-Striebel formula (equation

6.2). In practice we only have discrete observations. With this in mind we define

Yh
nh = σ(Yjh, 0 ≤ j ≤ n)

and

πhnh(A) = EP̃[IAZnh|Yh
nh].

Correspondingly πh,y0 ,...,ynhnh (A) = EP̃[IAZt|Y0 = y0, . . . , Ynh = ynh], where yih ∈ IRM for i = 0 . . . n.
πhnh and π

h,y0 ,...,ynh
nh define also measures on RN .

It is possible and in fact not very difficult to prove the recursive formula
∫

IRN
f (x) πh,y0,...,ynhnh (dx)

=

∫

IRN
EP̃[ f (Xnh)Lh(n−1)h |Y0 = y0, . . . , Ynh = ynh, X(n−1)h = x] π

h,y0 ,...,y(n−1)h
(n−1)h (dx). [7.3]

The following theorem says a bit more by specifying the accurate form of the terms.
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Theorem 7.1 For any f ∈ Cb(RN),
∫

IRN
f (x) πh,y0,...,ynhnh (dx) =

∫

IRN
EP̃[ f (Xnh) exp(

1
h
(ynh − y(n−1)h)∗

∫ nh

(n−1)h
c(s, Xs) ds

− 1
2h
∥
∫ nh

(n−1)h
c(s, Xs) ds∥2)|X(n−1)h = x] πh,y0,...,y(n−1)h(n−1)h (dx).

Proof The proof given here is similar to that in [21]. Choose ωW ∈ ΩW . Then by a simple
manipulation we get

EP̃[Znh(ωW , ·)|Yh
nh]

= EP̃[Z(n−1)h(ωW , ·)|Yh
(n−1)h]EP̃[exp(

∫ nh

(n−1)h
c(s, Xs)∗ dYs −

1
2

∫ nh

(n−1)h
∥c(s, Xs)∥2 ds)(ωW , ·)|∆Ynh],

where ∆Ynh = Ynh − Y(n−1)h. The following equation can be proved by replacing (Xt) by a
discrete approximation and using the properties of the normal distribution (remember that (Yt)

is a Brownian motion). However, the proof is lengthy and not very interesting. It will not be

given here but we would like to point out that this is nothing new, also in [21] this formula is

given without proof.

EP̃[exp(
∫ nh

(n−1)h
c(s, Xs)∗ dYs −

1
2

∫ nh

(n−1)h
∥c(s, Xs)∥2 ds)(ωW , ·)|∆Ynh]

= exp(1
h
(
∫ nh

(n−1)h
c(s, Xs) ds)∗(Ynh − Y(n−1)h) −

1
2h
∥
∫ nh

(n−1)h
c(s, Xs) ds∥2)(ωW , ·).

Denote this by L̂h(n−1)h. Choose a positive function f ∈ Cb(IRN). From Fubini’s Theorem it

follows that

EP̃[ f (Xnh)Znh|Yh
nh](ωY) =

∫

ΩW

f (Xnh(ωW))EP̃[Z(n−1)h(ωW , ·)|Yh
(n−1)h](ωY )L̂h(n−1)h(ωW ,ωY) PW(dωW)

=

∫

ΩW

f (Xnh(ωW))Ẑh(n−1)h(ωW ,ωY)L̂h(n−1)h(ωW ,ωY) PW(dωW),

where Ẑh(n−1)h(ωW ,ωY) is a shorthand for EP̃[Z(n−1)h(ωW , ·)|Yh
(n−1)h](ωY ). Note that because of the

first part of the proof there should be no problems with existence of appropriate versions for

the conditional expectations. On the other hand, because (Xt) is a Markov process
∫

ΩW

f (Xnh(ωW))Ẑh(n−1)h(ωW ,ωY)L̂h(n−1)h(ωW ,ωY) PW(dωW)

=

∫

ΩW

EP̃[ f (Xnh)L̂h(n−1)h(·,ωY)|X(n−1)h](ωW)Ẑh(n−1)h(ωW ,ωY) PW(dωW).
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This is in fact what we wanted to prove though it is not entirely obvious. Define

g(ωW ,ωY) = EP̃[ f (Xnh)L̂h(n−1)h(·,ωY)|X(n−1)h](ωW).

It is clear that g may by chosen σ(X(n−1)h) ×σ(∆Ynh)-measurable (here σ(X(n−1)h) is considered
as a subset of FW and σ(∆Ynh) of FY). Thus we may choose positive functions (s j) of the form

s j =
j∑

i=0
ajiIA ji×Bji ,

where Aji ∈ σ(X(n−1)h), Bji ∈ σ(∆Ynh) and s j ↑ g. But for these simple functions, it is clear that
for any C ∈ Yh

nh
∫

C

∫

ΩW

s j(ωW ,ωY)Ẑh(n−1)h(ωW ,ωY) PW(dωW) PY (dωY)

=

∫

C

∫

ΩW

s j(ωW ,ωY)Zh(n−1)h(ωW ,ωY) PW(dωW) PY (dωY)

=

∫

C

∫

ΩW

s j(ωW ,ωY) πh,ωY(n−1)h(dωW) PY(dωY)

and now the result follows by taking the limit j→∞.

Unfortunately these recursive formulas are in most cases not straightforwardly computable and

numerical approximations are necessary. We will use the same simple approximation as in our

main references here, [21] and [6]. Let (Xnh, n ≥ 0) be a Markov chain such that E[∥Xh
nh −

Xnh∥2] = O(h). This may for example be the Euler approximation to (Xt). Then we define

Xht = Xhnh if nh ≤ t < (n + 1)h which is assumed to be adapted to (F W
t ). A natural thing to do

now is to define the probability measure

dPh = exp(
∫ T

0
c(s, Xhs )∗ dYs −

1
2

∫ T

0
∥c(s, Xhs )∥2 ds) dP̃

on FT (assuming that the exponential local martingale is a martingale). Under this newmeasure
we may write

Yt =
∫ t

0
c(s, Xhs ) ds + Vh

t ,

where (Vh
t ,Ft) is a Brownian motion independent of (Wt). The Kallianpur-Striebel formula is

of course valid and the unnormalized conditional measure is denoted by π̃ht .

DRAFT: Do Not Distribute 17:37 12th July 2005



51

Theorem 7.2 We have the following equation:
∫

IRN
f (x) π̃h,y0,...,ynhnh (dx)

=

∫

IRN

∫

IRN
Ph(n−1)h(u, dx) f (x) exp(c((n − 1)h, u)∗(ynh − y(n−1)h) −

h
2
∥c((n − 1)h, u)∥2) π̃h,y0,...,y(n−1)h(n−1)h (du),

[7.4]

where Pht (u, dx) is the transition probability for (Xh
t ).

Proof Note first that

EP̃[ f (Xhnh)Lh(n−1)h|Yh
nh, X(n−1)h] = E[ f (Xhnh)|X(n−1)h] exp(

∫ nh

(n−1)h
c(s, Xhs )∗ dYs−

1
2

∫ nh

(n−1)h
∥c(s, Xhs )∥2 ds).

Now we may use the recursive formula 7.3.

Error bounds for this approximation can be found in [20] and [26]. This method of dis-

cretizing the filtering problem is easy to implement in practice and also has good stability

properties. This kind of time discretization leads to a discrete time filtering problem. Thus for

an engineer who is mainly interested in applications, learning the abstract theory of continuous

time filtering is not essential once he knows the basics of the discrete time theory.

7.2 Interacting Particle Systems Approximations

In this section we will derive a powerful numerical method for solving the filtering problem.

Once the reader is familiar with the Kallianpur-Striebel formula, the theory in this section

should be quite easy to understand. The approach is simple: first the continuous-time filter is

approximated by a discrete-time approximation and after that a branching particle algorithm is

used to solve it.

In the previous section we derived an approximative recursive formula for the unnormalized

conditional distribution. However, solving it in closed form is not an easy task (it is possible in

some special cases, see [32]) and more numerical approximations are needed. We suppose for

simplicity that a,b and c do not depend on t. Then the time homogenous Markov chain (Xnh)

DRAFT: Do Not Distribute 17:37 12th July 2005



52

has a transition kernel P which has the approximation Ph ≈ P, where Ph is the kernel for (Xhnh).
Define the C(IRN × IRM)-function

gh(u,∆y) = exp(c(u)∗∆y − h
2
∥c(u)∥2).

Let P(IRN) be the space of probability measures on IRN and suppose we have observations
y0, . . . , yN. The mappings Φh,y0 ,...,ynhnh : P(IRN)→ P(IRN) (0 ≤ n ≤ N) are defined as

Φ
h,y0,...,ynh
nh (π)(A) =

∫
IRN Ph(u, A)gh(u,∆ynh) π(du)
∫
IRN gh(u,∆ynh) π(du)

. [7.5]

If ph,y0 ,...,ynhnh is the conditional probability measure defined by

ph,y0,...,ynhnh (A) = EP[I(Xhnh)−1(A)|Y0 = y0, . . . , Ynh = ynh]

then by theorem 7.2

Φ
h,y0,...,ynh
nh (ph,y0 ,...,y(n−1)h(n−1)h ) = ph,y0 ,...,ynhnh .

Thus the recursion determines the distributions completely and the only problem left is calcu-

lating the integrals. This is not easy especially if N is relatively big. We will use a recursive

particle algorithm which is by no means the only possible choice.

Let (ζnh) be an IRN×L-valued Markov chain defined on some auxiliary probability space

(Ω̂, F̂ , P̂). The columns correspond to individual components of a discrete probability measure.
The key idea in particle approximations is at each time step to replace ph,y0 ,...,ynhnh by the particle

approximation
1
L

L∑

i=1
δζinh .

The transition probability for (ζ inh) is defined by

P(ζnh ∈ dx|ζ(n−1)h) =
L∏

j=1
(Φh,y0,...,ynhnh (

1
L

L∑

i=1
δζi(n−1)h))(dx

j)

as in [6]. This is a mathematical model for the algorithm. Now by substituting into 7.5

Φ
h,y0,...,ynh
nh ( 1

L

L∑

i=1
δζi(n−1)h)(dx) =

∑L
i=1 P(ζ i(n−1)h, dx)g

h(ζ i(n−1)h,∆ynh)
∑L
i=1 gh(ζ i(n−1)h,∆ynh)

.
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This gives us the following algorithm:

1. Choose pL0 (dx) =
1
L
∑L
i=0 δζi0 and set n = 0.

2. Calculate weights

wi
nh =

gh(ζ inh,∆y(n+1)h)∑L
i=0 gh(ζ inh,∆y(n+1)h)

3. Sample particles (zi)Li=1 from (ζ inh) according to the weights w
i
nh and for i = 1, . . . , L simulate

(ζ i(n+1)h) from P(zi, dx).

4. Set

pL(n+1)h(dx) =
1
L

L∑

i=1
δiζ(n+1)h .

5. Set n = n + 1 and move to step 2.

The basic idea is clear: those particles which are close to the right value get relatively high

weights. This algorithm is often called the particle filter and it is a sequential Monte Carlo

method. There exist also connections to genetic algorithms.

There exist convergence results for the algorithm. For some of these we refer to [6], where

error bounds of order O(1/L) are given for E[|pLnh(A)−p
h,y0 ,...,ynh
nh (A)|2]. At the moment theoretical

error bounds are quite loose and not very useful in most practical situations.

7.3 Galerkin’s Method

In this section we derive Galerkin’s method for solving the filtering problem for the model

given by equations 7.1 and 7.2. The derivation is relatively heuristic and no proof of conver-

gence is given. This is because the theory is complicated and in fact still quite undeveloped.

Again we suppose that the model is time-homogenous. This is because the inhomogenous case

may increase the computational complexity of the algorithm.

Galerkin’s method is a standard way of solving deterministic PDEs and it can be gener-

alized straightforwardly to this stochastic problem. More on this method can be found in [9]

though the text should be understandable also to those who are not familiar with it beforehand.

Important references on Galerin’s method applied to nonlinear filtering are [3] and [1].
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Let φt(x,ω) be the conditional density defined in section 6.1. We chose a different notation

because it fits here better. Recall the Kushner-Stratonovitch equation

dφt = A∗φt dt + (c∗φt + φt
∫

IRN
c∗φt dx) dvt. [7.6]

Let (wi)∞i=1 be a linearly independent dense set of functions in C2(IR
N) which go to zero in

infinity fast enough. Then φt may be approximated by

φ̃t =
l∑

i=1
bi(t)wi. [7.7]

Note that the functions (wi)∞i=1 are not necessarily orthogonal. The inner product in L2(IR
N) will

be denoted by (·, ·). Next the approximation 7.7 is substituted into 7.6 and then the difference
between the right hand side and the left hand side is projected onto the subspace spanned by

(wi)li=1. The result is set to 0 resulting in the following equation for j = 1, . . . , l:

(wj, φt) =
l∑

i=1
bi(t)(wj,wi) = (wj, φ0) +

l∑

i=1

∫ t

0
bi(s)(wj, A∗wi) ds [7.8]

+

N∑

k=1

l∑

i=1

∫ t

0
bi(s)(wj,wick) dvks [7.9]

+

∫ t

0
(

l∑

k=1

bk(s)(wj,wk))(
l∑

i=1

∫

IRN
bi(s)wic∗ dx) dvs. [7.10]

For writing this in a matrix form, we define the matrices

Mij = (wi,wj)

Ai j = (wi, A∗wj)

T (k)i j = (wi, c jwk) (k=1, . . . , l)

Hi j = (wi, c j).

Then 7.10 can be written as

db(t) = M−1Ab dt +
∑l
i=1 biM−1T (i) dvt + bb∗H dvt.
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The only problem left is choosing the basis functions, which is an application specific task. A

typical choice is a Gaussian basis. In most practical situations this equation should be used in

the Stratonovich form. See [15] for more information on this point.

The main problem of this method is the curse of dimensionality. If the dimension of the state

space is over, say four, then the method is in trouble. This is typical to all grid-based methods.

In contrary Monte Carlo methods like the particle algorithm presented in the previous section

do not suffer from this problem nearly as badly.

The biggest motivation for researching Galerkin’s method and grid-based methods in gen-

eral (for example the finite difference method) is that real-world problems are often low dimen-

sional. Typical examples of fields where these methods would be applicable are mathematical

finance and analysis of time series. It seems that there remains a lot of work to do for those

who are interested in applications.

7.4 Gaussian Filters

In this section we will use the theory and notation introduced in previous sections. The

reader should know the basics of linear regression analysis. For simplicity possible time depen-

dencies in the state-space model are omitted. The algorithm which we will derive is recursive

and at each time step results in a Gaussian approximation. The derivation is based on theorem

7.2.

Let p̂h,y0,...,ynhnh be a Gaussian approximation to the conditional probability density py0,...,ynhnh

defined in section 7.2. It has the following form:

p̂y0,...,ynhnh (u) = 1
√
(2π)d |Cnh|

exp(−1
2
(u − mnh)∗C−1nh (u − mnh)).

Recall that

∆y(n+1)h = y(n+1)h − ynh ≈ hc(Xnh) + V(n+1)h − Vnh. [7.11]
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We will first examine the so-called updating phase. This phase corresponds to multiplying

p̂h,y0 ,...,ynhnh by the exponential function in formula 7.4. Given the observation y0, . . . ynh, the ran-

dom variable in equation 7.11 can be approximated by

z̃ = A(Xnh − mnh) + hmc + B1/2v,

where mc =
∫
IRN c(u)p̂y0 ,...,ynhnh (u) du and v is independent and distributed as N(0, I). A natural

way to choose the matrices A and B is to use linear regression. This leads straightforwardly to

A = hP∗xcC−1nh , where

Pxc =
∫

IRN
(u − mnh)(c(u) − mc)∗ p̂y0 ,...,ynhnh (u) du.

In addition we define

Pcc =
∫

IRN
(c(u) − mu)(c(u) − mu)∗ p̂y0,...,ynhnh (u) du.

The following formula is important:
∫

Ω

∫

IRN
(hc(u) + V(n+1)h(ω) − Vnh(ω) − A(u − mnh) − hmc)

·(hc(u) + V(n+1)h(ω) − Vnh(ω) − A(u − mnh) − hmc)∗ p̂y0 ,...,ynhnh (u) du dP

= h2Pcc + hI − h2P∗xcC−1nh Pxc.

Now the choice of B is easy: by choosing B = h2Pcc+hI−h2P∗xcC−1nh Pxc the conditional variances
of z̃ and ∆y(n+1)h given the observations y0, . . . ynh are approximately equal, of course depending

on how good the estimate p̂y0 ,...,ynhnh is. B corresponds to linearization error. The noise term is

important because if the linearization error hadn’t been taken into account, the estimate would

be inconsistent (inconsistency means that the covariance of the approximation is smaller than

that of the real distribution). In the following calculations we will use
√
hB−1/2z̃ (the scaling

is needed because the noise covariance must be I) for updating py0 ,...,ynhnh . This means that the

update is calculated assuming that ∆y(n+1)h comes from a linear model which approximates the

original one. If c is linear enough in the region where p̂y0 ,...,ynhnh has its probability mass, then this

approximation is good. p̂y0 ,...,ynhnh is not the true conditional probability density and the regres-

sion coefficients are approximations to those obtained by using the real conditional probability
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density. The probability masses of both distributions should be concentrated sufficiently close

to each other.

The updating phase can be solved analytically for the linearized model. The scaling con-

stants are not important in this case and are omitted. This is because we are only interested

in probability densities. c(u) is replaced by 1√
h
B−1/2A(u − mnh) +

√
hB−1/2mc and ∆y(n+1)h by

√
hB−1/2∆y(n+1)h. By an elementary manipulation

exp((
1√
h
B−1/2A(u − mnh) +

√
hB−1/2mc)∗

√
hB−1/2∆y(n+1)h

−h
2
∥ 1√

h
B−1/2A(u − mnh) +

√
hB−1/2mc∥2)

∝ exp((Au)∗B−1∆y(n+1)h −
1
2
(Au)∗B−1Au − (Au)∗(hB−1mc − B−1Amnh)).

In the next formulas, Pyy stands for h2Pcc + hI. By a standard calculation for Gaussian distribu-

tions

exp(−1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
∆y(n+1)h − hmc

u − mnh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Pyy hP∗xc
hPxc Cnh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∆y(n+1)h − hmc

u − mnh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦)

∝ exp(−1
2
(∆y(n+1)h − hmc − hP∗xcC−1nh (u − mnh))∗

(Pyy − h2P∗xcC−1nh Pxc)−1(∆y(n+1)h − hmc − hP∗xcC−1nh (u − mnh))) ·

exp(−1
2
(u − mnh)∗C−1nh (u − mnh))

∝ exp(−1
2
(∆y(n+1)h − hmc − A(u − mnh))∗B−1(∆y(n+1)h − hmc − A(u − mnh))) ·

exp(−1
2
(u − mnh)∗C−1nh (u − mnh))

∝ exp(−1
2
(Au)∗B−1Au + (Au)∗B−1∆y(n+1)h − (Au)∗(hB−1mc − B−1Amnh))p̂y0 ,...,ynhnh .

The formulas for variances and means of conditional Gaussian distributions are well known.

By conditioning on ∆y(n+1)h it follows that

exp((
1√
h
B−1/2A(u − mnh) +

√
hB−1/2mc)∗

√
hB−1/2∆y(n+1)h

−h
2
∥ 1√

h
B−1/2A(u − mnh) +

√
hB−1/2mc∥2)p̂y0 ,...,ynhnh

∝ N(mnh − hP∗xcP−1yy (∆y(n+1)h − hmc),Cnh − h2P∗xcP−1yy Pxc).
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This equation tells us exactly how the variance and mean are updated. We still have the pre-

diction phase left (the integral with respect to the transition kernel Ph(u, dx)). The transition

kernel is not necessarily linear and this means that additional approximations are necessary.

One possibility would be to form a linear model for the dependency between Xh
(n+1)h and Xhnh in

a similar way as was done in the update phase. This would result in a Gaussian approximation

p̂y0 ,...,y(n+1)h(n+1)h with the same variance and mean as
∫
IRN p̂y0 ,...,y(n+1)hnh (u)Ph(u, dx) du, where p̂y0 ,...y(n+1)hnh is

the approximation after the updating phase. Forming a regression model is not necessary, we

may simply define the following rules:
∫

IRN
up̂y0 ,...,y(n+1)h(n+1)h (u) du =

∫

IRN

∫

IRN
xp̂y0 ,...,y(n+1)hnh (u)Ph(u, dx) du [7.12]

and ∫

IRN
uu∗ p̂y0 ,...,y(n+1)h(n+1)h (u) du =

∫

IRN

∫

IRN
xx∗ p̂y0 ,...,y(n+1)hnh (u) Ph(u, dx) du [7.13]

For the implementation of the filter, the matrices Pcc, Pxc and the expectations in equations

7.12 and 7.13 must be calculated at each time step. There are two possibilities to do this. The

first is to calculate analytically, which is often possible. The problem with this approach is

that the calculations are often quite lengthy depending on the dimension of the state space and

the discretization method. But the benefit is also big because analytic calculations are fast and

accurate. In the simulation part we will illustrate this by a comparison study. Even though the

analytic approach is well-known, surprisingly often numerical methods are used instead.

Another possibility is to use numerical methods like the Gauss-Hermite quadrature, central

differences or the filter of Juhlier-Uhlmann. More on these standard techniques can be found

in [14]. In lower dimensions the Gauss-Hermite quadrature is a very powerful method.

It may also be possible to combine the two approaches. Often it is easy to simplify the nu-

merical calculations by using the properties of the normal distribution. Characteristic functions

and conditionalizing are very useful tools in this regard.

Filters using the technique introduced in this section will be called (Gaussian) linear-

regression filters (LRF). They can also be derived by making the assumption that certain den-

sities are Gaussian, see for example [14]. If Pcc, Pxc and equations 7.12 and 7.13 are solved
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by using the first order Taylor approximation, then the resulting filter is called the Extended

Kalman filter (EKF). An example of this kind of approximation is
∫

IRN
c(u)p̂y0 ,...,ynhnh (u) du ≈ c(mnh),

which follows from linearizing c at the point mnh. The EKF is easy to implement and widely

used, but may be inaccurate. The EKF approximation also tends be inconsistent. It has been

investigated quite a lot and has connections with other stochastic algorithms. For example in

parameter estimation problems it corresponds to a modified Newton method (see [25]), where a

crude first order approximation to the Hessian of the cost function is made. In the experimental

part by linear-regression filter we mean filters which calculate the integrals with high accuracy.

The error in the linearization phase can be estimated straightforwardly. If ∆y(n+1)h is a scalar,

then the residual sum of squares is given by

S S E = Pyy − h2P∗xyC−1Pxy

and the total sum of squares

S yy = Pyy.

The R-squared value can be calculated from S S E and S yy:

R2 =
S yy − S S E

S yy
[7.14]

These values give some advice in the performance of the filter.

Deriving error bounds for the error of the Gaussian approximation is not an easy thing.

Some work on this subject has been done in [14]. There still remains a lot of work to do on this

subject.

Here we have adopted a linear regression approach because it gives insight into the prop-

erties of the method. A more general method is to apply information geometry for projecting

densities onto a finite dimensional manifold. See for example [4] on this subject. Choosing the

finite dimensional manifold is not easy. The family of Gaussian distributions which we used

here has the advantage that numerical integration can often be avoided.
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Another way to improve the linear-regression filter is to use the expectation propagation

algorithm. An important and easy to read work on this subject is [24]. This algorithm is rel-

atively new but will certainly gain popularity in the near future. It is based on the assumed

density filtering algorithm which is more accurate than the linear-regression approach but is

computationally more difficult to implement. The linear-regression filter can be considered as

an approximation to the Gaussian assumed-density filter. If the observation equation is linear,

then these two filters coincide.
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Chapter 8

Applications

8.1 Simulations with Galerkin’s Method

In this section we study a simple phase tracking problem. We will study Galerkin’s method,

Gaussian filters and the particle filter. The main point is to test Galerkin’s method on a simple

problem and assess its performance. This method for continuous-time problem has been very

rarely used in applications.

The problem in a state-space form is

Xt = Wt [8.1]

yt = sin(w0t + Xt)/r + vt,

where vt is white noise,Wt is a Brownian motion and r > 0 a constant. The task is to calculate

the conditional mean of the state given the observation process (Yt). This kind of problems are

for example studied in [31], where a Gaussian sum filter is used to approximate the optimal

filter. Though this problem is simple, it is important because a wide variety of signal processing

problems like demodulation and frequency tracking have much in common with this problem

and similar ideas can be applied to them as well. A review on frequency estimation and tracking

problems can be found in [19].

The simulations are divided into two parts, in the first one the frequency w0 is known and

in the second one we only have an apriori estimate.
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8.1.1 Phase Tracking with a Known Frequency

In this section we assume that w0 is known and θ0 is distributed as N(0,C2), where C is the

s.d. of the normal distribution. The observation process is given by

Yt =
∫ t

0
c(s, Xs) ds + Vt,

where (Vt) is a Brownian motion and h(s, x) = sin(w0s+ x)/r is the measurement function. The

infinitesimal generator A for (Xs) is given by

Aφ =
1
2
d2φ
dx2

.

We chose C = 0.1 and w0 = 3. In section 7.3 we derived formulas for calculating the

weights for a Galerkin approximation to the optimal filter. In this example the observation

function depends on time. This implies that the matrices H and T (q) depend on time and must

be recalculated at every time step. However, all matrices can be calculated analytically and this

poses no problems.

For implementing Galerkin’s method a basis (wi)Ni=0 must be chosen. We chose

wi = exp(−
1
2σ2

(x − ci)2),

where c0 = −5 and ci = −5+ i∆c. The number of Gaussian functions was chosen so that the last
center point is at 5. We made the choice ∆c = 0.1. Now the implementation is straightforward,

just form the matrices and solve the resulting stochastic differential equation. We have the

following familiar (formal) equation for the weight vector:

dw(t) = M−1Aw(t) dt + (
N∑

l=1

wl(t)M−1(T (l))t − w(t)w(t)′Ht)(yt − H′t w(t)) dt.

We have added subscripts to those matrices which depend on time. This equation was dis-

cretized at time points 0, h, . . .T , where h = 0.0015 is the discretization interval. The dis-

cretization was done as follows (ti ≤ t ≤ ti+1):

w′(t) = M−1Aw(t) + (
N∑

l=1

wl(ti)M−1(T (l))ti − w(ti)w(ti)′Hti)(yti − H′tiw(ti)).
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r Pfilt., e1 EKF, e1 LRF, e1 Gal., e1

0.3 0.801 1.817 1.308 0.823

0.5 1.435 1.561 1.400 1.408

0.7 2.360 2.310 2.090 2.200

0.9 2.130 2.390 1.887 1.924

1.1 2.707 3.288 2.600 2.623

Table 8.1 Results of the phase tracking experiment with constant frequency.

This is a linear differential equation with the initial condition w(t i) at every interval [ti, ti+1].

After this approximation the weights can be solved analytically. The weights were normalized

at every time step.

Because the state variable changes quite quickly the grid of Gaussian functions was moved

to its center point every 0.05 seconds. This can be done simply by choosing the component

with the highest weight and moving the grid so that this component is in the middle.

As a comparison we implemented the EKF and the particle filter with 15000 particles.

These are standard tools and the implementation was easy. In addition to these we implemented

the linear-regression filter.

The following error measure was calculated:

e1 =
1
NM

M∑

j=1

N∑

i=1
(X̂ j

ih − X
j
ih)
2, [8.2]

where X̂ j
ih is the estimate (conditional mean) and X

j
ih is the real state at simulation j. The results

are in table 8.1. The number of simulation for each value of r, M, was 200.

The error measure e1 gives information about the optimality of the filters. The optimal

estimate minimizes e1. There is randomness in the results, but the big picture should be clear.

It is clear that Galerkin’s method performed better than the EKF in this example. This is due

to the fact that even though the model for the hidden states is linear, the nonlinear observation

equation makes the optimal solution non-Gaussian. Because the dimension of the state-space

is low, Galerkin’s method is accurate.
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The Gaussian linear-regression filter was tested because it is of practical interest in fre-

quency and phase tracking. Typically the EKF or the Gaussian mixture filter have been used

in this kind of problems. It is interesting that these problems are often such that the linear-

regression filter can be implemented with the same computational complexity as the EKF. For

example in this case expectations with respect to Gaussian distributions were calculated using

the formula sin(z) = 1
2i (exp(iz) − exp(−iz)) and the characteristic function of the normal dis-

tribution. This analytic approach is promising as the results show, but as will be seen, linear

regression is not necessarily a good choice. To our knowledge the exact linear-regression filter

has not been applied before to this class of problems.

From table 8.1 we see that the particle filter performed better than the EKF but worse

than Galerkin’s method in the sense of e1. The results with a high noise level are not very

good though. It seems that for r > 0.5 the measurements are not very informative. With more

sophisticated methods or more particles it would probably have performed better.

Galerkin’s method offers an alternative to other filtering methods in phase tracking. In this

one dimensional case it can be implemented online because all calculations in the implemen-

tation are easy to do analytically.
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8.1.2 Phase Tracking with an Unknown Frequency

In this section we consider the same problem as in the previous section, but now the fre-

quency w0 is an unknown constant. We also modify the state-space model :

Xt = 0.3Wt.

The a prior distribution for (w0, θ0) is N(X̂0,C), where C is a diagonal covariance matrix with

C11 = 0.42, C22 = π2/16 and X̂0 = (3.37, 0.5). The real initial condition was X0 = (2.97, 0.5).

As before, for the implementation of Galerkin’s method we needed to choose a basis (wi)Ni=0.

We again chose a Gaussian basis with means ci and diagonal covariance matrices σ. The means

were placed on a uniform grid on the interval [2.5, 4.5] × [−π, π]. The distances between two
points on the grid on x- and y-directions were ∆cx = 0.1 and ∆cy = 0.2π. For the variances

we chose σ11 = 0.1 and σ22 = 0.2π. The implementation was otherwise similar to that in the

previous section except that now the grid was not moved during the simulation.

We also implemented the EKF and the particle filter with 20000 particles. The problem

here is that the frequency is constant and therefore sample impoverishment is a problem. We

decided to use the simple method called roughening introduced in [10]. In this method, before

resampling a Gaussian disturbance is added to each particle in the population. In this case only

the frequency parameter was perturbed. The s.d. of the perturbation was chosen to be KEN−1/2,

where E is the length of the interval between the maximum and minimum frequencies in the

population and N is the number of particles. K was chosen to be a matrix with K11 = 0.05 and

K22 = 0.

The step size for time discretization of the filters was 0.001. To compare the filters, the error

measures

e1 =
1
NM

M∑

j=1

N∑

i=1
∥(X̂1ih)( j) − (X1ih)( j)∥2

and

e2 =
1
NM

M∑

j=1

N∑

i=1
∥(X̂2ih)( j) − (X2ih)( j)∥2
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r Galerkin, e1 Galerkin, e2 EKF, e1 EKF, e2 Pfilt., e1 Pfilt., e2

0.4 0.090 0.319 0.089 0.329 0.113 0.387

0.5 0.096 0.280 0.099 0.319 0.108 0.327

0.6 0.106 0.340 0.110 0.355 0.116 0.479

Table 8.2 Results of the phase tracking experiment with unknown frequency.

were calculated. We chose M = 50. The results of the experiment are in table 8.2. Galerkin’s

method worked otherwise well but numerical instability was a problem. This is probably be-

cause the method which was used for solving (wt) was not very sophisticated. Probably a good

idea would be to use an operator splitting approach for discretizing the Kushner-Stratonovitch

equation which would lead to different equations. More on this subject can be found in [13].

Again there is some randomness in the results. The error values have in fact decreased

between r = 0.4 and r = 0.5. All filters were tested with same realizations, so this setting still

gives information about the performance of the filters.

The results of Galerkin’s method were better than those of the EKF. This was of course

expected, as the EKF works well only with low noise covariances. The bad performance of

the particle filter came as a slight surprise. The bad result is due to the suboptimal roughening

method. A better and more complicated approach could be to use the EM-algorithm for esti-

mating the frequency. More on using Monte Carlo methods for parameter estimation can be

found in [8].

In this two dimensional case choosing centers for the basis functions was already not easy.

If initial uncertainty is high, then high accuracy is not possible without adapting the grid some-

how. This is because the conditional density becomes more peaked when lots of observations

are available. A desired solution would be such that at each time step the basis functions would

lie on an estimate of the region where the conditional density is significantly above zero. A

possible approach, if the one we used in the previous example is not good enough, would be

to use an orthogonal basis. In that case forming the matrix M and its inverse would be simple.

In [11] a Fourier basis was used resulting in an efficient implementation. Maybe a good idea
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would be to discretize the continuous-time problem as was done in section 7.1 and use the

ideas presented in that paper. Fourier transform techniques are quite efficient and have been

used also in [22]. Also Hermite polynomials could be considered, but then the implementation

would be more complicated.

8.1.3 Conclusions

The results clearly show that the performance of Galerkin’s method is good compared to

other methods. In practice time discretization of the Kushner-Stratonovitch equation should

be done using for example operator splitting methods ([13]). This should not pose additional

problems as the methods are quite simple to use.

Maybe the biggest problem in applying Galerkin’s method is that its implementation may

be quite difficult. The basic method can of course be programmed quite easily, but to make it

work properly is not always easy. The first difficulty is choosing basis functions. If the state-

space is not compact it may be necessary to use a time varying the basis. Otherwise the con-

ditional density moves away from the region where there are basis functions or becomes too

peaked. This means that quite a lot of computation needs to be done and it may be necessary to

be able to do it analytically. Possible solutions to this problem were described in the previous

section.

Another problem of Galerkin’s method is its computational complexity, which is O(N 2),

where N is the number of basis functions used. If high accuracy is needed, the amount of

computation required grows fast. This problem becomes worse once the dimension of the state

space grows. However, it is often the case that using Monte Carlo methods like the particle

filter lots of particles are needed to achieve similar accuracy.

When the dimension of the state-space is under four, Galerkin’s method might be a good

choice. However, its usefulness in online state estimation is questionable. This is because of

the computational complexity, it is often possible to implement faster and accurate enough

methods. If this is not a problem (calculations are made offline for example) and high accuracy

is needed, then Galerkin’s method might be a good choice.
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Before deciding to use Galerkin’s method one should consider using grid-based methods

like numerical quadratures or finite differences. A grid of points is much easier to set up and

modify than for example a Gaussian basis. The implementation is in general easy because no

analytic or numerical integration is needed. The curse of dimensionality is of course a problem

here also. More information about these methods in a discrete-time setting can be found in

[8]. Numerical quadrature based methods are especially interesting because they offer high

accuracy.

Other methods also gave interesting results. The results of the particle filter were surpris-

ingly bad, but one could argue that the implementation was not really very efficient. Still it is

clear that in many low dimensional problems the particle filter is not the best choice.

The linear-regression filter gave relatively good results without additional computational

cost in a problem where traditionally the EKF has been used. This is not a surprise as the

linear-regression filter uses a much more accurate linearization method.

8.2 Simulations with Gaussian Filters

In this sections we will test Gaussian filters on two experiments. The results are compared

with those of the particle filter. The main point is finding strengths and weaknesses of the filters.

We also want to highlight the fact that very often at least part of the integration necessary for

implementing a Gaussian linear-regression filter can be done analytically. This point is inter-

esting taking into account the fact that the EKF and the unscented Kalman filter (the unscented

Kalman filter is a popular method, see for example [12]) are so commonly used. This analytic

approach is applied to the problem of frequency tracking where, as in the phase tracking prob-

lem, traditionally methods like the EKF and UKF have been used. As in the phase tracking

problem, the possible improvement in performance comes with no additional cost. But we also

show that this improvement may often be questionable.
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8.2.1 Vertically Falling Body

In this section we will examine the problem of estimating the velocity, altitude and ballistic

coefficients of a vertically falling body. This is a well-known problem, see for example [14] and

[2]. In [14] this problem was used as a benchmark problem for Gaussian quadrature filters. The

techniques used in this section can be applied straightforwardly for example to target tracking

with range-only measurements.

The state variables are the altitude (x1t ), the velocity (x2t ) and the ballistic coefficient (x3t ) of

the body. The state equations are

dx1t = −x2t dt, [8.3]

dx2t = − exp(−gx1t )(x2t )2x3t dt [8.4]

and
dx3t
dt
= 0. [8.5]

More on the physical meaning of these equations can be found in [2]. Equations 8.3, 8.4 and

8.5 are far from linear, which makes the problem challenging. Next we define the measure-

ment model. We assume that the radar is at the point (M,H) and the measurement signal is

continuous. Then we have

Yt =
1
R

∫ t

0
h(Xs) ds + Vt, [8.6]

where

h(x) =
√
M2 + (x1 − H)2.

We chose the parameters g = 5 · 10−5, H = 105, R = 80 and M = 105.
For state estimation we implemented the EKF, the linear-regression filter and the particle

filter (with 15000 particles). The Gaussian filters could be implemented without problems.

Denote by pt a Gaussian approximation to the density p(x|Yt). The integrals
∫

IR
h(x1)pt(x1) dx1

and ∫

IR
x1h(x1)pt(x1) dx1
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were calculated using the Gauss-Hermite quadrature rule with 5 points. The integrals
∫
IR
∫
IR x

ih(x1)pt(x1, xi) dx1 dxi (i = 2, 3) were calculated by writing
∫

IR

∫

IR
xih(x1)pt(x1, xi) dx1 dxi =

∫

IR

∫

IR
xipt(xi|x1) dxi h(x1)pt(x1) dx1.

The latter integral can be calculated by integrating out first the inner integral analytically and

then using numerical integration in one dimension. The rest of the integrals necessary for im-

plementation of the linear-regression filter were calculated analytically using the characteristic

function of the normal distribution and its derivatives.

Discretization of the continuous-time problem was done with step size 0.005. For the Gaus-

sian filters we used the Euler method and for the particle filter an accurate Runge-Kutta dis-

cretization.

Because the model for the hidden states is deterministic the particle filter can’t be used

as such because of the degeneracy problem, unless lots of particles are used. To avoid this

problem the resampling phase was modified. Denote by (ζi,wi) a set of N particles and their

corresponding weights. In the ordinary branching particle algorithm at the update phase the

discrete distribution
K∑

i=1
wiδζi [8.7]

is sampled. This resampling operation is now modified so that instead of 8.7 the samples are

taken from the distribution
K∑

i=1
wiN(ζi, BK),

where K is the number of particles and N(ζi, BK) is the density function of the normal dis-

tribution with covariance BK and mean ζi. Sampling from this distribution is easy: just draw

according to the weights and add noise. The choice of BK is of course critical. As proposed in

[8] we choose

BK = (
4

(nx + 2)K
)1/(nx+4)Ed,

where E is the covariance matrix of the discrete distribution 8.7 and in this case nx = 3. We

also made the choice d = 1/50.
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To evaluate the performance of the filters, the root mean square error (RMS) was evaluated

over 50 simulations at each time point. This was done by calculating the mean square error at

each time point and taking the square root of it. The initial condition for the state process was

X0 = (3 · 105, 2 · 104, 10−3). The initial distribution for the filtering processes was N(X̂0,C),
where C is diagonal and X̂0 = (3 · 105, 2 · 104, 3 · 10−5). The diagonal of the covariance matrix
is given by C11 = 106, C22 = 4 · 106 and C33 = 10−4. The results are plotted in figure 8.1. In
figure 8.2 we have plotted one realization of the filtering processes.

The results show clearly the superior performance of the linear-regression filter over the

EKF. This is due to the strong nonlinearity of the state-space model which can be seen from

figure 8.2. An especially difficult moment for all methods is the point where the velocity starts

to fall quickly. (x1 − H)2 is relatively small around t = 10 and this means that the noise makes
it difficult to estimate the state. The error decreases after the object has passed the critical point

and differences between the filters grow.

The EKF is able to perform decently and does not diverge. However, as expected the re-

gression approximation is more accurate than the one based on simple first order approximation

(although there is no mathematical proof that this should always be the case). The error of the

EKF is mainly due to the prediction phase as the mean and variance should not be updated by

such a crude way. As will be seen in the next section, when covariances of the estimates are

too big problems may arise. In this example this was not the case.

The particle filter performed fine after the critical point. Estimation of the ballistic coeffi-

cient caused difficulties but on the other hand the particle filter was superior to the other filters

after t = 10. It seems that if the model is deterministic, the choice of resampling method should

be done carefully. In this case the method was probably not efficient enough and finding good

parameter values was not easy. More efficient methods can be found in [8]. The results from

the particle filter still show that the linear-regression filter is not quite optimal.

DRAFT: Do Not Distribute 17:37 12th July 2005



72

0 10 20 30
0

500

1000

1500

2000

Time

Av
er

ag
e 

ro
ot

 m
ea

n 
sq

ua
re

 e
rro

r

Altitude, x1
t

EKF
LRF
Particle filter

0 10 20 30
0

500

1000

1500

2000

Time

Av
er

ag
e 

ro
ot

 m
ea

n 
sq

ua
re

 e
rro

r

Velocity, x2t

EKF
LRF
Particle filter

0 10 20 30
0

0.005

0.01

0.015

Time

Av
er

ag
e 

ro
ot

 m
ea

n 
sq

ua
re

 e
rro

r Ballistic coefficient, x3
t

EKF
LRF
Particle filter

Figure 8.1 RMS of the filters calculated over 50 simulations.
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Figure 8.2 A realization of the filtering processes.
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It can be concluded that when the problem in question has signicant nonlinearities but

a Gaussian distribution is still able to approximate the conditional distribution the linear-

regression filter may be a good choice. One must also take into account the level of uncer-

tainty. High observation noise leads to high covariances in the Gaussian approximations. The

computational cost depends on the dimension of the state space and the numerical integration

method which is used to approximate the integrals. The Gauss-Hermite quadrature is a power-

ful method for calculating integrals numerically when necessary, especially in low dimensional

spaces. An additional advantage of quadrature based filters over the EKF is that no derivatives

are needed.

In this example we wanted to demonstrate the advantages of analytic calculations: by ana-

lytic calculation we were able to avoid numerical integration in three dimensions. This makes

the algorithm much faster and more accurate. By numerical integration, the amount of com-

putation needed for the calculations is much higher. In general there exist numerous situations

where analytic calculations are possible but the EKF or another numerical approximation is

used. In most cases where the model equations are available it is possible to calculate at least

part of the integrals for the linear-regression filter analytically and simplify the rest. This is

an interesting point and even though it is quite elementary, it is often the case that this fact is

not exploited. Typical examples where analytic calculations are helpful are orbit determination

(see the simulations in [15]) and training of RBF networks (see [12]). It seems that in many

cases vast improvements over the traditional EKF would be easily obtainable.

8.2.2 Frequency Tracking

In this section we will examine the problem of frequency tracking in the case of multiple

sinusoidal signals (in this example two). This problem is interesting, because frequency track-

ing, phase estimation and demodulation are typical problems which occur in practice and have

been investigated a lot. The frequency tracking problem is harder to solve than the phase track-

ing problem in section 8.1, because the dimensionality of the state space is higher and depends

DRAFT: Do Not Distribute 17:37 12th July 2005



75

on the number of sinusoidal signals. Otherwise the problems are close to each other and for

example the implementation of the linear-regression filter is also here easy.

The state vector is Xt = (x1t , . . . , x6t ). The components x1t , x2t and x3t correspond to the first

sin-signal and the rest to the second. The model for the hidden states is linear:

dXt = AXt dt + B dWt.

The matrix A is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.05 0 0 0 0 0

0 0.2 0 0 0 0

0 0 0.4 0 0 0

0 0 0 0.05 0 0

0 0 0 0 0.2 0

0 0 0 0 0 0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The true initial condition for the simulations was x0 = (1, 0.4, 5, 2, 1, 3). The function h in the

observation model 8.6 is defined as

h(x) = x1 sin(x2) + x4 sin(x5).
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Figure 8.3 Results of experiment 1, RMS of the filters over 1000 simulations.

The a prior state estimate was chosen to be Gaussian with the mean (1.1, 0.4, 5, 2.1, 1, 3) and

covariance C0. In the first simulation C0 was chosen to be

C0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.12 0 0 0 0 0

0 0.12 0 0 0 0

0 0 0.12 0 0 0

0 0 0 0.12 0 0

0 0 0 0 0.12 0

0 0 0 0 0 0.12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the noise parameter r we chose the value 1/25. Time discretization was done with the

step size 0.01. In figure 8.3 we have plotted the RMS over 300 simulations at each time step.

The particle filter was implemented with 15000 particles. There was no need for numerical

integration in the implementation of the linear-regression filter.

The particle filter should be quite close to optimality. There exist lots of possible improve-

ment strategies. From these we would like to point out Rao-Blackwellisation for calculating the
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Figure 8.4 Experiment 2, an example of a situation where the linear-regression filter fails.

amplitudes using the Kalman filter. See [5] for more information on this method. The particle

filter is a promising approach to this problem as it brings vast improvement over the traditional

EKF and there are lots of possibilities for a more efficient implementation.

The linear-regression filter was slightly worse than the EKF at estimating the component x2t
but clearly better at estimating the other components. Both filters gave bad estimates towards

the end. The extended Kalman filter seems to diverge faster. It is well-known that the stability

properties of the EKF are not always very good. In general the linear-regression filter is maybe

a bit better on this regard.

Next we will modify the initial condition by setting C(2, 2) = π2 and C(5, 5) = π2. In

addition we chose r = 1/20. In figure 8.4 we have plotted the RMS over 30 simulations for this

initial condition. The particle filter was left out because we wanted to examine the Gaussian

filters only.

Now the linear-regression filter performed very badly. The average value of R2 (equation

7.14) over 30 simulations with these parameter values was not significantly above 0. The cor-

responding value calculated with the parameters which were used in the first simulation was
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0.101. Both values are low and linear approximations are not very good. In the former case the

linear regression approximation is so bad that it is totally useless. This signifies that the noise

term in the linearized model is set to a high value and the filter doesn’t go anywhere. The EKF

on the other hand uses only local information and doesn’t suffer from the same problem. In

fact in parameter estimation problems the EKF is a modified Newton algorithm (see [25]). The

point is that the EKF does not approximate the original model but instead performs optimiza-

tion steps to minimize a cost function. Without going into details, it is clear that this kind of

approximation does often produce better results than linear regression even though the resulting

distribution does not necessarily have much to do with the real conditional distribution.

The second experiment was done with parameter values which lead to a total failure of

the linear-regression filter. Situations where the EKF was better, but by not as big a margin

were also common in our experiments. Thus it is not clear what can be achieved by using the

linear-regression filter as such in this problem.

To avoid situations like the one in the second simulation, the linear-regression filter should

definitely be combined with a more sophisticated method. One could consider using unscented

particle filters or Gaussian mixtures (see [14] and [12]) and replace the UKF or EKF based al-

gorithm by one based on accurate linear regression. The key point is of course that the variance

of Gaussian components should stay small enough so that divergence does not happen. The

first experiment shows that improvements over the EKF should be possible.

8.2.3 Conclusions

From the simulations it is clear that the EKF is often far from optimal. By using linear-

regression filters it may be possible to improve its performance significantly. The computa-

tional cost depends on the dimensionality of the state space and on the accuracy of numerical

integration. In most cases it is possible to calculate all or some of the integrals analytically and

simplify the rest. We demonstrated this in our examples, especially the application to frequency

tracking is interesting as the EKF has been a standard tool in frequency and phase tracking.
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When the equation for the hidden states is linear and the measurement equation is not

too nonlinear, the advantage of the linear-regression filter is not obvious. In section 8.2.2 we

demonstrated that the EKF may even perform much better in these kind of situations. Typically

the linear-regression filter brings vast improvement over the EKF when the level of noise is not

too high and the model is significantly nonlinear. The sizes of the covariances of the Gaussian

approximations are of crucial importance: if the uncertainty is too high, then the linear approx-

imation may be bad. The performance of the filter can be evaluated heuristically using standard

techniques from regression analysis.

The branching particle algorithm performed well in both examples. Using more sophisti-

cated methods and variance reduction techniques would have improved its performace. It is

clear that the basic version of the algorithm is not efficient enough for many problems. For

practical applications the computational complexity may be too high and the use of Gaussian

filters should at least be considered. In many problems the accuracy obtained with these is good

enough with a low computational cost. An additional advantage of Gaussian filters is that they

are easy to use and understand. The particle filter is useful as a benchmark for assessing other

filters because with enough particles it is nearly optimal.

An interesting approach which was proposed is combining the linear-regression filtering

technique with some other filtering technique. This idea has been rarely used. But consider for

example the unscented particle filter which puts the unscented Kalman filter and particle filter

together. In a wide variety of problems combining the linear-regression filter and the particle

filter would be just as easy as implementing the unscented particle filter.
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