
Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Maunu Toiviainen

Near-Infrared Spectroscopy of Solids: Chemometrics

and Signal Processing

Master’s thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Technology

Kuopio, June 1st 2009

Supervisor: Prof. Olli Simula
Instructors: D.Sc. (Tech.) Pekka Teppola, D.Sc. (Eng.) Francesco Corona



HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Information and Natural Sciences
Degree Programme of Engineering Physics
and Mathematics

ABSTRACT OF
MASTER’S THESIS

Author
Maunu Toiviainen

Date
June 1st 2009

Pages
x + 62

Title of thesis
Near-Infrared Spectroscopy of Solids: Chemometrics and Signal Pro-
cessing

Professorship
Computer and Information Science

Code
T-115

Supervisor
Prof. Olli Simula

Instructors
D.Sc. (Tech.) Pekka Teppola, D.Sc. (Eng.) Francesco Corona

Near-inrared (NIR) spectroscopy permits the remote analysis of solid samples in the
diffuse reflectance (DR) measurement mode. However, uncontrolled physical variations
between solid samples, such as changes in packing density and particle size distribu-
tion, have a complex non-linearizing effect on the NIR spectra which complicates the
subsequent extraction of chemical information from the measured data.

The non-linearities may be removed from the NIR spectra by using model-based spec-
tral preprocessing methods, such as extended multiplicative signal correction (EMSC)
and optical path length estimation and correction (OPLEC). Such methods are de-
signed to make the subsequently developed linear calibration model more robust to
spectral artifacts of physical origin. In this work, an implementation for the optimized
version of EMSC is proposed, in which the spectral model is chosen so that the error of
cross validation is minimized for the subsequent calibration model. The performance
of the method is tested on a laboratory data set comprising NIR DR spectra of ternary
powder mixtures.

The physical interferences make the application of blind source separation (BSS) meth-
ods, which attempt to blindly factorize the measured mixture spectra into the pure
analyte spectra and their concentration profiles, difficult on the NIR spectra of solids.
The unique aspects of applying BSS in NIR DR spectra are discussed in detail, and
a three-phase preprocessing procedure of the measured spectral signals, which is de-
signed to improve the separation capability of BSS methods, is proposed in this work.
The method is tested and the explanatory power of BSS is demonstrated using both
the laboratory data set and process data measured during a pharmaceutical fluid bed
granulation process.

Keywords

Near-infrared spectroscopy, Diffuse reflectance, Chemometrics, Multi-
variate calibration, Spectral preprocessing, Simulated annealing, Blind
source separation, Independent component analysis

ii



TEKNILLINEN KORKEAKOULU
Informaatio- ja luonnontieteiden tiedekunta
Teknillisen fysiikan ja matematiikan koulutusohjelma

DIPLOMITYÖN
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Kiinteitä aineita voidaan analysoida kajoamattomasti diffuusissa heijastusmittauksessa
lähi-infrapunaspektroskopiaa (NIR) käyttäen. Näytteiden väliset fyysiset erot esimer-
kiksi pakkaustiheydessä ja partikkelikokojakaumassa voivat kuitenkin aiheuttaa mi-
tattuihin spektrisignaaleihin epälineaarisuuksia, jotka vaikeuttavat kemiallisen tiedon
louhintaa mittausdatasta.

Lineaaristen kalibraatiomallien herkkyyttä fysikaalisperäisille häiriöille voidaan vähen-
tää esikäsittelemällä mitatut spektrit häiriöt mallintavilla menetelmillä kuten EMSC ja
OPLEC. Tässä työssä toteutetaan joustava algoritmi EMSC-menetelmässä käytettä-
vän spektrimallin optimoimiseksi siten, että esikäsittelyn jälkeen rakennetun lineaari-
sen kalibraatiomallin ristikkäisvalidointivirhe minimoituu. Menetelmän suorituskykyä
verrataan muihin esikäsittelymenetelmiin käyttäen laboratorio-olosuhteissa mitattujen
kolmikomponenttijauheseosten spektridataa.

Sokean lähteiden erottelun (BSS) menetelmien, jotka yrittävät ratkaista puhtaiden ke-
miallisten aineiden spektrit ja konsentraatioprofiilit mitatuista seosten spektreistä, so-
veltaminen kiinteiden aineiden NIR-signaaleihin on hankalaa fysikaalisperäisten häi-
riöiden takia. Tässä työssä käsitellään kyseisen sovelluskentän haasteita yksityiskoh-
taisesti, ja työssä esitellään kolmivaiheinen NIR-spektrien esikäsittelymenetelmä, jon-
ka tarkoituksena on parantaa BSS-menetelmien erotuskykyä. Menetelmää testataan ja
BSS-menetelmien havainnollistamiskykyä esitellään käyttäen sekä laboratoriossa, että
leijupetirakeistusprosessin aikana mitattua dataa.
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Chapter 1

Introduction

1.1 Motivations and objectives

Near-infrared (NIR) spectroscopy [1] utilizes the interaction of electromagnetic ra-
diation with the vibrational energy states of molecular groups in providing indirect
information on both chemical and physical properties of a broad variety of materials.
The defining property of NIR spectroscopy is the relatively low absorption of the NIR
active molecular groups which permits the possibility to perform non-contact measure-
ments also on solid materials in the diffuse reflectance (DR) mode, where the sample is
illuminated and the spectrum of the backscattered light is measured. Minimal sample
preparation is thus required and fast inline analysis of even non-stationary samples
is possible. Complemented by its robustness, flexibility and inexpensive instrumen-
tation, NIR spectroscopy has thus gained a wide acceptance in both laboratory and
industrial process analytical applications [2].

In order to efficiently extract the desired information from the measured spectra, the
implementation of a successful NIR application requires expertise from both instru-
mentation and data analysis. Chemometrics is a scientific discipline which involves the
use of mathematical and statistical methods for efficient acquisition and analysis of
chemical data [3]. The analysis of spectroscopic data involves the extraction of quanti-
tative and qualitative information of chemical and physical nature from the measured
spectra. In a typical occasion involving quantitative analysis, a mathematical trans-
fer function, i.e., a multivariate calibration model, is developed between the response
variable measured with a primary laboratory method, such as the concentration of
a chemical species, and the secondary measurements such as the multidimensional
NIR spectra. The model may then be used to predict the value of the explained vari-
able from the subsequently measured NIR spectra, thus reducing expensive and time
consuming laboratory analysis.

NIR DR spectra are usually transformed into apparent absorbance units by taking the
negative logarithm of the measured reflectance. Under the simplifying assumption on
the validity of the Beer-Lambert’s law, the spectra are now assumed to follow the linear
mixture model so that the measured absorbance values are linearly proportional to
the concentrations of the pure analytes. Linear calibration models, such as principal
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component regression (PCR) and partial least squares regression (PLSR) are thus
widely applied in NIR spectroscopy [4].

Spectrophotometric analysis of solid materials often involves sample-to-sample vari-
ability caused by the scattering of light. Physical properties, such as packing density
of the sample and the particle size and shape, etc., have a complicated nonlinear
effect on the spectrum of backscattered light in DR measurements. These physical
variations may be so prevailing that the desired chemical information is masked be-
hind them, and the direct applicability of standard linear calibration models is not
straightforward and may result in a deteriorated prediction ability. The linearity may
be attempted to be regained with model-based spectral preprocessing methods, such
as extended multiplicative signal correction (EMSC) [5, 6] and optical path length
estimation and correction (OPLEC) [7]. Both methods utilize a modified version of
Beer-Lambert’s law in which the light scattering effects in an apparent absorbance
spectrum are approximated as additive smooth wavelength-dependent terms and a
multiplicative coefficient. Preprocessing involves the estimation and removal of these
errors from the modeled spectra so that only the linear part of the spectral signal
containing relevant chemical information is left. EMSC involves the assumption that
chemically relevant spectral signals, which effectively span the vector space containing
chemical information, be known a priori. OPLEC in turn requires the prior knowl-
edge on the mass fraction of the target analyte in the calibration spectra already in
the preprocessing phase.

The presence of nonlinearities evoked by physical light scattering effects and the subse-
quent deviations from the linear mixture model makes the application of blind source
separation (BSS) methods in NIR DR spectra difficult. When applied in optical
spectroscopy, BSS involves the estimation of the pure analyte spectra and their con-
centration profiles given only the measured mixture spectra and little or no additional
prior information. BSS methods may prove useful, e.g., in providing chemically mean-
ingful qualitative information for so called black systems for which no reference data
or knowledge on the pure analyte spectra are available [8]. One approach to BSS
is independent component analysis (ICA) [9] which linearly factorizes the measured
mixture spectra into source signals whose statistical dependencies have been mini-
mized. Most BSS methods assume the validity of the linear mixture model, and the
estimation of the underlying signals from NIR DR spectra is thus a challenge which
might be solved with spectral preprocessing.

1.2 Overview and contributions

In this work, the problematics of physical light scattering effects are dealed with in
the context of NIR DR measurements of pharmaceutical powders. The manufacturing
of solid dosage forms involves several subprocesses, such as powder blending and
granulation, which need to be monitored inline, and in which NIR DR spectroscopy is
often applied [10]. Two sets of NIR DR measurement data were created: A laboratory
data set of ternary powder mixtures with different particle sizes and hence varying
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light scattering properties was prepared, and an inline measurement on fluid bed
granulation (FBG) process simulating a black system was conducted.

A flexible algorithm for optimized EMSC is proposed, in which the chemically relevant
spectral signals in the EMSC model are optimized as linear combinations of some given
base vectors so that the error of cross validation is minimized for the constructed
calibration model. The performance of the method is compared to that of OPLEC
and regular EMSC using the laboratory data set. Similar approach to the modeling
of NIR DR spectra as in EMSC and OPLEC was applied also in the context of BSS.
A combination of preprocessing methods designed for ICA with the application on
NIR DR spectra, involving the removal of baseline offset by zero-meaning, smoothing
by rank reduction and enhancement of the statistical propreties of the signals by
differentiation, is proposed and justified. The combination of preprocessing and ICA
is applied in the qualitative analysis of both the FBG process data and the laboratory
data.

The work is organized as follows. Chapt. 2 starts with an overview on the physical
principles of NIR spectroscopy, the unique characteristics and the interpretation of
NIR spectra and the applications of NIR spectroscopy in the analysis of pharmaceuti-
cal solids. The utilized data analysis methods, viz., multivariate calibration, spectral
preprocessing methods and BSS are discussed thereafter. The algorithmic contribu-
tion of the Author is given in Sect. 2.4.3, where the optimized version of EMSC is
proposed. Sect. 2.5.2 and 2.5.3 describe the preprocessing methods which are needed
when BSS methods are applied on NIR DR spectra. Chapt. 3 begins with a description
on the phases and monitoring needs of an FBG process. The utilized NIR instrument,
the measurements conducted both inline and in laboratory as well as the origins of
the ulitized algorithms are detailed thereafter. The results achieved by applying both
BSS and spectral preprocessing methods on the data sets are reported in Chapt. 4.

3



Chapter 2

Theory

2.1 Physical principles of near-infrared spectroscopy

Fundamental transitions in the vibrational energy states of molecules are observed
generally in mid-infrared (MIR) region of the electromagnetic spectrum, corresponding
to the wavenumber range of 4000–400 cm−1, or the wavelength range of 2.5–25µm. In a
typical spectroscopic measurement a polychromatic beam of MIR radiation is incident
on a sample containing MIR active molecular groups, and the transmitted radiation
exhibits significant attenuation at the distinct wavenumbers that correspond to the
transition energies between the fundamental and the first excited vibrational states of
the molecules. In the process, radiation energy is transferred into mechanical energy
associated with the vibrational motion of MIR-active molecules with permanent dipole
moment. If near-infrared (NIR) radiation, generally accepted as the wavelength range
of 740–2500 nm (or 13 500–4000 cm−1), is used instead, the absorption peaks are seen
to be less intense, broader and heavily overlapping. Characteristics of MIR absorption
bands, such as location on the wavelength axis and intensity, can be understood
using the quantum mechanical harmonic oscillator to model the potential energy in
molecular vibrations, as is described in Sect. 2.1.1. The origin of NIR absorption bands
are combination and overtone bands of the fundamental transitions, and their origin
can be understood with the use of the anharmonic oscillator model (cf. Sect. 2.1.2).

The physical principles of vibrational spectroscopy are now described at sufficient
depth so that the reader is able to understand the unique characteristics of NIR
spectra. The overview is based on the Ref. [1, 11, 12], where references to more
comprehensive treatments of the subject can be found.

2.1.1 The harmonic oscillator model

At small displacements from the equilibrium re, the potential energy function of the
vibrational oscillations of the diatomic molecule in free space illustrated in Fig. 2.1a
can be approximated with the ideal harmonic oscillator [1]

V (r) =
1

2
k (re − r)2 (2.1)
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depicted in Fig. 2.1b. Here, k is the force constant, which describes the strength
of the molecular bond, and r is the distance between the two atoms. The classical
vibrational frequency of the model (in s−1) is

ν =
1

2π

√

k

µ
, (2.2)

where µ = m1 m2/(m1 +m2) is the reduced mass of the system such that m1 and m2

are the masses of the two atoms.

A quantum mechanical treatment of the diatomic system reveals that the molecular
vibrational energy can now take only discrete levels given by

Evib = hν

(

v +
1

2

)

, (2.3)

where h is the Planck’s constant and v is the vibrational quantum number which takes
only nonnegative integer values v = 0, 1, 2 . . .. In optical spectroscopy, Eq. (2.3) is
usually written in wavenumber units as follows

G(v) = Evib/hc = ν̄

(

v +
1

2

)

, (2.4)

where c is the speed of light and ν̄ is the wavenumber (in cm−1) corresponding to
the classical vibrational frequency. The probability of transition from the vibrational
state vi to vf is given by the transition dipole moment [1]

Pvi→vf
=

∫

ψ∗

vi
ǫψvf

d3r, (2.5)

where ǫ is the dipole moment of the molecule, ψi denotes the wave function of the
molecule at the vibrational state i and ∗ indicates complex conjugation. Integration
is performed over all space. The numerical value of the transition dipole moment
is proportional to the intensity of the absorption band. The transition probability
is nonzero only if the initial and final vibrational states both involve a change in
the dipole moment of the diatomic molecule. Hence, a transition is possible only
for a heteronuclear diatomic oscillator with permanent dipole moment. If the dipole
moment of the system can be represented as a linear function of the displacement,
i.e.,

ǫ = ǫe +

(

dǫ

dr

)

e

r, (2.6)

which is the case for the classical definition of the electric dipole moment, it can be
shown that Pvi→vf

6= 0 only if vi − vf = ±1 [11]. Due to the equally spaced energy
levels (cf. Eq. (2.4)), the selection rule thus states that an increase in the vibrational
energy state of the diatomic harmonic oscillator can occur only through the absorption
of a photon of the single wavenumber

ν̄ =
1

2π

√

k

µ
. (2.7)
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Strong chemical bonds and light atoms thus generally exhibit absorption peaks at
shorter wavelengths.

The majority of the absorption phenomena can be attributed to the fundamental
transition (vi = 0) → (vf = 1) as most molecules are in their ground vibrational
state in room temperature. According to the Boltzmann distribution of vibrational
energies, the probability of the ”hot bands”, i.e., the transitions between the higher
quantum numbers such as (vi = 1) → (vf = 2), is increased at higher temperatures
[1].

(a) Diatomic and triatomic molecules

1

2
ν̄

3

2
ν̄

5

2
ν̄

v = 0

v = 1

v = 2

G
(ν̄

)(
cm

−
1
)

r (cm)

re

(b) Harmonic potential

Figure 2.1: (a) Diatomic molecule consisting of atoms with masses m1 and m2. The
three vibrational modes of a triatomic molecule are also shown citebrittainsops; (b)
The harmonic potential function illustrated with the equidistant energy levels. The
fundamental transition and a the first ”hot band” are illustrated with arrows. The
symbols are explained in the main text.

A nonlinear (linear) polyatomic molecule containing N atoms has 3N−6 (3N−5) vi-
brational degrees of freedom, or normal modes of vibration, in which all atoms oscillate
in phase with a unique, mode-specific frequency [11]. The three vibrational modes
of a nonlinear triatomic molecule, such as H2O, are shown in Fig. 2.1a [11]. Each
of the three modes can be regarded as an independent harmonic oscillator with the
fundamental wavenumber ν̄i and the quantum number vi, i = 1, 2, 3. The wavefunc-
tion of the triatomic molecule can thus be written as a product of the wavefunctions
describing the states of the independent vibrational modes, i.e., [11]

ψv1v2v3
= ψv1

ψv2
ψv3

. (2.8)

The vibrational energies are now given by [11]

G(v1, v2, v3) =
3
∑

i=1

ν̄i

(

vi +
1

2

)

. (2.9)
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The selection rule for the system consisting of independent harmonic oscillators states
that only one quantum number of the system is allowed to change at a time by only
one step, i.e.,

∑3
i=1 |∆vi| = 1. The molecule is thus allowed to absorb electromagnetic

energy only at three discrete wavenumbers ν̄i, i = 1, 2, 3. Again, the initial and final
vibrational states must involve a change in the dipole moment of the molecule.

The harmonic oscillator model adequately explains the fundamental transitions vi =
0 → vf = 1 in the vibrational energy state of both diatomic and polyatomic heteronu-
clear molecules which are observed as strong, discrete absorption peaks in their MIR
absorption spectra. With most molecules, the fundamental transition energies are
restricted to the MIR range on the wavelength scale. The harmonic oscillator model
does not predict any transitions to occur in the NIR range.

2.1.2 The anharmonic oscillator model

In reality, the chemical bond between two atoms is expected to rupture if high energy
is transferred to the molecule and the inter-atomic distance is sufficiently increased.
Also, the potential energy should approach infinity as the inter-atomic distance ap-
proaches zero. The realistic potential energy function between two atoms can be
approximated by supplying Eq. (2.1) with higher order polynomial terms or using the
Morse function [1]

V (r) = De

(

1 − e−a(r−re)
)2
, (2.10)

where De is the dissociation energy and a quantifies the rigidity of the chemical bond.
The energy levels of the anharmonic oscillator can be solved with the perturbation
method, and their second order approximation is

G(v) = ν̄

(

v +
1

2

)

− χeν̄

(

v +
1

2

)2

. (2.11)

The nonnegative anharmonicity constant χe quantifies the amount of mechanical an-
harmonicity which is observed as unequal spacings between adjacent energy levels.
The spacings decrease as the quantum number is increased. The anharmonic po-
tential and the second order approximations for the energy levels are illustrated in
Fig. 2.2a.

The electrical dipole moment of a diatomic molecule deviates from the classical linear
expression of Eq. (2.6) and its real value can be approximated with a polynomial
series. The higher order terms in its expression give arise to electrical anharmonicity
which results in a nonzero transition probability in Eq. (2.5) for overtone transitions
involving quantum number changes greater than one (∆v = ±2,±3, . . .) [11]. The
overtone transitions are observed in the NIR wavelength range as broader and fainter
absorption peaks when compared to the fundamental transitions in the MIR range.

The electrical anharmonicity permits overtone transitions also for the normal modes
of vibration in polyatomic molecules, so that only one quantum number changes at a
time as ∆vi = ±2,±3, . . .. Furthermore, the combination transitions, where several
∆vi 6= 0 in a single absorption event, become possible. The intensity of a given

7



transition can again be evaluated by the transition moment of Eq. (2.5). At least one
of the normal modes of vibrations must induce a change in the dipole moment of the
molecule in both the initial and final vibrational states. Moreover, the integrand must
be symmetric in order to produce nonzero transition probability. The feasibility of a
given transition can be also examined with molecular symmetry-based group theory
[11].

The most common absorption bands observed in the NIR region originate from polar
molecular bonds between the light hydrogen atom and a heavier atom. The NIR
functional bonds O–H, C–H, N–H and S–H have small reduced mass and a strong
chemical bond which results in a relatively high fundamental vibrational energy in
the region of 3000–4000 nm (cf. Eq. (2.7)). Their first overtones are thus observed
in the NIR region. Many molecules have lower fundamental vibrational energies and
they subsequently exhibit their first overtones already in the MIR region, leaving only
the weak second overtones to occur the NIR range. The low-wavenumber part of NIR
absorption spectra between 1600–2500 nm consists of combinations of fundamental
transitions and the first overtones of the functional groups containing X–H bonds.
The second overtones are generally observed in the range 1300–1600 nm and the third
overtones in 750–1300 nm. NIR absorption spectra thus exhibit a sloping baseline as
the probability of transition decrease by a factor of 10–100 with each increment in the
order of overtone [1]. When moving towards the high-energy end of a representative
NIR spectrum, the absorption peaks also tend to become broader, as the vibrational
modes begin to decouple and move more independently at higher energy levels.

NIR spectra are further complicated by resonance effects, interactions between mole-
cular groups and temperature changes. Fermi and Darling-Dennison resonance phe-
nomena may occur under certain conditions involving small differences between fun-
damental and overtone or combination bands, symmetry of two vibrational modes
and large degree of anharmonicity. They may be observed as two absorbance bands
at a location where only one is expected [12]. Changes in the location, intensity and
width of an absorbance band occur when the bond strength, dipole moment or an-
harmonicity of an involved vibrational state is altered [11]. These alterations occur,
e.g., in the neighboring group effect, where the inspected NIR active group interacts
with the neighboring molecular groups within the same molecule. In bulk matter, the
NIR active group may interact with the neighboring molecules in the sample matrix
through, e.g., hydrogen bonding which tends to make the vibrations more harmonic.
The transition band positions and intensities of a NIR active group thus vary ac-
cording to the structure of rest of the molecule and the presence and nature of the
surrounding molecules. A sample has, e.g., slightly different NIR spectra in the gas
and bulk phases. Increase in temperature tends to increase the anharmonicity of es-
pecially light molecules involving hydrogen bonding which again results in changes
in band position, width and intensity. Water, which consists of light molecules with
hydrogen bonding interactions, has a high propensity for temperature effects which
often complicates NIR spectroscopic measurements in the presence of moisture and
unstable temperature conditions.

The strong absorption bands of water near 1936 and 1455 nm, and a medium band
near 1800 nm, are shown in Fig. 2.2b. The bands can be assigned to the combina-
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Figure 2.2: (a) The anharmonic potential approximated with the Morse function.
The second order approximations of the energy levels are shown. The fundamental
transition and the first and second overtones are illustrated with arrows. The symbols
are explained in the main text; (b) The NIR absorption spectrum of water measured
with the instrumentation detailed in Sect. 3.2.

tion transitions ψ000 → ψ011, ψ000 → ψ101 and ψ000 → ψ021, respectively, where the
quantum numbers describe the symmetric stretching, antisymmetric stretching and
bending vibrational states of the triatomic H2O molecule (cf. Fig. 2.1a), respectively
[11]. Numerous fainter absorption bands are superposed on the water spectrum, and
their presence can be observed, e.g., by taking a second order difference with respect
to the wavelength channels [1].

2.2 NIR spectroscopy of pharmaceutical solids

NIR spectroscopy can be used in the analysis of both clear and turbid materials.
Transmittance measurements made on non-scattering samples can be transformed
into absorbance units which, according to Beer-Lambert’s law, results in a simple lin-
ear relationship between the absorbance and the concentrations of the chemical species
present in the measured sample. Turbid materials deviate from the assumptions of
Beer-Lambert’s law since the chemically relevant absorption of light is now convoluted
with light scattering effects in the measured spectra. The transformation of transmit-
tance spectra into apparent absorbance units results then in signals with difficulty of
interpretation. Propagation of light in turbid and strongly scattering media can be
modeled using the equation of radiative transfer [13], from which the absorption and
scattering coefficients of the sample can be solved using, e.g., the numerical Monte
Carlo method [14] or the analytical diffusion approximation [15]. In this work, how-
ever, only the absorbance transformation is utilized, and it is later shown in Sect. 2.4
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and 2.5 that the desired chemical information may then be extracted at sufficient
accuracy even from DR measurements made on scattering samples.

Next, Sect. 2.2.1 overviews the transmittance measurement mode in NIR spectroscopy,
the Beer-Lambert’s law and the linear mixture model inherent to the absorbance spec-
tra. The interaction of light with solid material is qualitatively described in Sect. 2.2.2,
where the DR measurement mode and the challenges involved with it are overviewed.
The effect of light scattering on apparent absorbance spectra are illustrated with ex-
amples considering changes in moisture content and particle size distributions of the
measured samples. Applications of NIR spectroscopy in the analysis of pharmaceutical
solids are given in both sections.

2.2.1 Beer-Lambert’s law and transmittance measurements

According to Beer-Lambert’s law [11], light intensity exhibits exponential decay as a
function of distance in transparent, purely absorbing media. The absorbance, defined
as the natural logarithm of inverted transmittance, is linearly proportional to both
the optical path length and the concentrations of the chemical species present. For a
mixture of J non-scattering analytes, the absorbance at the wavelength λ is given by

A (λ) = log

(

1

T (λ)

)

= log

(

I0 (λ)

I (λ)

)

= l

J
∑

j=1

cmol, jǫmol, j (λ) (2.12)

where I0 (λ) and I (λ) are the light intensities entering and transmitting the sample
at the wavelength λ, respectively (for derivation, see [11]). The characteristic mo-
lar absorptivity of the jth analyte at the wavelength λ is denoted with ǫmol, j (λ) (in
Lmol−1cm−1), cmol, j is its molar concentration (in mol L−1) and l is the optical path
length (in cm) which is equal to the sample thickness for non-scattering samples. The
model assumes linear mixing such that sample matrix interactions between the ana-
lytes are negligible and the absorptivities of the analytes do not change as a function
of concentration. Mass concentrations cmass, j (in g L−1) can be alternatively used in
the model in which case each molar absorptivity is to be divided by the molar mass
of the corresponding analyte to obtain ǫmass, j (λ) (in L g−1cm−1). Mass fractions cw, j,

which obey the closure constraint
∑J

j=1 cw, j = 1, may also be attempted to be used
in the model as

A (λ) = l

(

J
∑

i=1

cmass, i

)

J
∑

j=1

cmass, j
∑J

i=1 cmass, i

ǫmass, j (λ) = b
J
∑

j=1

cw, jǫmass, j (λ) . (2.13)

Here, the optical path length and the sum of the mass concentrations have been
merged into the coefficient b. The sum of the mass concentrations varies between
samples in which the J analytes have been mixed in different proportions unless
all J chemical species have equal densities. Thus, the coefficient b is expected to
generally vary between measurements made on different samples even if the optical
path length remains constant, and the absorbance values are not expected to be
linearly proportional to the mass fractions cw, j .
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Multichannel spectroscopic data are usually modeled according to the linear mixture
model as

xi, chem =

J
∑

j=1

cijsj , i = 1, 2, . . . , I, (2.14)

The elements of the L × 1 column vector xi, chem are the absorbances at L narrow
contiguous wavelength bands. If the I samples are measured in a cuvette of constant
thickness, the constant optical path length can be merged with the characteristic
absorptivities to yield the pure analyte spectra sj . The units of the concentration
variables cij are application dependent. In matrix notation, the measured absorbance
spectra are usually transposed and presented as the rows of the I ×L matrix X as in

X = CST, (2.15)

where the columns of the I × J matrix C are the concentration profiles of the J
pure analytes, and the columns of S are the pure analyte spectra. The superscript T
denotes matrix transposition.

In the case of turbid media, such as pharmaceutical powders, the scattering of light
makes the aforementioned linear mixture model invalid. Through reflection and refrac-
tion, photons are deviated from their original trajectories each time they are obliquely
incident on an interface between two substances of different refractive indices. In dense
fine-particulate media, the direction of a photon is constantly changed as it frequently
encounters such interfaces between the suspending medium, such as air, and the par-
ticles. The distance of photon travel in the medium thus exhibits variance around a
mean photon path length which is larger than the thickness of the sample. As the re-
fractive indices are not constant with respect to wavelength, different wavelengths are
refracted at varying amounts, and the distribution of the photon path length varies
between wavelength channels. Furthermore, the apparent optical path length has a
complex relationship with the morphology, particle size distribution and the packing
density of the solid. Optical path length is proportional to the apparent absorbance,
and varying optical path length hence results in a multiplicative error in the spectra.

Despite the nonlinearity induced by the scattering of light, the log (1/T ) transform
is often used with turbid samples. Under stable measurement conditions and small
concentration ranges, the linear response between the apparent absorbance and the
concentrations holds approximately. In pharmaceutical applications, NIR transmit-
tance spectroscopy has been found useful in the analysis of the solid dosage forms due
to the large mass sampled by the NIR light which permits the analysis of the whole
tablet in one measurement [11]. Transmittance measurements are performed mainly
in the third overtone region 750–1300 nm due to the generally less intense absorption
which permits high transmissivity even for relatively thick samples.

2.2.2 Diffuse reflectance measurement mode

The capability to perform fast, non-contact and inexpensive measurements on turbid
samples has made NIR spectroscopy the method of choice in industrial process mon-
itoring applications. In diffuse reflectance (DR) measurement mode, the sample is
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illuminated with a source of NIR radiation, such as halogen lamp, and the diffusely
reflected light is either detected with a light detector or collected into optical fibers.
Diffusively reflected photons interact with the interior of the sample by dipping into
the material before re-emerging on the surface after multiple scattering events. Con-
trary to transmittance measurements where samples must be placed in cuvettes, DR
measurements require minimal sample preparation which facilitates inline measure-
ments.

The reflectance R (λ) of a sample is defined as the ratio of intensities for light diffu-
sively reflected from the sample, I (λ), and light diffusively reflected from the surface
of a non-absorbing reference material placed at the location of the sample, I0 (λ).
The reference material, such optical teflon, should reflect all wavelengths with equal
intensity and have no absorption bands in the NIR range. Although the measurement
geometry and the sample properties are very different from the assumptions of the
Beer-Lambert’s law, DR spectra are usually transformed into apparent absorbance
units with the transformation log (1/R) [11]. Again, the apparent optical path length
is wavelength-dependent and it has a complex relationship with the physical charac-
teristics of the sample. Thus, the linearity between the apparent absorbance units
and the concentration of the target analyte is often lost, and the interpretation of the
measured spectra is complicated. The chemical information in the DR spectra is in-
terfered with physical effects, resulting from changes in the light scattering properties
of the sample, which might, however, provide useful information on the physical state
of the sample in their own right.

The strong absorption bands of water in the NIR region makes NIR spectroscopy
suitable for moisture measurements. The effect of moisture in log (1/R) spectra is
demonstrated in Fig. 2.3a, where microcrystalline cellulose (MCC) powder is mixed
with water at three different weight ratios. In addition to the increase of apparent
absorbance at the water band locations, the baseline offset of the measured spectra is
increased along with moisture. As the air in the inter-particulate spaces is replaced
with water, the discontinuity in the refractive index in the interface between the sus-
pending medium and the particles is decreased which results in diminished refraction
of light [4]. The probability for a diffusely scattered photon to return to the surface
of incidence is thus reduced and the baseline effect is attributed to the decrease in the
total intensity of the backscattered light. The presence of moisture might also have
a complex effect also on the apparent optical path length. Decrease in the refraction
of light causes the backscattered photons to travel longer paths in the medium on
average. On the other hand, the presence of water in the inter-particulate spaces
increases the probability of absorption which favors shorter optical path lengths. The
net effect of these two interactions determines the correlation between the moisture
content and the spectral amplitude, i.e., the multiplicative error.

Varying particle size distribution in powders has a similar baseline effect in the
log (1/R) spectra as moisture. Fig. 2.3b presents the spectra of three chemically
identical anhydrous lactose powders with different particle size distributions. It is
seen that coarse powder exhibits smaller intensity for the backscattered light, hence
the increase in the apparent absorbance. This effect can be understood using the Mie
theory for light scattering, according to which larger particles have greater tendency
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Figure 2.3: DR measurements. (a) Mixtures of microcrystalline cellulose (MCC) and
water. The mass percentages of water are given in the figure. Scaled water spectrum is
shown for reference; (b) Lactose powders of three different particle size distributions.
The spectra were measured with the instrumentation and materials elaborated in
Chapt. 3.

to forward scatter light [16]. Similarly to the moisture effect, fewer photons are now
diffusely scattered back to the direction of incidence. In addition to the baseline effect,
the spectrum of the coarsest sample also has larger amplitude than the spectra of the
two finer powders. This is due to the increased apparent optical path length caused
by the forward-scattering tendency of the large particles.

NIR spectroscopy is routinely used in the monitoring of moisture content in wet phar-
maceutical manufacturing processes, such as wet granulation (cf. Sect. 3.1). The
capabilities of NIR reflectance spectroscopy in particle size analysis have also been
studied extensively [17]. Linear regression models for both the median particle size
[18] and the complete discretized percentage particle size distribution [19, 20] in phar-
maceutical powders have been successfully constructed.

NIR DR spectroscopy is also often used to measure the content of the active phar-
maceutical ingredient (API), e.g., in content uniformity analysis during the mixing
of powders [21]. Understanding of the measurement scale involved and the random
nature of sampling is important in such applications [22]. DR measurements gather
information only from the outermost layers of the samples and high absorbtivity gen-
erally implies small sampling volume. Hence the shorter wavelengths in the third
overtone region penetrate deeper into the material than the first overtone wavelengths
above 2000 nm. The sampling volume, which also depends on the density of the mate-
rial, is often quantified by the information depth, which is defined as the thickness of a
layered sample at which the intensity of diffusely backscattered reaches its maximum
[23]. As the thickness of a layered sample is increased, the intensity of backscat-
tered light increases monotonically until the information depth is reached, since fewer
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photons are lost in transmission. In a typical non-tapped MCC powder of the den-
sity 0.30 g/cm3, the third overtone wavelengths reach the information depth of about
2mm, whereas the low-frequency end of the NIR spectrum is unable to penetrate
deeper than 0.5mm [23]. The small sampled volume makes NIR DR spectroscopy
relatively inaccurate measurement method. Powder mixtures are usually very het-
erogeneous at the involved measurement scale and single-point measurements hence
suffer from nonrepresentative sampling [22]. The effect of segregation, in which small
particles tend to move towards the bottom layers of the mixture to fill the interpartic-
ulate voids, is a major cause of mixture heterogeneity when free-flowing powders are
handled [22]. The detection limit for the mass percentage of a given chemical species
is usually of the order of 0.1%w/w in NIR DR measurements [12].

2.3 Multivariate calibration

Chemometrics is a subdiscipline of analytical chemistry which involves the use of
mathematical and statistical tools in chemical and process analytical problems. Its
purpose is to permit efficient collection of measurement data and extraction of relevant
information from them [24]. Data analysis in chemometrics can be coarsely divided
into exploratory and confirmatory methods [25]. The former involves, e.g., the ap-
plication of unsupervised learning techniques in the extraction of meaningful features
and qualitative attributes, such as the identity of chemical species, from the measured
data. Explanatory data analysis involves the extraction of quantitative information
form the measurements, e.g., by constructing calibration models.

Calibration models are extensively used in spectroscopy to relate the measured L-
dimensional explanatory variable xi (the discretized spectra) to an explained variable
yi, which is usually the mass fraction or concentration of a target analyte in chemical
mixtures. Due to the multidimensional nature of the spectra, calibration methods
are multivariate. Also, the explained variable is multidimensional in the general case
of multivariate calibration [4], but only scalar values are treated in this work. The
purpose of calibration is to reduce the amount of labor-intensive laboratory work,
such as the use of wet chemical methods in determining the absolute concentration
values, by constructing a mathematical model

yi = f (xi) , i = 1, . . . , I, (2.16)

which can be used to predict the value of the dependent variable from the subsequent
measurements xnew obtained with a fast and economical method, such as NIR DR
spectroscopy.

Due to the linear mixture model (Eq. (2.14)), linear regression models are chemically
interpretable [26] and they are naturally applicable for the prediction of concentration
values from optical absorbance spectra. Given the calibration set, i.e., the reference
values y = [y1 y2 · · · yI ]

T and the measured spectra X, a forward linear regression
model [4] can be written as

y = Xβ. (2.17)
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In multiple linear regression (MLR), the regression vector β is estimated in least-
squares (LS) sense as

β̂ =
(

XT X
)

−1
XT y, (2.18)

where the superscript −1 denotes matrix inversion. The predicted y-value for a new
measurement xnew is now given by

ŷnew = xT
new β̂. (2.19)

To account for a constant term in the model, the spectral vectors are often supplied
with an extra element with the constant value of unity.

Due to the general smoothness of NIR spectra, the matrix X often exhibits a high de-
gree of collinearity in NIR applications. The absorbance value at one wavelength chan-
nel can often be very accurately represented as a linear combination of the absorbance
values at some other neighboring channels in NIR spectra. Hence the columns of X

are linearly dependent, and the matrix inversion in Eq. (2.18) is unstable. Moreover,
MLR is very sensitive to noise and thus prone to overfitting [4].

To remove the problem of collinearity and to mitigate the effect of noise in calibration,
the calibration model is often written in bilinear form as

X = TPT + E (2.20a)

y = Tq + f . (2.20b)

The rank of the matrix X is reduced by approximating each measured spectrum as
a linear combination of loadings, the columns of the L × A loading matrix P =
[p1 · · ·pA]. The number of loadings A is chosen so that all significant spectral varia-
tions are explained by them. Usually A is equal to or slightly larger than the chemical
rank of X, i.e., the number of pure analytes present in the mixtures J . The variations
unmodeled by the A loadings are given by the matrix E, which is expected to con-
tain only uninformative noise. The projections of the sample vectors onto the loading
vectors, the scores, are given by the columns of the I × A matrix T = [t1 · · · tA].
The vector q can be thought as the regression coefficients of y on T. Now T is a
full-rank matrix with a stable pseudo-inverse, and the regression coefficients q̂ can
be estimated similarly to Eq. (2.18). The unmodeled variations in the reference y

are given by the vector f . The prediction phase involves the estimation of the scores
T̂new = [t̂1 · · · t̂A] for the new measurement xnew, after which the predicted value of
the dependent variable is given by ŷnew = T̂new q̂.

The bilinear model is often constructed with principal component regression (PCR),
where the matrix X is orthogonalized using singular value decomposition (SVD)

X = UΣVT. (2.21)

The columns of U and V are the orthonormal eigenvectors of the unitary matrices
XXT and XT X, respectively. The non-zero elements of the diagonal matrix Σ are
square roots of the eigenvalues of the two unitary matrices sorted in decreasing order.
Usually X is mean-centered prior to SVD to obtain X =

[

X − 1xT
]

, where x is the
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mean of all I measured spectra. In this case XT X is proportional to the covariance
matrix of X, and each column of V accounts for a part of variance in X proportional to
the corresponding squared diagonal element of Σ. Now the SVD in Eq. (2.21) is called
the principal component analysis (PCA) factorization of X. The principal component
score and loading matrices for the bilinear model in Eq. (2.20a) are obtained by
collecting the contributions of A < I, usually the most significant, PCs as

T = U(:,1:A) Σ(1:A,1:A) and P = V(:,1:A), (2.22)

where, mimicking MATLAB notation, the first A columns of U are given by U(:,1:A).
Before prediction, the scores of the new spectrum are estimated by projecting it onto
the orthonormal loading vectors as T̂new = xT

new P.

In PCR, the loadings are chosen on the basis how well they explain the variance in X.
It is difficult to conclude which combination of PCs gives best predictive performance
for the calibration model, since the bilinear model does not reveal how well they
correlate with the dependent variable y. Partial least squares regression (PLSR)
[4] solves this problem by utilizing the reference values y in the decomposition of
X into scores and loadings. PLSR has many variations, but the standard version
includes another set of loadings, the orthonormal loading weights as the columns of
the L × A matrix W. The ith unit loading weight vector wi is chosen so that the
covariance between the residual reference yi−1 and the ith score vector ti = Xi−1 wi is
maximized. The jth residual reference yj is the original y from which the contributions
of the j first chemical loadings ti qi, i = 1, . . . , j have been subtracted. Similarly, the
residual matrix Xj is the original X from which the contributions of the j first loadings
ti p

T
i , i = 1, . . . , j have been subtracted. Due to the updating of X, both the scores T

and the loading weights W are orthogonal. The generally nonorthogonal loadings P

needed in the bilinear model are estimated in LS sense using the previously estimated
scores and the corresponding residual matrices Xj. Similarly, the loadings q are
estimated in LS sense using the residual reference yi−1 and the scores ti. Both the
data matrix X containing the mixture spectra and the reference vector y are usually
mean-centered prior to developing the PLSR model.

The two sets of loadings, P and W generally closely resemble each other and both
can be used in the interpretation of the PLSR model. The loadings are in decreasing
order with respect to explained variance in y. In the ideal case of pure linear mixture
model (Eq. (2.14)) excluding any baseline offsets, multiplicative errors or random
noise, the number of loadings, or latent variables (LVs), needed to completely explain
the bilinear model equals the chemical rank of the system, J [26]. Often the number
of LVs is chosen to be slightly larger than the expected chemical rank so that the
deviations from the linear mixture model can be explained.

The optimal number of LVs is often selected by analyzing the root-mean-squared error
of cross validation (RMSECV) of the calibration set defined as

RMSECV =

√

∑I
i (ŷi − yi)

2

I
. (2.23)

In leave-one-out (LOO) cross validation one sample is treated as a validation sample
while the rest of the samples are used to construct a calibration model which is
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used to predict the reference value of the validation sample ŷi. The procedure is
repeated I times so that all samples have been used for validation once, and the
number of selected LVs is the one that minimizes the RMSECV. In leave-block-out
(LBO) cross validation, the calibration set is divided into a predetermined number of
blocks consisting of approximately equal number of samples. Similarly to LOO, each
block is used for validation at a time, while the others are used for calibration in the
calculation of the RMSECV.

When developing a calibration model, some samples are additionally separated into
an independent test set which is left out of the cross validation procedure and is
used only for the evaluation of the prediction ability of the constructed calibration
model. The measure of the prediction ability is usually the root-mean-squared error
of prediction (RMSEP) which has the same definition as RMSECV in Eq. (2.23) with
the exception that the reference values are now drawn from the test set whose size is
not necessarily equal with the calibration set.

2.4 Spectral preprocessing for scattering samples

Spectral preprocessing is usually performed prior to multivariate calibration in an
attempt to remove noise and spectral interferences, which do not correlate with the
reference and are thus irrelevant to the analysis, from the measured spectra. In NIR
DR spectrosocopy, the purpose of spectral preprocessing is to make the calibration
model more robust with respect to sample-to-sample variations caused by the effects
of light scattering due to, e.g., varying particle size distribution and powder packing
density. Instrumental variations, such as varying measurement geometry, the use
of different measurement heads or instrumental drift, can also be attempted to be
removed from the measured data.

Two model-based spectral preprocessing methods, EMSC [5, 6] and OPLEC [7, 27]
are briefly reviewed below. The selection of the reference and signal spectra in EMSC
is discussed and an implementation for an optimized version of EMSC is proposed in
Sect. 2.4.3.

2.4.1 Extended multiplicative signal correction

The physical effects in the log (1/R) or log (1/T ) spectra of turbid media can be ap-
proximated with the following parameterized soft model based on the Beer-Lambert’s
law [5, 6]

xi = ai1 + bixi, chem + diλ + eiλ
2 + ǫi, i = 1, 2, . . . , I, (2.24)

where 1 is a column vector of ones which accounts for the constant baseline offset.
The elements of the vectors λ and λ2 follow linear and quadratic functions of the
wavelength, respectively, and they attempt to explain slow curvatures in the spectral
baseline. The second term on the right-hand side comprises the linear mixture model
from Eq. (2.14) and a multiplicative coefficient which explains the variations in the
spectral amplitude caused by varying optical path length. Due to the varying packing
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density, the concept of concentration is ill-defined in the case of powders, and weight
fractions are invariably used as explained variables in regression models. Hence the co-
efficient bi also includes the multiplicative error b from Eq. (2.13), and the coefficients
of the pure analyte spectra in Eq. (2.14) are assumed to obey the closure constraint.
All unmodeled spectral variations are included in the vector ǫi, and I is the number
of spectra in the calibration set.

If the modeled error coefficients ai, bi, di and ei exhibit variation between measure-
ments, the prediction ability of the constructed calibration model is deteriorated. The
additive baseline terms can be interpreted as an apparent increase in the chemical rank
of the system, and a PLSR model can be expected to compensate their effect with
an increased number of LVs. However, the nonlinearity caused by the multiplicative
error bi cannot be handled with linear regression models, unless they are mild. If the
error coefficients can be reliably estimated, and if ǫi is assumed to be negligible, the
linear mixture model containing only chemical information can be retrieved from

xi, chem =
(

xi − ai1 − diλ − eiλ
2
)

/bi. (2.25)

If the pure analyte spectra sj , j = 1, . . . , J are inserted in Eq. (2.24), the model is
supplied with the products bi cij , j = 1, . . . , J , and the estimation of bi is impossible
unless prior information on the mass fractions of the measured samples is available.

To mitigate this problem, the linear mixture model (Eq. (2.14)) is rewritten in EMSC
as variations around a known reference spectrum m which has equal weight in all
samples as [5, 6]

xi, chem = m +
G
∑

j=1

hijgj i = 1, 2, . . . , I. (2.26)

The signal spectra gj , j = 1, . . . , G and the reference spectrum should be chosen so
that together they span the same space as the pure analyte spectra sj , j = 1, . . . , J or
at least the space where the spectral changes relevant to the prediction of the reference
occur. To facilitate the matrix inversion below in Eq. (2.28), the reference spectrum
m should not be a linear combination of the signal spectra. An original approach for
the selection of these spectra is presented and discussed in Sect. 2.4.3.

The soft spectral model can be optionally augmented with chemical interferent spectra
fl, l = 1, . . . , F to obtain

xi = ai1 + bim +
G
∑

j=1

hijgj +
F
∑

l=1

pilfl + diλ + eiλ
2 + ǫi, i = 1, 2, . . . , I, (2.27)

where the product bi hij has been renamed as hij . All vectors on the right-hand side
are assumed to be known and linearly independent. The matrix

M =
[

1mg1 · · ·gG f1 · · · fF λλ2
]

has thus full column rank and the model coefficients can be estimated in LS sense as

P = XM
(

MT M
)

−1
, (2.28)
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where the ith row of P is [ai bi hi1 · · ·hiG pi1 · · · piF di ei], and that of X is xT
i . The

preprocessed spectra

zEMSC, i =
1

bi

(

xi − ai1 −
F
∑

l=1

pilfl − diλ − eiλ
2

)

, i = 1, 2, . . . , I (2.29)

are now standardized with respect to the multiplicative effect and they contain only
contributions from the chemically relevant vectors m and gj, j = 1, . . . , G, as the
physical baseline effects and the chemical interferent contributions have been sub-
tracted from them. The preprocessed spectra nevertheless contain the scaled unmod-
eled residuals ǫi/bi, whose presence can be avoided by replacing the right-hand side of
Eq. (2.29) with the summed contributions of m and gj corrected for the multiplicative
effect bi as in

zEMSC, i = m +
G
∑

j=1

hij

bi
gj, i = 1, 2, . . . , I. (2.30)

In the early version of the algorithm, multiplicative signal correction (MSC) [28], the
signal and interferent spectra were not included in the model in Eq. 2.27. The chem-
ical variations around the reference spectrum were then included in the unmodeled
residual term. In order to avoid the exclusion of important chemical information,
the subtraction similar to Eq. (2.29) was mandatory in MSC. Probably to keep the
notation coherent between the algorithms, Eq. (2.29) is used also with EMSC. To the
knowledge of the Author, the effect of the remaining unmodeled residuals in EMSC
has not been addressed in the literature.

A calibration model for the mass fraction of the target analyte should now be con-
structed using the preprocessed spectra zEMSC, i, i = 1, 2, . . . , I. If the unmodeled
errors ǫi are assumed to be negligible, the chemical rank of the preprocessed spectra
is G + 1. Since the contribution of the reference spectrum is equal in all spectra, it
can be subtracted in principle from them which lowers the sufficient number of LVs
to G in the subsequent PLSR model. Prior to prediction, new measurements should
be preprocessed with the Eq. (2.28) and (2.29) using the same matrix M. EMSC
preserves the information on the model parameters P which can be used in their own
right in analyzing the physical properties of the measured samples.

2.4.2 Optical path length estimation and correction

OPLEC [7] is another spectral preprocessing method based on the model in Eq. (2.24).
The additive baseline effects are now removed from the measured spectra by projecting
them onto the orthogonal complement of the space spanned by the columns of the
matrix

P =
[

1λλ2
]

. (2.31)

The projected spectra are given by

zi =
(

I −P
(

PT P
)

−1
PT
)

xi = bi

J
∑

j=1

cijkj + ǫ∗i , i = 1, 2, . . . , I, (2.32)
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where the linear mixture model in Eq. (2.14) has been substituted for xi, chem. Here,
kj = (I − P (PT P)−1PT) sj and ǫ∗i = (I − P (PT P)−1PT) ǫi. The projected spectra
are forced to be zero-mean and free from any slow baseline curvatures explained by
the vectors λ and λ2.

Contrary to EMSC, OPLEC assumes that the mass fractions of the target analyte
ci1, i = 1, . . . , I are known for the samples of calibration set already in preprocessing
phase. With the knowledge of the mass fractions, and assuming the closure constraint
∑J

j=1 cij = 1, i = 1, . . . , I, and that the error terms ǫ∗i be negligible in Eq. (2.32), the
relative values of the optical path length coefficients bi, i = 1, . . . , I are next estimated
in LS sense with nonnegativity constraint as detailed in [7, 27]. In OPLEC, the
information on the baseline effects is lost, but the estimated multiplicative coefficients
bi can be used in analyzing the physical properties of the samples.

Next, two linear multivariate calibration models are constructed using the projected
spectra zi as explanatory and both the products ci1 bi and the coefficients bi as ex-
plained variables, as in

ci1 bi = f1 (zi) , bi = f2 (zi) , i = 1, . . . , I. (2.33)

A new measurement, xnew, should be projected as in Eq. (2.32) to obtain znew. The
mass fraction of the target analyte in the new sample can then be predicted as

ĉnew, 1 =
f1 (znew)

f2 (znew)
. (2.34)

2.4.3 Optimization of the chemically relevant spectra in EMSC

Proper selection of the reference spectrum m, the signal spectra gj , j = 1, . . . , G and
the chemical interferent spectra fl, l = 1, . . . , F for the soft spectral model in Eq. (2.27)
is crucial for successful preprocessing. Due to the heuristic nature of the model,
best selections are expected to be application dependent, and a globally applicable
procedure which provides optimal selections cannot be expected to exist. However,
the reference spectrum should have an equal contribution in all spectra when they are
scaled to be linearly correlated to the mass fractions (cf. Eq. (2.30)). The reference
spectrum should also be linearly independent of the signal and interferent spectra,
whose role is to explain the chemical variations around m. In [5], the similarity
between this configuration and the PCA decomposition was noted. It was proposed
that m be the mean spectrum of the given data set and the J − 1 first orthonormal
PC loading vectors be used as the signal spectra, i.e.,

m = x, (2.35a)
[

X − 1mT
]

= UΣVT, (2.35b)

[g1 · · ·gJ−1] = V(:,1:J−1). (2.35c)

In [5, 6, 29], another scenario, in which the pure analyte spectra are assumed to be
available, was presented. If the reference spectrum is now calculated as their linear
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combination or if it is assumed to be such, collinearity can be avoided by choosing the
J − 1 difference spectra to be the signal spectra, i.e.,

m =

J
∑

j=1

αj sj , (2.36a)

gj = sJ − sj, j = 1, . . . , J − 1. (2.36b)

The chemical rank of the preprocessed spectra can be reduced by utilizing the chem-
ical interferent spectra fl in the correction (Eq. (2.29)). This reduces the number of
LVs needed in regression and it might ease the interpretability of the bilinear model
[5]. The chemical interferent spectra should be chosen to be systematical variations
present in all samples. In [30], the effect of temperature on the water absorbance peak
locations was removed by using spectral interference subtraction in EMSC. Here, the
SVD loading vectors of the differences between water spectra measured at different
temperatures were used as the interference spectra fl.

If m or gj are calculated as linear combinations of spectra measured from scatter-
ing samples, the spectra preprocessed with Eq. (2.28) and (2.29) are not free from
light scattering effects. This leads to instability as demonstrated in [7], where, us-
ing the data from [6], the mean spectrum was the mean of the pure analyte spectra
and the signal vectors were calculated according to Eq. (2.36a). Different selections
for the pure analyte spectra among replicates with different physical effects resulted
in significantly degraded prediction ability for the subsequent calibration model. In
order to use pure analyte spectra successfully in EMSC, they should be measured
with identical measurement geometries so that their baseline offsets and amplitudes
reflect comparable physical effects. In [31], the reference spectrum was chosen as an
arbitrary but representative sample among the calibration set. The physical effects
were subsequently removed from it by estimating the coefficients of the additive base-
line effects in LS sense and subtracting their contribution from the spectrum. In
the present work, it was noticed that good results may be obtained by forcing the
reference and signal spectra to be orthogonal to some or all of the additive baseline
effects in Eq. (2.27). The spectra in X may be, e.g., zero-meaned or projected onto
the null-space of the matrix P (cf. Eq. (2.31)) prior to the selections in Eq. (2.35a).

If the mass fractions of the target analyte are known in the samples comprising a rep-
resentative calibration set, it is possible to utilize the prior knowledge in the selection
of the vectors m, gj and fl. With the reference values for the explained values avail-
able, the effect of the selections on the prediction ability of the constructed calibration
model can be tested with cross validation already in the preprocessing phase. The
drawback with this approach is, however, the risk of overlearning which is a problem
with erroneous reference values and non-representative calibration sets. In [32], it
was proposed that the reference, signal and interference vectors could be optimized as
linear combinations of the SVD or PC loading vectors of the data set so that the RM-
SECV is minimized. To the best of the Author’s knowledge, no scientific investigation
on the subject is, however, available in the literature.

In the present work, a flexible algorithm for the optimization of the EMSC model
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(Eq. (2.27)) is proposed. The objective is to perform the minimization procedure

minA RMSECV(A,B,X,y, n, A). (2.37)

The cost function is minimized with respect to the argument A, a B × (1 + G + F )
matrix, which is used to represent the reference, G signal and F interference vectors
as linear combinations of the base vectors, the columns of the L× B matrix B. The
evaluation of the cost function RMSECV(A,B,X,y, n, A) is presented in Algorithm 1.

Algorithm 1 Calculate RMSECV(A,B,X,y, n, A)

Input: A,B,X,y, n, A
Calculate the reference, G signal and F interferent spectra as linear combinations
of the base vectors as [m g1 · · ·gG f1 · · · fF ] = BA.
Preprocess X according to Eq. (2.28) and (2.29) using the reference, signal and
interferent spectra above. Obtain Z.
Divide y and the corresponding rows of Z into n sequential blocks of roughly the
same size.
Calculate the LBO-RMSECV (Eq. (2.23)) with respect to y using PLSR models
with A LVs.

Output: LBO-RMSECV

The matrix B containing the base vectors has to be determined prior to minimization.
The base vectors should effectively span the vector space where the chemical variations
are expected to occur. They can be chosen to be, e.g., the first B SVD loading vectors
of X, the pure analyte spectra of the chemical species present in the mixtures or the
signals estimated by a BSS algorithm (cf. Sect. 2.5). The base vectors should be
linearly independent and their number should equal or exceed the chemical rank of
the system. To avoid collinearity in EMSC-preprocessing, B should be larger than
or equal to 1 + G + F . It might be beneficial to ensure that the base vectors do not
contain light scattering induced additive baseline variations by zero-meaning them or
projecting them as in Eq. (2.32).

The closed form solution for the LBO-RMSECV in Algorithm 1 is very complicated.
Moreover, if an iterative version of PLSR is utilized, the function might exhibit ill-
behaving features such as nonsmoothness, and the closed form solution would not
even exist. Robust numerical optimization procedures should hence be considered
for the minimization in Eq. (2.37). In the present work, simulated annealing (SA)
[33, 34] was used in the optimization. SA is a stochastic optimization procedure
which simulates the physical process of freezing in solids, in which randomly moving
crystalline structure is fixed to the position of minimum energy during the descent of
temperature. SA is capable of avoiding local minima and finding good sub-optimal
solutions for even noisy and discontinuous functions since it permits the increase of
the cost function with a finite probability during optimization. The argument of
optimization, the matrix A in this case, is subjected to small random permutations
generated with a predefined method and the new value of A is accepted if it leads to
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a decrease in the cost function. If the cost function increases, the new A is accepted
with the probability

p = e−∆RMSECV/T , (2.38)

where e is the base of natural logarithm, ∆RMSECV is the change in the cost function
and T is a positive temperature parameter which is often decreased in the course of the
search so that the probability of accepting increased cost function values is decreased.
SA is known to be rather inefficient optimization method [34], and the computational
burden of the minimization procedure was reduced by using LBO-RMSECV instead
of LOO-RMSECV in Algorithm 1.

The performance of the preprocessing methods is illustrated with a public data set
[32, 6] in Fig. 2.4. One hundred raw log(1/T ) spectra measured from binary mixtures
of gluten and starch powders are presented in Fig. 2.4a. The data set comprises twenty
replicates measured from each of the five unique mixtures in which the mass fraction
of gluten is y = [0 0.25 0.5 0.75 1]T. Each replicate has slightly different physical
properties in the form of baseline offset and optical path length, as two different
cuvettes were used and varying packing densities were achieved by compressing the
powder [6]. The figure includes LOO-RMSECV values calculated with PLSR models
with two and four LVs. The prediction ability is observed to be deteriorated by
the physical effects, and the increase of the number of LVs improves the RMSECV
only nominally. In Fig. 2.4b, the spectra were preprocessed with EMSC using the
procedure of Eq. (2.35a) with a zero-meaned matrix X to select the reference and
one signal spectrum. The spectra are seen to form five clusters each corresponding
to a unique mixture, but the LOO-RMSECV is only slightly improved. Thus, blind
selection of the reference and signal spectra did not linearize the spectra with respect
to y, the mass fraction of gluten, as is evident from the unequal spacings between the
adjacent clusters.

Optimized EMSC was used in Fig. 2.4c so that the base vectors B were chosen to
be the two first SVD loadings of the zero-meaned matrix X, and the parameters
G = 1, F = 0 and n = 5 were used in Algorithm 1. The minimized LBO-RMSECV
is now significantly smaller than the LOO-RMSECV in the previous figure. Fig. 2.4d
presents the spectra after OPLEC preprocessing, where the spectra are constrained to
be orthogonal to the columns of P in Eq. (2.31). The spectra were standardized with
respect to varying optical path length by dividing the projected spectra (Eq. (2.32)) by
the estimated multiplicative coefficients bi. The LOO-RMSECV is of the same order
as with the optimized EMSC. Visually indistinguishable results with Fig. 2.4d were
obtained with the optimized EMSC when the raw spectra in Fig. 2.4a were subjected
to the projection in Eq. (2.32) prior to calculating the base vectors as their two first
SVD loading vectors (results are not shown). The use of prior information on y in
the optimized EMSC and OPLEC is seen to provide better preprocessing results than
the blind selection of the reference and signal spectra in Fig. 2.4b. The preprocessed
spectra are now linearized with respect to y, since the adjacent clusters of spectra are
equidistant from each other at each wavelength channel, corresponding to the equal
distances between the mass fractions of gluten in the adjacent mixtures. The number
of LVs was chosen to be two in all PLSR models in EMSC and OPLEC.
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(c) Optimized EMSC
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(d) OPLEC

Figure 2.4: NIR spectra of binary mixtures of gluten and starch powders. (a) Un-
processed log(1/T ) spectra; (b) EMSC–preprocessed spectra, reference and signal
vectors chosen according to Eq. (2.35a) with zero-meaned data matrix X; (c) EMSC–
preprocessed spectra, optimized reference and signal vectors constrained to be zero-
mean; (d) OPLEC–preprocessed spectra. The spectra are colored according to the
mass fraction of gluten.

2.5 Blind source separation

Blind source separation (BSS) constitutes a family of algorithms which attempt to
resolve pure signals from their mixtures in the absence of any a priori information.
Most BSS algorithms assume the linear mixture model (Eq. (2.15)), and they attempt
to estimate the mixing matrix C and the pure signals S given only the mixtures X.
In optical spectroscopy, BSS algorithms are thus useful for analyzing so called black
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systems for which no pure analyte spectra or concentration information are available.
One approach to BSS, ICA, is overviewed next. The unique characteristics of BSS
applied in optical spectroscopy are described in Sect. 2.5.2. Finally, the challenges of
using BSS in DR measurements are addressed in Sect. 2.5.3.

2.5.1 Independent component analysis

ICA algorithms [9] comprise a myriad of different variations which all have the same
basic principle; they attempt to factorize the given mixture matrix X into the source
signals S, i.e., the independent component (IC) loadings, which are as statistically
independent as possible. The mixing process of the sources is described by the mixing
matrix C, the IC scores. When compared to factorization with PCA, where the
source signals are constrained to be orthogonal, ICA has the flexibility to find a non-
orthogonal basis of factors, which often accurately resemble the true underlying source
signals. Often ICA algorithms involve the estimation of the unmixing matrix W which
is used to estimate the source signals Ŝ and the mixing matrix Ĉ as

ŜT = WX and Ĉ = W+ (2.39)

where the superscript + denotes the Moore-Penrose pseudoinverse of the correspond-
ing matrix. The underlying source signals, the columns of S, are assumed to be
realizations of separate random processes drawn from unknown probability distribu-
tions. To ease the quantification of statistical independence, the source signals are
assumed to be non-Gaussian. According to the central limit theorem, the probabil-
ity distribution of the sum of two non-Gaussian random processes is closer to the
Gaussian distribution than either one of the two original distributions. Hence, as
the non-Gaussianities of the estimated source signals are maximized, the underlying
source signals are expected to be estimated accurately.

Measures of non-Gaussianity include, e.g., kurtosis and negentropy [9], which are
calculated for the estimated source signals using their sample statistics. Kurtosis of
the random process s is defined as

kurt(s) = E
[

s4
]

− 3
(

E
[

s2
])2

, (2.40)

where E[·] denotes the expectation value. For random processes drawn from the
Gaussian distribution, kurt(s) = 0, whereas kurt(s) > 0 for spiky (super-Gaussian
or leptokurtic) and kurt(s) < 0 for flat (sub-Gaussian or platykurtic) probability
distributions. The negentropy is defined for the process s as the difference between
the differential entropies of a Gaussian variable ν and s, viz.,

J(s) = H(ν) −H(s), where H(s) = −

∫

p(s) log (p(s)) ds, (2.41)

where p(s) is the probability density function (PDF) of s. The Gaussian variable ν
is assumed to be of zero mean and unit variance, and the variable s is pretreated
to have the same attributes. Since the differential entropy, i.e., the randomness, of
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the Gaussian distribution is larger than that of any other distribution, negentropy is
always nonnegative and zero only when the variable s is Gaussian.

Another approach to ICA is to minimize the mutual information

I (s1, s2, . . . , sJ) =

J
∑

i=1

H(si) −H (s1, s2, . . . , sJ) , (2.42)

of the random processes s1, s2, . . . , sJ . The mutual information is always nonnegative
and zero only when the random processes are statistically independent by definition,
i.e., their joint PDF factorizes as p(s1, s2, . . . , sJ) = p(s1) p(s2) · · ·p(sJ). Approxi-
mations of the mutual information for discrete signals are presented in [9, 35]. The
entropy of a discrete random process s can be approximated with, e.g., the Shannon
entropy

H (s) = −

L
∑

l=1

p(sl) log(p(sl)), p(sl) =
|sl|

∑L
l=1 |sl|

. (2.43)

FastICA [36] is an implementation of ICA which utilizes a fast iterative fixed-point
algorithm in maximizing the negentropies of the estimated source signals (Eq. (2.39)).
The negentropy is estimated as a squared difference between the expectation values of
some nonquadratic function G(·) given the estimated signal s and the Gaussian signal
ν as input, viz.,

J(s) ∝ (E [G(s)] − E [G(ν)])2 . (2.44)

The FastICA toolbox for MATLAB [37] includes four possibilities for the function
G(·), a kurtosis-based, a Gaussian, a log cosh(·)-based and one based on the measure
of skewness. To ease the estimation, the input matrix is often mean-centered and
whitened with a linear transformation prior to the fixed-point algorithm so that its
correlation matrix becomes unity, i.e., XXT = I. The whitening of the data can be
done with PC decomposition during which the rank of the data can be reduced by
choosing the number of retained PCs to be lower than the dimension of the matrix
X.

Denoising source separation (DSS) [38] is another variation of ICA. It involves whiten-
ing and subsequent rotation of the mixture matrix X. It also permits the inclusion of
prior knowledge on the spectral characteristics of the source signals, but it can be used
for purely blind operation as well. Both FastICA and DSS assume that the number of
the underlying signals, J , be known a priori. If the user has no prior information on
it, the algorithm can be driven with several values of J , and the correct value may be
determined interactively by analyzing the reconstructed signals. The determination of
J can also be automated, e.g., by analyzing the magnitudes of variances explained by
the few first SVD loading vectors of the original X. The number of underlying signals
can be assumed to equal the number of the first few loadings which explain most of
the variance of the original data matrix. Alternatively, the number of source signals
may be determined so that the error of reconstruction ||X− Ĉ ŜT|| is minimized [39],
where || · || denotes the Frobenius norm of the corresponding matrix.
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2.5.2 Blind source separation in optical spectroscopy

In optical spectroscopy, BSS is synonymous with multivariate curve resolution (MCR),
in which the goal is to reconstruct the pure analyte spectra and their concentration
profiles using only the mixture spectra and little or no additional prior information.
The benefits of BSS include the identification of pure analytes present in a data set by
comparing the resolved source signals to known pure analyte spectra in a data library.
The phases of an industrial process or a chemical reaction can also be studied by
inspecting the estimated concentration profiles [8]. BSS is thus an exploratory analy-
sis technique which tries to decompose the matrix of mixture spectra into chemically
interpretable scores and loadings. It must be noted that, without calibration, only
relative concentration profiles can be estimated. The true amplitudes of the estimated
pure analyte spectra cannot be determined since the corresponding concentration pro-
file can always be divided by the inverse of the amplitude coefficient without affecting
the factorization. However, in perfect factorization, where the pure signals are per-
fectly estimated up to a constant, the estimated IC score profiles and corresponding
true underlying concentration profiles have a correlation coefficient of unity. The am-
plitude ambiguity in ICA also involves sign ambiguity, viz., the amplitude coefficient
above can also be negative. The reversed sign of an absorption spectrum can be easily
detected interactively with a human user, but the procedure can also be automated by
imposing a physically meaningful nonnegativity constraint on the concentration pro-
files, or by ensuring that the directions of the estimated spectral vectors are similar
to the directions of the rows in X [40].

Differentiation of the mixture spectra with respect to wavelength has been observed
to enhance the separation capability of ICA algorithms [41, 42, 43]. Being a linear
operation, the mixing and unmixing matrices are preserved as the mixture spectra are
subjected to differentiation [43], i.e.,

X(n) = C
(

ST
)(n)

and
(

ŜT
)(n)

= WX(n), (2.45)

where the superscript (n) denotes the nth order difference with respect to the discrete
wavelength channels. Thus, any linear operation can be performed on the original
mixture matrix X prior to feeding it to an ICA algorithm. The obtained unmixing
matrix W can subsequently be used with the original X in Eq. (2.39) to estimate the
source signals.

The effect of differentiation is demonstrated with synthesized data in Fig. 2.5 and 2.6.
Pure analyte spectra shown as solid lines in Fig. 2.6a–2.6d were created as sums of
modified Lorentz-distributions as [35]

sj(λ) =

Kj
∑

k=1

akj

(1/λ− 1/λo
kj)

2 + γ2
kj

, j = 1, 2, 3, (2.46)

where the parameters Kj, akj, λ
o
kj and γkj were randomly chosen. The spectra were

designed to emulate the smooth and highly autocorrelated characteristics of NIR spec-
tra. The randomly generated mixture design of twenty mixtures shown in the ternary
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diagram in Fig. 2.5a was used to produce the linearly mixed spectra in Fig. 2.5b. The
mixture spectra are shown in Fig. 2.5c and 2.5d after first and second order differ-
entiation with respect to the wavelength channel. FastICA was subsequently used to
estimate the unmixing matrix W using the mixture spectra after 0th, 1st, 2nd and
3rd order differentiation. The function G(·) used in the calculation of negentropy
was chosen to be log cosh(·)-based, and the whitening in FastICA was performed with
PCA so that the the constributions of three first PCs were retained.

The estimated pure analyte spectra reconstructed with Eq. (2.39) are drawn in dotted
lines in Fig. 2.6a–2.6d. It is seen that the separation capability of FastICA is system-
atically increased with the order of differentiation. This can be explained with the
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Figure 2.5: (a) The mass fraction design of the synthesized ternary mixtures; (b) The
resulting mixture spectra; The mixture spectra after (c) first and (d) second order
derivative taken with respect to wavelength.
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increased non-Gaussianity of the differentiated pure analyte spectra, which is quanti-
fied by sample kurtosis calculated with the function kurtosis.m from the Statistics
Toolbox in MATLAB. As shown in the figures, the kurtosis values are generally in-
creased with the order of differentiation, i.e., the PDFs of the differentiated spectra
get more spiky, or super-Gaussian, shapes. This is expected, since majority of the
spectral elements get values near zero when smooth spectral signals are differentiated.
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(c) 2nd order
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Figure 2.6: The pure analyte spectra A, B and C (solid lines) and the resolved IC
loadings (dotted lines) using (a) 0th, (b) 1st, (c) 2nd and (d) 3rd order derivative
preprocessing prior to FastICA. Sample kurtosis for each pure analyte spectrum after
differentiation is given in each figure.

BSS algorithms can be made more robust to random noise by reducing the rank of
the input matrix with SVD as in Eq. (2.21) and (2.22) prior to feeding the rank-
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reduced loading matrix PT to the BSS algorithm [44]. To ascertain that the chosen
SVD loading vectors span at least the same space as the underlying pure analyte
spectra, their number should equal or slightly exceed the expected chemical rank of
the system. In FastICA and DSS, rank reduction can be also done by retaining the
contributions of only the first few PC loadings in the context of whitening. However,
if differentiation is to be used as preprocessing prior to BSS, the denoising achieved
through rank reduction should be performed already before taking the derivatives.
Since differentiation is equivalent to high-pass filtering, the contribution of random
high-frequency noise is enhanced in differentiated spectra. Thus, the contributions of
the uninformative and noisy SVD loadings should be discarded prior to differentiation.
Given the unmixing matrix W estimated with the SVD loading matrix PT or its
differentiated version (PT)(n), the pure analyte spectra and the concentration profiles
can now be estimated as

ŜT = WPT and Ĉ = TW+ (2.47)

using the notation in Eq. (2.22).

2.5.3 Blind source separation in diffuse reflectance

The use of BSS algorithms with log(1/T ) or log(1/R) spectra of scattering samples
has not been thoroughly addressed in the literature. The non-linearities introduced by
light scattering can be again modeled with Eq. (2.24). To prevent the baseline offsets
from entering the BSS factorization, the measured spectra should be zero-meaned or
projected as in Eq. (2.32) prior to BSS. The multiplicative effect does not prevent
the estimation of the pure analyte spectra but it deteriorates the linear correlation
between the true underlying concentration profiles and their estimates.

EMSC can be attempted to remove the remaining multiplicative effect, but the optimal
selection of the reference and signal vectors is difficult for black systems without any
prior knowledge on the concentrations or mass fractions. Alternatively, normalization
of the spectra may be used to standardize the apparent optical path length as

xi = bi xi, chem, zi =
xi

||xi||
=

xi, chem

||xi, chem||
, i = 1, 2, . . . , I. (2.48)

The multiplicative coefficient is thus merely replaced by the inverse of the spectral
norm, and the normalized spectra cannot be expected to follow the linear mixture
model with respect to the mass fractions. However, if the chemical changes are small
within the data set, i.e., the norm ||xi, chem|| exhibits small variation, normalization
can be expected to improve the linearity.

BSS is demonstrated with the log(1/T ) spectra of binary mixtures of gluten and starch
given in Fig. 2.4a. To make the setting more challenging, the 40 pure analyte spectra
were excluded from the analysis. The remaining 60 mixture spectra were zero-meaned,
their rank was reduced to two with SVD and they were subjected to third order
differentiation before feeding them to FastICA. The estimated IC loading vectors are
close to the true zero-meaned pure analyte spectra as is shown in Fig. 2.7a. The three
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Figure 2.7: BSS performed on the spectra of scattering samples. The pure analyte
spectra (solid lines) and the estimated IC loadings (dotted lines) estimated from (a)
the mixtures of gluten and starch Fig. 2.4a and (b) the mixtures of MCC and water
in Fig. 2.3a. For visualization, the spectra are separated by constant offsets.

mixture spectra with different water fractions shown in Fig. 2.3a were preprocessed
similarly prior to FastICA with the exception that 5th order derivative was used this
time. As shown in Fig. 2.7b, the spectrum of MCC was correctly resolved, but the
estimated water spectrum has broadened absorption peaks and tilted baseline when
compared to the pure water spectrum. Since the spectra of water and MCC are highly
cross-correlated, it is difficult to determine whether the discrepancies are caused by
sample matrix interactions or by the insufficient separation of FastICA. The order of
differentiation was determined interactively so that the spectral reconstruction was
visually most accurate.

31



Chapter 3

Materials and methods

3.1 Fluid bed granulation

In pharmaceutical manufacturing of solid dosage forms, the processing of fine powder
mixtures is often facilitated by agglomerating the material into granules larger than
the original particle size. The purpose of this procedure is to [45]:

• improve the flow properties of the material by reducing static electricity

• densify the material

• produce uniform mixtures that do not segregate into small and large particles

• facilitate accurate dosing by ensuring homogenous mixtures

• improve the tablet compression characteristics of the material

• control the drug release rate – larger granules dissolve more slowly

• reduce the amount of dust

• improve the appearance of the product

• reduce variations between different batches of raw materials.

Along with wet massing in a high-shear mixer, FBG is an important wet granulation
method frequently used in pharmaceutical industry. In both methods, the agglom-
eration of particles is evoked by mixing the powder with a binder liquid after which
excess moisture is removed from the granules. In FBG, both the mixing of the pow-
der mass with the binder liquid and the subsequent drying are induced by blowing air
through the powder layer. As the name implies, the powder bed ideally acts as liquid
or fluid while it is fluidized in the air flow which keeps the powder in constant motion
by causing the formation of air bubbles. As is the case with real fluids, the surface
level of the powder bed should ideally stay horizontal even if the chamber is tilted.

A diagram of a typical fluid bed processing system [46] is given in Fig. 3.1a. The
air flow is usually generated by a turbine fan suction located upstream of the cone-
shaped granulation chamber. The inlet air duct often includes an air conditioner,
such as heating or a humidifying element, which permits the adjustment of the inlet
air parameters in the case of, e.g., varying humidity of the ambient air. The gas
distribution plate is designed to create an air flow pattern which optimally fluidizes
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(a) Fluid bed granulator (b) Granule growth processes

Figure 3.1: (a) A diagram of a fluid bed granulator, adapted from [46]; (b) The granule
growth process, edited from [46].

the product in the given granulation chamber. The binder liquid is sprayed usually
on top of the powder bed through a nozzle. To prevent the powder from being blown
out of the chamber, dense filters must be placed in the ceiling of the chamber.

An FBG batch process consists of three phases.

• In the mixing phase, the mixture of pharmaceutical powders, usually one API
and a couple of excipients, is mixed into homogeneous mass by plain fluidization.

• In the wetting phase, the fluidized mass is sprayed with the binder liquid. This
induces the formation of granules through the nucleation and coalescence pro-
cesses as illustrated in Fig. 3.1b.

• In the drying phase, the granules are dried by continuing the fluidization after
the ending of the liquid feed.

The granules are consolidated as the dissolved material between coalesced nuclei trans-
form into solid bridges in the course of drying. In the case of poorly soluble powders,
a binder agent, such as polyvinylpovidone (PVP), is dissolved in the aqueous binder
liquid to promote the consolidation. The binder agent, which stays in the granulated
product after drying, contains long polymers which prevent crumbling by adhering
tightly onto the surfaces of the granules.

The behaviour of the fluidized powder is governed by a net effect of several particle-
particle, particle-container and particle-gas interactions. The incorporation of the
small-scale physico-chemical interactions, such as the electrostatic and van der Walls
forces, into the modeling of the process is difficult if not impossible. Thus, in order to
ensure the product quality through efficient control of a complex multi-factorial pro-
cess, such as FBG, the concept of design space has been developed. It comprises the
critical adjustable process parameters and the process variables, which have an effect
on the quality of the end-product, and their mutual interactions [45]. In FBG, impor-
tant process parameters are, e.g., the flow rate, humidity and temperature of the inlet
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air and the feed rate and the droplet size of the sprayed binder liquid [45, 46]. The
granule size distribution, moisture and temperature of the fluidized powder are impor-
tant measurable process variables whose values correlate with the process parameters
and the quality of the end-product. For example, excessive wetting and insufficient air
flow might induce irrecoverable powder bed collapse due to excessive agglomeration
during fluidization. End point determination of the drying phase is another critical
task in FBG which requires the monitoring of the process variables in real time. To
ensure the microbiological stability, accurate dosing and optimal compression proper-
ties of the product, excess moisture should removed from the granules. On the other
hand, prolongated drying phase and excessive air flow induces the formation of fines
through attrition.

The non-invasive nature of NIR spectroscopy and its sensitivity to both the particle
size effects and moisture has made it an important inline monitoring method for the
FBG process, as both parameters can be quantified from the same NIR measurement
using different calibration models. In [47], a four-wavelength NIR system is demon-
strated to be accurate in inline moisture measurement. In [48], the full spectra in
the range 1350–1500 nm, measured inline during drying and preprocessed with first
derivative with respect to wavelength, were used to build a multivariate calibration
model with high predictive ability for the moisture of the lactose powder bed using
Karl-Fischer titration as the reference method. In the same article, the NIR spectra
between 1100–1900 nm were analyzed using PCA, and a PLSR model was built for
the prediction of the mean granule size determined with sieve analysis. It was shown
that, besides the mean granule size, the increase in the amorphous lactose content in
the granules could be determined from the NIR spectra, as well.

In the present work, an inline FBG process measurement was conducted using NIR
spectroscopy as described in Sect. 3.3. The process data were analyzed qualitatively
in Sect. 4.1, where information on the temporal moisture profile was attempted to be
extracted.

3.2 The multipoint NIR instrument

All measurements in this work were conducted using the multipoint NIR instrument
partly designed and implemented at VTT. It consists of a light source, a spectral
camera and fiber optic probes. The system is designed to perform DR measurements
simultaneously at multiple locations. The instrument is described in closer detail and
its performance is evaluated in both offline and inline situations in [49].

The light source is illustrated in Fig. 3.2a. Using mirror optics, the light from a halogen
lamp is projected into two optical fiber bundles, each comprising 12 fibers. The 24
separate optical fibers which can be accessed via subminiature A (SMA) connectors
on the front panel of the case. The case contains also a chopper which can block the
light from entering the fiber bundles so that either one of the bundles is illuminated
at a time or both bundles are simultaneously blocked.

The fiber optics probes consist of 1.5-m long illumination and detection fibers of
the diameters 400µm and 600µm, respectively, and a probe head which is shown in

34



(a) Illumination unit and spectral camera (b) Probe head

Figure 3.2: (a) The illumination unit and the SWIR spectral camera with fiber-optics
input module; (b) Schematic of one probe head.

Fig. 3.2b. The probe head contains mirror optics which project the light beam from
the illumination fiber onto the measured sample. To eliminate all specular reflections
between a possible glass window between the probe and the sample and to ensure
that only diffuse reflection is measured, the direction of the outgoing light beam
is at an angle with respect to the normal of the probe plane. The detected light
enters the probe in the reverse direction through the mirror optics before entering the
detection fiber. The probe head has a revolving plate which permits internal reference
measurement by blocking the light outlet with a reference.

Spectral camera, SWIR from Specim Ltd. (Oulu, Finland) [50] with fiber optics in-
terface, is used as light detector. The fiber optics module, designed by VTT, permits
simultaneous use of 106 aforementioned probes. Each detection channel, interfaced
through an MU connector, guides the polychromatic detected light to a prism-grating-
prism (PGP) spectrograph (ImSpector N25e, Specim Ltd. [51, 52]) which disperses the
light onto a mercury-cadmium-telluride (MCT) matrix detector comprising 256×320
pixels. The NIR spectrum of the detected light from one channel can be observed in
the wavelength range 1000–2500 nm on one 256-pixel column on the MCT detector.
Light is dispersed almost linearly onto the detector so that each pixel detects light in-
tensity from a narrow wavelength band of the width 6.3 nm at maximum. To prevent
crosstalk between contiguous channels, every third of the 320 columns are utilized on
the detector matrix.

The spectral camera digitizes the light intensity with the accuracy of 14 bits. The
measurements can be controlled and data can be saved with a DataCube software
from Specim Ltd. Important measurement parameters are the integration time, the
sampling frequency and the number of averaged spectra. In this work, the measured
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spectra were transformed into apparent absorbance units through the equation

A (λ) = − log10

(

I (λ) −D (λ)

I0 (λ) −D (λ)

)

, (3.1)

where I (λ) denotes the analog to digital (AD) counts measured from the sample at the
wavelength λ, D (λ) is the dark current measured with blocked light source and I0 (λ)
is the reference measured either with a sheet of optical teflon (Gigahertz-Optik GmbH,
Germany), as in the process measurements, or a Spectralon reflectance standard with
99% reflectance value (Labsphere, USA), as in the laboratory measurements. The
integration time was set so that the AD counts were slightly below the saturation
level in the reference measurement for the channel with the lowest attenuation. Due
to the strong attenuation of the optical fibers at the low-frequency end and the optical
unidealities at both ends of the NIR bandwidth, the usable wavelength range was
found to be 1100–2300 nm.

3.3 Fluid bed granulation measurements

An inline measurement of the FBG process was conducted using the multipoint NIR
equipment. The granulation was performed at the Department of Pharmaceutical
Technology in University of Kuopio with the Aeromatic STREA-1 fluidized bed gran-
ulator (Aeromatic-Fielder AG, Switzerland) equipped with top-spray unit and custom
made granulation chamber of the height 485mm (Fig. 3.3a).

The formulation used in the granulation comprised 80%w/w of Lactose monohydrate
(Pharmatose 200M, DMV) and 20%w/w of Caffeine anhydrous (Scharlau, Spain) to
yield the total dry mass of 200 g. The powder mass was manually mixed for 2 minutes
prior to feeding it into the granulator. The binder liquid contained 16.7%w/w of PVP
(Kollidon K30, BASF, Germany) and 83.3%w/w of purified water, and 55 grams of
it was sprayed during the process. The durations of the mixing, wetting and drying
phases were, 5, 12 and 16min, respectively. The fluidization was halted briefly once
during the mixing and twice during the wetting phase, and the granulator was hit
with a rubber sledgehammer to dislodge stationary powder mass off the inner walls
of the chamber.

Eight fiber optic probes were attached to the granulator chamber. The measurement
was non-invasive as the probes looked through glass windows. NIR spectra were sam-
pled at 3Hz with the exposure time of 8ms throughout the process. Three consecutive
spectra were subsequently averaged to obtain one spectrum per second and a total
of 2023 spectra from each of the eight channels. Four spectra measured with the
lowest probe on the right in Fig. 3.3a during different process phases are presented
in Fig. 3.3b. The presence of moisture is visually observed as spectral baseline offset
and increase in the intensity of the water absorption band near 1936 nm.
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(b) Spectra measured during the process

Figure 3.3: (a) The measurement set up during granulation process. Four probes are
attached to both sides of the granulation container; (b) Spectra measured with one
probe at different instants during the granulation process: the mixing phase (blue),
the wetting phase (green), beginning of the drying phase (red) and end of the process
(cyan).

3.4 Laboratory measurements

A set of ternary powder mixtures of ibuprofen, MCC and lactose monohydrate (cf. Ta-
ble 3.1) was prepared offline in laboratory. To simulate a realistic scenario in the
manufacturing of a solid dosage from, the mass fraction of the API, i.e., ibuprofen,
was constrained to reside between 0.6–0.8. The two excipients were then assigned
mass fractions symmetrically between 0.1–0.2. The mixture design was constructed
as a union of two constrained ternary simplex centroid designs [53] to efficiently span
the relevant part of fraction space as illustrated in the ternary diagram in Fig. 3.4a.
The 17 mixtures in the design were prepared in triplicate, one with each of the three
lactose brands. Each mixture had a total mass of 20 grams. The pure powders were
weighed with the accuracy of 10µg with an electronic balance (ABJ 220-4M, Kern &
Sohn GmbH, Germany). The mixing was performed in a magnetic stirrer (Arex, Velp
Scientifica, Italy) for the duration of 2.5min at 500 rpm.

For DR measurements, self-made cuvettes were constructed by attaching a black
metallic ferrule (SM1V05, Thorlabs Inc.) of 1 inch in diameter onto a 1-mm thick mi-
croscope glass slide (Menzel-Gläser, Germany). The powder mixtures were dispensed
with a spattle into the ferrule so that the height of the powder column was approxi-
mately 1 cm in each measurement. The cuvette was placed carefully on top of a probe
so that the measurement spot was at the center of the sample (cf. Fig. 3.4b). To avoid
any systematic errors caused by the instability of the spectrometer or light source and
fluctuations in the ambient temperature and relative air moisture, the measurement
order of the mixtures was randomized. Each mixture was measured with four probes.
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100% IBUPROFEN

100% MCC 100% LACTOSE

(a) Mixture design (b) Three samples and the optical reference

Figure 3.4: (a) The mixture design in mass fraction space; (b) The measurement
setup: three powder samples in cuvettes and the optical reference placed on top of
four probes.

Table 3.1: Powders in the laboratory data set.

Name Brand Median particle size
Ibuprofen 50FF, BASF Pharma 50µm
Microcrystalline cellulose VIVAPUR 101, JRS Pharma 65µm
Lactose monohydrate, fine Pharmatose 450M, DMV-Fonterra 20µm
Lactose monohydrate, medium Pharmatose 200M, DMV-Fonterra 35µm
Lactose monohydrate, coarse Pharmatose 80M, DMV-Fonterra 200µm

In total, the 17 mixtures × 3 lactose brands × 4 probes amounted to 204 spectra. The
log10(1/R) spectra of the mixtures and the pure powders are illustrated in Fig. 3.5.

To get an estimate for the errors caused by sample heterogeneity and the use of
different probes, the midpoint mixture in the set with medium-grained lactose was
sampled into the cuvette 15 times in the course of the measurement. Each sample
was measured with 4 probes to yield 60 replicates in total. The replicate spectra and
their variance spectrum are shown in Fig. 3.6a. The variance spectrum follows the
upward-sloping shape of the spectra and it has some features from the pure spectra
of lactose and ibuprofen which might imply sample heterogeneity between measure-
ments. The variance increases drastically towards the low-frequency end of the NIR
spectra which is explained by the deterioration of the signal quality due to the de-
creased transmissivity of the fiber optics at long wavelengths. The replicate spectra
were also subjected to EMSC-preprocessing in which only the physical effects were
corrected. The signal and interferent spectra were excluded from Eq. (2.27), and a
random spectrum among the replicates was chosen to be the reference spectrum. The
amplitude of the variance spectrum decreased significantly. Its shape now lacks any
resemblance to the pure analyte spectra. Physical effects may thus be concluded to
be prevalent over chemical effects caused by sample heterogeneity in the errors of the
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(b) Medium
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(c) Coarse
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(d) Pure analyte spectra

Figure 3.5: Measured spectra of the ternary mixtures of ibuprofen, microcrystalline
cellulose (MCC) and lactose with (a) fine, (b) medium-grained and (c) coarse lactose
powder. The spectra are colored according to the mass fraction of ibuprofen; (d) The
pure analyte spectra each measured with four probes.

laboratory data set.

3.5 Data analysis and algorithms

All computational analysis was done in MATLAB 7.7.0 R2008b environment. The
PLSR version used in this work was the non-orthogonalized PLSR, implemented ac-
cording to [4], which relaxes the orthogonality constraint of the scores, the columns
of T in the bilinear model (cf. Eq. (2.20a)). The algorithm subsequently needs only
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Figure 3.6: (a) Sixty replicates (15 samplings × 4 probes) and their variance spectrum;
(b) EMSC-preprocessed replicate spectra and their variance spectrum.

one set of loading vectors, the orthonormal loading weights in W. The spectral pre-
processing algorithms EMSC and OPLEC were implemented according to the Ref. [6]
and [7, 27], respectively. The regular version, denoted as plain EMSC henceforth,
utilized the mean spectrum of the zero-meaned data matrix X as the reference spec-
trum m. The signal vectors gj were chosen to be the J − 1 first PC loading vectors
of the zero-meaned data matrix, where J equals the chemical rank of the system.
Interferent spectra were not used in this version. In the optimized EMSC, denoted as
EMSCopt, the versatile publicly available implementation of SA [54] was used with
default settings in the minimization in Eq. (2.37). The base vectors B in Algorithm 1
were chosen to be the first J SVD loading vectors of the zero-meaned mixture spectra
X. As the chemical rank of the laboratory set is three, other arguments of the Algo-
rithm 1 were chosen to be G = 1, F = 1 and n = 5. Each minimization procedure was
performed five times with randomly generated but sufficiently different initializations
of the minimization argument A, and the solution which provided minimum value for
the cost function was chosen.

For BSS, the FastICA [37] and DSS [55] packages for MATLAB were utilized. In
FastICA, the log cosh(·)-based function was used for negentropy in Eq. (2.44). The
whitening was performed with PCA without further rank reduction. The ICs were
calculated sequentially, i.e., in the deflation mode. DSS was used with the default
settings without any prior information.
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Chapter 4

Results and discussion

4.1 Qualitative analysis of the granulation process

data

Since no reference measurements on moisture or particle size were conducted during
the FBG process, the process data represents a black system which can be analyzed
only qualitatively. The goal of the analysis was to find features which would provide
information on the moisture and particle size distribution of the fluidized powder
mass. The full multipoint characteristic of the NIR instrument was not exploited in
this work, as only one channel was used in the analysis. The lowermost probe on the
right in Fig. 3.3a was chosen because the effect of moisture was most prominent in
this channel.

4.1.1 Principal component analysis

PCA was performed on the data as a first step in the qualitative analysis. The first
three PC loading vectors are shown in Fig. 4.1a and the corresponding scores are
plotted as a function of time in Fig. 4.1b. In detail:

• The first PC explains 99% of the variance in the data and its loading vector
is strictly positive, rather smooth and featureless. It can be attributed to the
baseline offset which is expected to correlate with both the moisture content and
the particle size distribution. Its score behaves consistently with the decreasing
moisture content as it decreases monotonically during the drying phase.

• The second PC loading resembles the pure spectrum of lactose whose major
absorption band near 1950 nm has been broadened due to the presence of water
(cf. Fig. 3.3b). Its score contains fluctuation with a period of approximately 30 s.
This effect is most probably caused by cooling system of the light source which
was observed to function periodically with approximately the same frequency.

• The third PC loading vector resembles inverted pure water spectrum and it has
a positive contribution from the pure spectrum of lactose, observed as the sharp
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Figure 4.1: (a) Three first PC loading vectors; (b) Temporal profiles of the PC scores.

absorption band near 1950 nm. The temporal profile of its score can thus be
expected to correlate negatively with the true moisture content.

In Fig. 4.1b, the transition from wetting to drying is clearly visible in all score pro-
files. The noisy signals at the beginning of the wetting phase are probably caused
by a temporal collapse of the fluidized mass during which the probes did not see any
powder. The fluidization was stopped at for a few seconds at 120, 300 and 580 s, and
the two first stops can be observed as perturbations in the scores.

4.1.2 Blind source separation

The chemical composition of the time-resolved spectra was also analyzed with both
FastICA and DSS. For the analysis, the spectra were preprocessed in three phases: The
effect of baseline offset was initially diminished by zero-meaning them, their rank was
then reduced to two by SVD to suppress random noise and the separation capabilities
of the BSS algorithms were further enhanced by differentiating the spectra with respect
to wavelength. It is worthwhile noticing that the chemical rank of the process spectra
is four by definition, since the fluidized mass contains lactose, caffeine, water and
PVP. In reality, the mixture of the lactose and caffeine powders can be assumed to
stay homogeneous and thus it can be treated as one component. The least noisy IC
loading vectors were obtained when the contribution of PVP was neglected, i.e., the
fluidized mass was considered to consist of only powder and water. This is a reasonable
assumption, since PVP was present in only trace amounts, as its mass fraction was
less than 4.59%w/w in the end product. The IC loading vectors estimated with
FastICA using 2nd order derivative in preprocessing are shown in Fig. 4.2a, and their
corresponding scores estimated with Eq. (2.47) are plotted as a function of time in
Fig. 4.2b.
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Figure 4.2: (a) Two IC loading vectors; (b) Temporal profiles of the IC scores.

In the analysis, the optimal order of differentiation was determined interactively so
that the visual resemblance between one IC loading vector and the pure water spec-
trum was maximized. The resolved source signals can be analyzed as follows:

• The first IC corresponds to the powder mixture, as its loading vector resembles
the spectrum of lactose. The presence of caffeine can be observed as a slight
increase in the apparent absorbance near 1700 nm, where its main absorption
peak is located. The first IC score is not dependent on the moisture profile (the
second IC score) since its temporal profile exhibits no response to the transition
from wetting to drying. Thus, the resolution of FastICA can be concluded to
be successful. The periodical fluctuation attributed to the instability of light
source is now observed in the first IC score.

• The second IC loading vector is close to the water spectrum albeit it contains
some unidentified interference near 2100 nm. The deviations from the true water
spectrum may be explained by sample matrix interactions, the presence of PVP
and the fact that some information on the water spectrum may have been lost in
rank reduction. The temporal profile of the second IC score exhibits consistent
behavior with the true underlying moisture profile of the powder mass during
the process. It stays at a constant value near zero during mixing, it increases
during wetting and declines monotonically during drying. The drying profile
even follows the expected scenario [45]: the drying rate stays constant at the
beginning, and it gradually decreases towards the end of the process.

Although some discrepancies can still be observed in the resolved spectra, the use of
ICA combined with preprocessing proved to be beneficial as it improved the chemical
interpretability of the system when compared to PCA.

The increase in the score of the first IC during drying may be explained by the
contamination of the measurement window with the sticky fluidized powder mass.
Towards the end of the process, the layer of powder mass on the window increases in
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thickness which results in increased intensity of the backscattered light. With a thin
layer, majority of light is transmitted, but a thicker layer increases the probability
that a photon is scattered back towards the probe. The photons also have longer
apparent optical path lengths when the layer is thicker, hence the increase in the
contribution of the first IC. At the end of the process, the inner wall of the granulator
was covered with a partly hardened powder mass. Since the probes saw only the layer
of stationary powder on the window, it is probable that no information on the particle
size distribution was collected during the process. Furthermore, the spectra were not
corrected for the multiplicative effect prior to ICA. Hence the scores are not expected
to be linearly correlated with the mass fractions of powder and water.

Although the collection of the FBG data was termed to be an inline measurement,
the data analysis was done offline after the process. All the measured temporally
resolved spectra were preprocessed and fed to FastICA at the same time. This is one
drawback of the BSS algorithms, viz., they are not easily applicable for inline use.
Of course, the BSS algorithm can be driven successively using, e.g., all previously
measured spectra or subsequent temporal windows of data as input. However, it
cannot be guaranteed that the BSS algorithm converges such that the IC loading
vectors are identical in all iterations. To develop an inline monitoring method for the
FBG process, the pure analyte spectra should be known a priori or they should be
estimated from a previous data set with the same formulation for the fluidized mass
and the binder liquid. The temporal concentration profiles may then be estimated in
LS sense by utilizing the measured spectra and assuming the linear mixture model.
In Fig. 4.3a, the spectral model from Eq. (2.24) was utilized and the temporal profiles
of the model parameters were estimated using Eq. (2.28). The two IC loading vectors
from Fig. 4.2a were chosen to comprise the chemical linear mixture model xi, chem.
The elements of the sloping baseline vector λ were linearly spaced between −1 and
1, and λ2 was obtained by element-wise squaring of λ. The multiplicative error was
not corrected for and it is thus present in the estimated coefficients of the chemically
relevant spectra. The estimated model parameters provide online information on both
the physical and chemical properties of the fluidized powder mass.

The temporal profile of the parameter a, the weight of the constant baseline offset,
resembles that of the first PC score in Fig. 4.1b. It correlates negatively with the
coefficient of the powder spectrum which is probably due to the effect of layer thickness
explained above. Smaller intensity of backscattered light, and hence larger baseline
offset, occurs with thinner layer in the beginning of the drying phase. The baseline
offset decreases as the layer thickness increases during drying. As expected, moisture
content also correlates positively with the baseline parameter a, although the shape
of the moisture profile is not visually detectable in it. Although their contributions
are small, the coefficients of λ and λ2 follow the smooth changes of the estimated
moisture profile. The presence of water thus causes a slight twist in the curvature of
the measured spectrum. The periodical fluctuation observed previously in the first
IC score is now observed mainly in the term describing linear baseline sloping. The
fluctuating light source thus exhibits minute tilting in the spectrum.

The effect of probe fouling is evident when the signals from other channels are in-
spected. Using the two ICs shown in Fig. 4.2a as loadings, the corresponding scores
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Figure 4.3: (a) Temporal profiles of the model parameters in Eq. (2.24); (b) Moisture
profiles measured with four lowest probes.

were estimated in LS sense for the zero-meaned spectra measured with the four lowest
probes in Fig. 3.3a. In Fig. 4.3b, the temporal profiles of the scores corresponding to
the estimated water spectrum are shown. Although the transition between wetting
and drying phases is visible in all channels, the profiles are very different in shape.
The probes suffer from unrepresentative sampling, as they see only the local stationary
powder layers deposited on their glass windows.

4.2 Qualitative analysis of the laboratory data

To analyze the signal quality and to detect possible input outliers in the measured
laboratory data, the laboratory data set was analyzed qualitatively using PCA in
Sect. 4.2.1. The proposed three-phase combination of spectral preprocessing and ICA
is tested with the laboratory data in Sect. 4.2.2.

4.2.1 Principal component analysis

All 204 mixture spectra were collected into one matrix X and they were subjected
to PCA. The two first PC loading vectors as well as the mean and scaled variance
spectra are shown in Fig. 4.4a. The PC scores are shown in Fig. 4.4b, where the three
mixture sets with different lactose powders are drawn with distinct symbols and they
are colored according to the mass fraction of ibuprofen.

The first PC, which explains 91% of spectral variance, is positive and relatively fea-
tureless. The mixtures with coarse lactose powder have the strongest contribution of
the first PC and they form a separate cluster on the PC1 axis in Fig. 4.4b. The smooth-
ness and the positivity of the first PC loading vector explains the constant baseline
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Figure 4.4: (a) Two first PC loading vectors, the mean spectrum and scaled variance
spectrum for all measured mixture spectra; (b) The score plot for the PCs colored
according to the mass fraction of ibuprofen.

offset in log(1/R) spectra which results from the decreased intensity of backscattered
light due to large particle size. The PC has some resemblance to the pure spectrum
of ibuprofen, and it also has a negative contribution from the lactose spectrum, which
is observed as the inverted dip at location of the strong absorption band of lactose
at 1950 nm. Thus, the first PC might explain the effect of segregation in which the
finer ibuprofen powder is carried towards the bottom of the cuvette to fill the inter-
particulate voids between the large lactose particles. Hence the probe sees relatively
more ibuprofen than lactose in the samples containing coarse lactose powder. The
second PC contains positive contribution from ibuprofen and negative contributions
from both lactose and MCC, as is manifested by the negative values at 1550, 1950
and 2100 nm, i.e., at the locations of the major absorption peaks of lactose and MCC.
It partly explains the mass fraction of ibuprofen, as its contribution is largest in the
spectra with high ibuprofen content, as is seen in the score plot.

The variance spectrum, which gives the variance of each wavelength variable in the
data set, resembles the pure spectrum of ibuprofen. Most of the variance is thus
attributed to chemical changes where ibuprofen expectedly dominates. The decreased
signal quality at large wavelengths caused mainly by the low transmissivity of the
optical fibers results in unproportionally high variance at the low-frequency end of
the variance spectrum.

4.2.2 Blind source separation

The data set was also analyzed with FastICA and DSS using zero-meaning, rank re-
duction to three with SVD and differentiation as preprocessing. Prior to BSS, the
wavelength range was reduced to 1100–2250 nm to remove the nonlinearities in the
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Figure 4.5: Pure analyte spectra (blue) and their corresponding IC loading vectors
(red) for ibuprofen, microcrystalline cellulose and lactose (baseline offsets added for
visualization).

noisy ends of the NIR spectra. The best reconstructions of the underlying pure an-
alyte spectra shown in Fig. 4.5 were obtained with DSS using third order derivative
in the preprocessing phase. Even the spectra of MCC and lactose, whose contribu-
tions were significantly smaller than that of ibuprofen in the mixtures and which are
strongly cross-correlated signals, were rather accurately resolved. The scores of the
IC corresponding to ibuprofen are shown in Fig. 4.6a scaled such that they are com-
parable with the true mass fractions of ibuprofen. As expected, the effect of increased
apparent optical path length due to larger particle size is evident in the mixtures
with coarse lactose powder, which is manifested by the systematically larger IC score.
The effect of the multiplicative error was subsequently standardized by normalizing
the zero-meaned mixture spectra (cf. (2.48)) prior to differentiation and DSS. The
resolved IC loading vectors were then almost identical to those in Fig. 4.5 (results are
not shown), and the correlation coefficient between the first IC scores in Fig. 4.6b and
the true mass fractions of ibuprofen was increased from 0.61 to 0.76 when compared to
Fig. 4.6a. The mixture spectra with coarse lactose powder have still generally largest
score values for the first IC, i.e., the presence of ibuprofen is largest in them. This is
congruent with the analysis of the first PC above, i.e., the segregation of powders is
strongest in the mixtures with coarse lactose powder.
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Figure 4.6: The laboratory reference, i.e., mass fraction of ibuprofen, and the scores
of its corresponding IC (a) without and (b) with normalization of the zero-meaned
mixture spectra prior to BSS (scaled for visualization).

4.3 Performance of spectral preprocessing meth-

ods

The laboratory data set was used to test the performance of EMSC, EMSCopt and
OPLEC in improving the robustness of subsequent linear calibration models against
the physical spectral artefacts. Specifically, the analyzed problem was the estimation
of the mass fraction of ibuprofen from the measured spectra using the calibration
models. First, the laboratory data were divided into calibration and test sets, as
described in Sect. 4.3.1. Second, linear calibration models were developed using the
calibration set with and without spectral preprocessing, and the predictive perfor-
mances of the models were compared using the test set (cf. Sect. 4.3.1). The PLSR
model developed without preprocessing is analyzed in detail in Sect. 4.3.2. Besides
providing similar analysis of the PLSR model after preprocessing the spectra with
EMSCopt, Sect. 4.3.3 also contains interpretation of the information retrieved from
the preprocessing methods EMSCopt and OPLEC.

4.3.1 Comparison of spectral preprocessing methods

The mixture spectra containing coarse lactose powder exhibited increased optical path
lengths observed as multiplicative errors (cf. Fig. 4.6a) which would have provided a
suitable testing ground for the spectral preprocessing methods. However, the effect
of segregation was also largest in them (cf. Fig. 4.6b and 4.4), which made the ob-
servations unsuitable for the purposes involving calibration. In fact, in initial tests,
calibration against these erroneous laboratory reference values resulted in poor predic-
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tion ability and badly interpretable results (for compactness, results are not shown).
Hence the coarse set was excluded from the analysis.

Although the differences in the apparent optical path length were not significant due
to the similar particle size distributions in the two remaining sets of mixture spectra,
physical effects were still expected to be present due to the use of different measure-
ment probes. For the analysis of the spectral preprocessing methods, the remaining
two sets of spectra were divided into calibration and test sets as is shown in Fig. 4.7a.
The calibration set spans efficiently the relevant part of the fraction space and no
extrapolation is expected to be needed in the prediction phase. Each mixture point
in the ternary diagram contains 8 replicates (2 particle sizes × 4 probes). Since the
measurement procedure was well standardized, the signal quality was approximately
equal in all measurements and no input outliers were detected when the calibration
set was analyzed with PCA in a similar way as in Fig. 4.4 (results are not shown).
However, the effect of segregation was noted to be evident, and two output outliers
were detected and subsequently removed from the calibration set as they exhibited
abnormally large errors in cross validation.

Calibration models were constructed for the prediction of the mass fraction of ibupro-
fen in the mixtures using PLSR. The models were optimized for a number LVs ranging
from 1 to 6. To validate the effects of spectral preprocessing, the PLSR models were
first built with the raw data. Then the spectra were preprocessed with EMSC, EM-
SCopt and OPLEC prior to calibration. The optimal number of LVs for the calibration
models was analyzed using cross validation, and the leave-one-out root-mean-squared
errors of cross validation (LOO-RMSECVs) of plain PLSR, EMSC and OPLEC as
well as the optimized leave-block-out RMSECV of EMSCopt are plotted as a function
of the number of PLSR LVs in Fig. 4.7b.

Based on the experimental results, all three spectral preprocessing methods resulted
in approximately equal prediction performances which was comparable to that of plain
PLSR when three or more LVs were utilized. The root-mean-squared errors of pre-
diction (RMSEPs) are shown in Fig. 4.7c. However, spectral preprocessing methods
are observed to reduce the number of LVs needed as their corresponding calibration
models exhibit good prediction ability already with one and two LVs. The usefulness
of model-based spectral preprocessing using EMSC and OPLEC is thus confirmed by
fact that, when the measurements are affected by physical effects, its application is
not only theoretically correct but also of fundamental practical importance as it allows
the development of parsimonious calibration models (using one or two LVs instead of
three) still capable of achieving the requested accuracy.

Since MCC and lactose have weak presence when compared to ibuprofen, and since
the variation in their mass fractions is also small, the variation in the mass fraction
of ibuprofen is a dominant chemical effect in the spectra. The first LV in the PLSR
models developed after preprocessing is thus expected to explain most of the variation
attributed to the changes in the presence of ibuprofen. The following two LVs then
compensate for the minor perturbations caused by the presence of MCC and lactose.
Furthermore, since MCC and lactose have strongly crosscorrelated spectra, the PLSR
models might have difficulties in distinguishing between the two. The two excipients
can be thus roughly approximated as a single chemical component, which reduces the
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Figure 4.7: (a) The division of the data into calibration and test sets; (b) RMSECVs
and (c) RMSEPs for four methods plotted as a function of the number of LVs; (d)
The predicted ibuprofen mass fractions for both calibration and test sets after using
PLSR with 3 LVs without preprocessing.

apparent chemical rank of the system and consequently the number of LVs needed.
This is the reason for the fact that prediction performance only slightly improves as
the number of LVs is increased from one to three in the cases where preprocessing was
used.

In the absence of preprocessing, the plain PLSR model is expected to model also the
physical effects which do not correlate with the mass fraction of ibuprofen. This is
observed as the significantly larger RMSEP with one and two LVs when compared to
the cases where preprocessing was used. The physical effects are thus modeled by the
first three LVs. Again, the decrease in the apparent chemical rank of the system is
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obvious, as the plain PLSR has to utilize only three LVs to achieve prediction perfor-
mance comparable with cases where preprocessing was used, and the performance is
not improved with four or more LVs. As mentioned in Sect.2.3, the required number
of LVs to completely model the spectral variations in a noiseless set of absorbance
spectra equals the chemical rank of the system. It is thus expected that, with the
apparent increase in the chemical rank induced by the physical baseline effects, the
optimal number of LVs would be at least four in the present case. However, due to the
similarity between the pure analyte spectra of MCC and lactose, the apparent chem-
ical rank caused by chemical variations is closer to two for the system. The inclusion
of physical baseline effects thus increases the apparent chemical rank to three. After
the third LV, all PLSR models begin to incorporate random noise in the calibration
model and the RMSEPs start to increase due to overlearning.

4.3.2 Analysis of the PLSR model

The predicted mass fractions of ibuprofen are shown with the reference values for
both the calibration and test sets in Fig. 4.7d, where the plain PLSR was used with
three LVs. When inspected visually, there seems not to be systematical differences
in the prediction performance between the sets containing fine and medium lactose
powder. The PLSR model thus sufficiently accounts for the possible differences in
the particle size distributions in the data matrix X with three LVs. The first three
loading weight vectors wi of the model are plotted in Fig. 4.8a, and the variances
explained by them in both X and y in the calibration set are given. Fig. 4.8b presents
the covariance spectrum between the wavelength channels and the reference y, the
variance spectrum denoting the observed variance at each wavelength and the mean
spectrum of the calibration set. Since PLSR finds loading weight vectors wi which
maximize the covariance between Xi−1 wi and y, the first vector w1 is always directly
proportional the covariance vector between X and y, as is seen in the figures.

The first loading weight vector has positive contribution from the pure spectrum of
ibuprofen, as expected, and negative contributions from the spectra of MCC and
lactose. It explains most of the variance (75.8%) in y but less than half of the
variance (45.7%) in X. The second loading weight vector is completely negative in
sign. Due to the constant sign, it thus may account for constant baseline offset in
X. It also explains the perturbations caused by changes in the contents of MCC and
lactose as it looks like a linear combination of their pure analyte spectra but lacks any
resemblance to the pure spectrum of ibuprofen. On the other hand, the third loading
weight vector is hard to interpret because it is noisy and thus probably encodes very
little information. However, it resembles the difference between the pure analyte
spectra of lactose and MCC also shown in Fig. 4.8a, and it may thus be interpreted
to explain the small variations between the two excipient spectra. For example, it has
an interesting feature at 1950 nm where both lactose and MCC have an absorption
band. The feature might act as a way to distinguish between MCC and lactose. If
the third vector is summed with the second, the inverted lactose peak in the second
vector at 1950 nm becomes wider and starts to resemble the inverted absorption peak
of MCC. Since the third loading weight vector explains only trace amounts of variance
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Figure 4.8: (a) Three first LV weight vectors and (b) the covariance, variance and
mean spectrum of the data without preprocessing.

(2.7%) in X, the previous analysis regarding the decrease in the apparent chemical
rank of the system due to the similarity between the MCC and lactose spectra can
be verified to be realistic. That is, the two excipient spectra can be very accurately
approximated as a single chemical species.

4.3.3 Analysis using spectral preprocessing methods

Because of the segregation, the use of optimized EMSC was not expected to pro-
duce accurate results when applied to the laboratory data. This is mainly due to the
fact that optimizing the LBO-RMSECV can lead to overlearning. The results are
here discussed for the case where one signal and one interferent vector was estimated.
The chemical rank of the preprocessed spectra was thus reduced to two. As is seen
in Fig. 4.9a, the spectra preprocessed with EMSCopt are approximately linearized
with respect to the laboratory reference values despite the variance between repli-
cates. However, the interpretability of the reference, signal and interferent spectra
(Fig. 4.9b) is compromised because they have been optimized to model inaccurate
reference values. The covariance, variance and mean spectra of the calibration set
are given in Fig. 4.9b. The reference spectrum m is close to the mean spectrum of
the calibration set after preprocessing, which is natural as m should have equal con-
tribution in all spectra. Since the single signal vector explains all variations around
the reference spectrum, it is obvious that it is now almost identical to both the first
loading weight vector and the covariance spectrum. Also, the variance spectrum has
high resemblance to the signal vector for the same reason. The second loading weight
vector is already very noisy and contains little information. As stated in Sect. 2.4.1,
the number of LVs needed with EMSCopt is G, one in this case, and the second LV
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contains information only from the unmodeled residuals in Eq. (2.24).
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(a) EMSC-preprocessed calibration spectra
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Figure 4.9: (a) EMSC-preprocessed calibration spectra; (b) Reference, signal and
interferent spectra in the EMSC model; (c) Two first LVs and (d) the covariance,
variance and mean spectrum of the data after optimized EMSC preprocessing.

The version of EMSC in which the effects of unmodeled residuals were removed by
using Eq. (2.30) instead of Eq. (2.29) was also tested. Now the preprocessed spectra
were constrained to be in the space spanned by the reference and signal spectra,
and they appear to be smoother (cf. Fig. 4.10a, one LV is used). The prediction
performance stayed approximately the same (results are not shown), but the reference,
signal and interferent spectra in Fig. 4.10b are now easier to interpret. The signal
vector has positive contribution from the pure spectrum of ibuprofen and negative
contributions from MCC and lactose. The interferent spectrum might have the same
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(a) EMSC-preprocessed calibration spectra
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Figure 4.10: (a) EMSC-preprocessed calibration spectra; (b) Reference, signal, inter-
ferent and mean spectra. (Eq. (2.30) used instead of Eq. (2.29))

role as the third LV in Fig. 4.8a, i.e., to explain the small differences between the
MCC and lactose spectra. For example, the feature near 1950 nm widens the lactose
peak when the spectrum is summed with the reference spectrum. The reference and
mean spectra again resemble each other. The use of the modified version of EMSC
might be thus beneficial, since it provides better interpretability for the EMSC model
since it discards the effects of the unmodeled residual errors.
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(a) OPLEC-preprocessed calibration spectra
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Figure 4.11: (a) OPLEC-preprocessed calibration spectra; (b) Estimated multiplica-
tive coefficients in OPLEC.

OPLEC is also vulnerable to the erroneous reference values as it utilizes them in esti-
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mating the multiplicative coefficients bi which are present in Eq. (2.32). In Fig. 4.11a,
the OPLEC-preprocessed spectra are seen to be well linearized with respect to the
reference. Three LVs were used in both PLSR models in Eq. 2.33. The shapes of the
spectra are distorted due to the projection in Eq. (2.32). OPLEC was also modified
by replacing the projection by zero-meaning. The preprocessed spectra had then the
familiar shapes, but the RMSEP was notably increased with the two first LVs (re-
sults are not shown). The measured spectra thus contain additive baseline curvatures
which increase the number of needed LVs. The estimated optical path length factors
bi are shown in Fig. 4.11b for both calibration and test measurements ordered as in
Fig. 4.7d. The mixtures with medium lactose powder generally exhibit slightly longer
optical path lengths than the set with fine lactose powder, as is expected. The upward
trend of the plot indicates that the multiplicative coefficient increases with the mass
fraction of ibuprofen, which is probably due to the fact that the median particle size
increases with the ibuprofen content (cf. Table 3.1).
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Chapter 5

Conclusions

Near-infrared (NIR) spectra measured on solid samples in the diffuse reflectance (DR)
mode are sensitive to the physical characteristics, such as the packing density and the
particle size distribution, of the material. The variations caused by light scattering
effects evoke nonlinearity in apparent absorbance spectra, which are often modeled
to be linearly correlated with the concentrations of the chemical constituents present
in the samples. The prediction ability of linear calibration models is degraded by
these unmodeled effects and, due to the deviations from the linear mixture model,
the use of BSS methods with NIR DR spectra becomes complicated. However, the
physical light scattering effects may be taken into account and standardized with
model-based spectral preprocessing methods, such as extended multiplicative signal
correction (EMSC) and optical path length estimation and correction (OPLEC).

In this work, an optimized version of EMSC was proposed, in which the chemically
relevant spectral vectors in the EMSC model were optimized as linear combinations
of a given set of base vectors so that the root-mean-squared error of cross validation
(RMSECV) of the subsequently built partial least squares regression (PLSR) model
was minimized. Due to the possible ill-behaving nature of the cost function, the
minimization was executed stochastically with simulated annealing. Ternary powder
mixtures of ibuprofen, microcrystalline cellulose and lactose with three different par-
ticle sizes were prepared in laboratory and the method was tested with their NIR
DR spectra. In the data analysis phase, the measured samples were noted to exhibit
physical heterogeneity due to the segregation of powders. This resulted in a poor
correspondence between the weighed mass fractions of ibuprofen and the measured
NIR spectra. However, optimized EMSC resulted in a prediction accuracy compara-
ble to regular EMSC and OPLEC. Moreover, the preprocessing methods lowered the
number of LVs needed for accurate prediction of the mass fraction of ibuprofen using
a PLSR model. The data set contained only mild physical variations, since a regular
PLSR model constructed with unprocessed data was able to model them, as it gave
comparable prediction performance.

The application of blind source separation (BSS) methods on NIR DR spectra is com-
plicated by the presence physical spectral interferences which deflect the measured
signals from the linear mixture model. The importance of appropriate spectral pre-
processing was investigated in the problem of enhancing the separation capabilities
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of BSS algorithms. A three-phase preprocessing method designed for the application
of independent component analysis (ICA) on NIR DR spectra was proposed and dis-
cussed in this work. The variations in the constant baseline offset in the spectra was
first removed by zero-meaning them. Then, the effect of random noise was decreased
by discarding the least informative components in the SVD of the data set. Finally,
the smooth spectral signals were made more suitable for ICA by differentiating them
with respect to wavelength, which increased their non-Gaussianity. The combination
of preprocessing and ICA was tested both with a process data set measured during
fluid bed granulation (FBG) and the previously mentioned laboratory data set. When
compared to principal component analysis (PCA), the proposed method permitted
easier interpretation of the factorization, as the resolved signals were chemically more
meaningful than the principal component loading vectors.

In the analysis of the FBG data, the pure spectrum of water was satisfactorily resolved,
and the temporal shape of its score exhibited similarity to the expected moisture pro-
file. The process phases were clearly distinguishable and the shape of the drying
profile agreed with the theory on the drying of powders. The proposed method has
thus potential in inline FBG process monitoring applications. Simultaneous resolu-
tion of both chemical and physical properties from the FBG data in real time was
demonstrated using the modified Beer-Lambert’s law utilized in EMSC and OPLEC.
The parameters of the model, which were estimated in least squares sense for each
measured spectrum, provided information both on the presence of the chemical con-
stituents and the additive baseline effects which can in principle contain information
on the granule size distribution. In the current FBG data, however, no information
on granule size was expected to exist, since most of the measured signal originated
from a stationary layer of powder mass deposited on the measurement window. In the
analysis of the laboratory data, all three estimated pure analyte spectra were visually
recognizable. The estimated scores for the independent component (IC) whose loading
vector most resembled the pure analyte spectrum of ibuprofen correlated positively
with the weighed mass fractions of ibuprofen. The multiplicative effect of increased
optical path length due to large particle size was evident in the systematically larger
IC scores corresponding to samples containing coarse powder. The segregation of
powders was also evident, as the IC scores remained systematically larger even after
the multiplicative effect was standardized by normalizing the mixture spectra prior to
BSS.

The soft spectral model utilized in EMSC and OPLEC is heuristic and simplified.
The model was revised in [56, 57] and [29], where the smooth wavelength depen-
dent terms were modified to correspond better with the theories of Rayleigh and Mie
scattering of light, respectively. In [58], the measured spectra were orthogonalized
to the reduced scattering coefficient spectra which were in turn estimated using the
Monte Carlo method. Closer exploration of the physics-based methods in the context
of pharmaceutical powders could be the field of future research. Monte Carlo simu-
lations combined with inversion calculation can be utilized in the estimation of the
absorption and scattering coefficients of solid materials [14]. The application of BSS
methods in the resolution of pure analyte absorption coefficient spectra from those
estimated from powder mixtures could also be studied in the future.
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