
Aalto University
School of Science
Department of Information and Computer Science
Degree Programme of Computer Science and Engineering

Zhanxing Zhu

Supervised Distance Preserving
Projection for Dimensionality Reduction

Master’s thesis

Espoo, 10th October 2011

Supervisor: Prof. Olli Simula

Instructor: D.Sc.(Tech.) Francesco Corona

Aalto University
School of Science
Department of Information and Computer
Science
Degree Programme of Computer Science and
Engineering

ABSTRACT OF MASTER’S THESIS

Author: Zhanxing Zhu

Title:

Supervised Distance Preserving Projection for Dimensionality Reduc-
tion

Number of pages: ix + 53 Date: 10th October 2011 Language: English

Professorship: T-61 Computer and Information Science

Supervisor: Prof. Olli Simula

Instructor: D.Sc.(Tech.) Francesco Corona

Abstract:

Facing with high-dimensional data, dimensionality reduction is an essential technique
for overcoming the “curse of dimensionality” problem. This work focuses on supervised
dimensionality reduction, especially for regression tasks. The goal of dimensionality
reduction for regression is to learn a low-dimensional representation of the original
high-dimensional data such that this new representation leads to accurate regression
predictions.

Motivated by continuity preservation, we propose a novel algorithm for supervised
dimensionality reduction named Supervised Distance Preserving Projection (SDPP).
In order to preserve the continuity in the low-dimensional subspace, we resort to con-
sidering the local geometrical structure of the original input space and response space.
Inside a neighborhood of each point in the input space, the optimization criterion of
SDPP tries to minimize the difference between the distances of the projected covariates
and distances of the responses. Consequently, this minimization of distance differ-
ences leads to the effect that the local geometrical structure of the low-dimensional
subspace optimally matches the geometrical characteristics of the response space. The
local match not only facilitates an accurate regressor design but also uncovers the
necessary information for visualization. Different optimization schemes are proposed
for solving SDPP efficiently. Moreover, the parametric mapping we learned can easily
handle the out-of-sample data points. A kernelized version of SDPP is derived for
nonlinear data. An intuitive extension of SDPP is also presented for classification tasks.

We compare the performance of our method with state-of-the-art algorithms on both
synthetic and real-world data. These comparisons show the superiority of our approach
on the task of dimensionality reduction for regression and classification.

Keywords: Supervised dimensionality reduction, regression, classification, opti-
mization, kernel.

Acknowledgments

Since I entered Aalto University School of Science in September 2009, my time has
been filled with a wealth of memorable and precious experiences. I have been feeling
honored to be surrounded by many truly inspirational and friendly people. Foremost
amongst these people have been my supervisor, Prof. Olli Simula and my instructor,
Docent Francesco Corona. I would like to thank Prof. Olli Simula for his supervision
and for providing me with great working conditions in our department. Francesco,
who collaborated much with me in the thesis work, has been a friend and teacher,
confidant and ally, and an instructor of the highest calibre. I will continue to stagger
towards the standards of excellence that he has laid—thank you. I would also like to
thank Dr Zhirong Yang who has always been helpful and a valuable source of per-
spectives. The close collaboration between us has planted deeper understanding of
machine learning in my mind.

I would like to thank all the members in our research group—the Environmental
and Industrial Machine Learning (EIML) group. The academic discussions together
with many jokes made the group such a wonderful place. Thank you to: Amaury
Lendasse (Momo), Federico Montesino Pouzols, Yoan Miche, Elia Liitiäinen, Emil
Eirola, Qi Yu, Dusan Sovilj, Mark van Heeswijk, Laura Kainulainen and Ajay Ra-
maseshan etc. I would also like to thank the two Chinese Ph.D students in my office
B307, He Zhang and Xi Chen, who are always helpful and kind-hearted.

I am grateful to our department for accepting me as a member of Honors Program
and for the valuable experiences and opportunities I have been provided. I sincerely
acknowledge the Finnish Cultural Foundation for providing me the grant to support
my master thesis.

I want to thank Chao Wang, Chiwei Wang and Hotloo for their accompanying,
during the two years’ study in Macadamia program. I will always remember the
golden time when we had lunch and insightful discussions together.

There are my friends who have kept me smiling during the stay in Otaniemi. I
thank: Rong Wang, Ying Wu, Bo Pang, Jingsong Song, Sheng Gao, Jie Su and so
many others who I am sure I have left out. Rong Wang has been, and continues to
be a pillar of friendship, my best friend and greatest supporter in my study and daily
life—much appreciation goes to him.

I give my thanks to my lovely girlfriend, Ming. I am so grateful for her love and

ii

support during these years, which made me go through the freezing winters in Fin-
land. We will succeed in the end—I believe firmly.

Lastly but the most importantly, I thank my family, including my parents and
older brother, for their support, endless love and encouragement over these years.
Without them none of this would have been possible.

Zhanxing Zhu
Otaniemi, Espoo, Sep. 23rd, 2011

iii

Contents

Acknowledgements ii

Abbreviations vi

Notation vii

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Dimensionality Reduction . 2

1.1.1 Unsupervised Dimensionality Reduction 3
1.1.2 Supervised Dimensionality Reduction 4

1.2 Highlights and Organization of the Thesis 5
1.2.1 Highlights of the Thesis . 5
1.2.2 Thesis Structure . 6

I Theory 8

2 State-of-the-art Approaches for Dimensionality Reduction in Regres-
sion 9
2.1 Partial Least Squares (PLS) . 9
2.2 Supervised Principal Component Analysis (SPCA) 11
2.3 Kernel Dimensionality Reduction (KDR) 13
2.4 Comparison of PLS, SPCA and KDR 14

2.4.1 Toy example one: plane . 15
2.4.2 Toy example two: “parity” . 15

3 Supervised Distance Preserving Projection (SDPP) 19
3.1 Criterion . 19
3.2 Optimization of SDPP . 20

3.2.1 Semidefinite Programming Formulation for SDPP 21
3.2.2 SQLP Formulation for SDPP 23
3.2.3 Conjugate-Gradient Optimization for SDPP 25

3.3 Neighborhood Selection Strategies for SDPP 27

iv

3.3.1 Not-enclosing neighborhoods . 27
3.3.2 Enclosing neighborhoods . 28
3.3.3 Evaluation by A Toy Example 30

3.4 Kernel extension of SDPP . 32

II Experiments 34

4 Experimental Evaluation 35
4.1 SDPP for Regression . 35

4.1.1 Curve line . 35
4.1.2 Predicting rotation angles on an image manifold 37
4.1.3 Regression on UCI data sets . 39

4.2 SDPP for Classification . 41
4.2.1 Tai Chi . 41
4.2.2 Classification on UCI data sets 42

5 Conclusions 47

v

Abbreviations

DR Dimensionality reduction
SDPP Supervised Distance Preserving Projection
KSDPP Kernel Supervised Distance Preserving Projection
PCA Principal component analysis
LLE Local linear embedding
ISOMAP Isometric Mapping
MVU Maximum variance unfolding
FDA Fisher discriminant analysis
GDA Generalized discriminant analysis
PLS Partial least squares
KPLS Kernel partial least squares
CCA Canonical correlation analysis
SDR Sufficient dimensionality reduction
KDR Kernel dimension reduction
RKHS Reduced Kernel Hilbert Space
HSIC Hilbert-Schmidt independence criterion
SPCA Supervised principal component analysis
PCA Principle component analysis
NIPALS Nonlinear iterative partial least squares
SIR Sliced inverse regression
pHd Principal Hessian directions
SAVE Sliced average variance estimation
PSD Positive semidefinite
QSDP Convex quadratic semidefinite programming
SDP Semidefinite Programming
SQLP Semidefinite quadratic linear programming
CG Conjugate gradient
SVD Singular value decomposition

vi

Notation

X Input space
Y Response space
Z Low-dimensional subspace
n, nt Number of training points and test points
d The dimensionality of X
l The dimensionality of Y
r The dimensionality of Z
I Identity matrix
1 A vector with all ones
0 A vector with all zeros
ei i-th basis vector
X n× d matrix of input covariates, each row is a data sample
Y n× l matrix of output responses
Z n× r matrix of low-dimensional projections
Xij Entry of a matrix: i-th row, j-th column
xi i-th input
yi i-th output
zi i-th low-dimensional representation
Xi i-th feature of x, with i = 1, . . . , d
W Projection matrix in Rd×r

D Squared distance matrix in the low-dimensional subspace
∆ Squared distance matrix in the response space
N(x) The neighborhood of x
k Number of the nearest neighbors
J (W) The objective function with respect to W
∇W The gradient with respect to W
k(·) Kernel function
K Kernel matrix
Kc Centered kernel matrix
Kx n× n kernel matrix for training set in X
Ky n× n kernel matrix for training set in Y
Kz n× n kernel matrix for the low-dimensional subspace
Ktest nt × n kernel matrix between the test points and training points
E(·) Expectation operator
V (·) (Co)variance operator

vii

List of Figures

1.1 Curse of dimensionality: 10 points to fill the one, two and three-
dimensional space, [0, 1]d, where d = 1, 2, 3. 2

1.2 A two-dimensional projection of a person’s faces, from [51]. 4
1.3 Thesis structure. 7

2.1 Projection comparison on linear data. 16
2.2 Projection comparison on “parity” data. 17

3.1 Illustration of SDPP . 21
3.2 Eigengap plots for linear, “parity”and curve data sets. 25
3.3 Not-enclosing neighborhoods. 28
3.4 Enclosing neighborhoods. 29
3.5 Projection results based on not-enclosing neighborhoods. 31
3.6 Projection results based on enclosing neighborhoods. 32

4.1 Projection comparison on curve line data set. 36
4.2 Four sample images of rotating ducks 37
4.3 One-dimensional embedding of the ducks data set. 38
4.4 Two-dimensional embedding of the ducks data set. 39
4.5 Tai Chi with two classes Yin and Yang. 41
4.6 Simulation of Tai Chi model. 42
4.7 Two-dimensional projection of the Tai Chi data for the test set. 42
4.8 Two-dimensional projection of the Glass data for the test set. 44
4.9 Two-dimensional projection of the Segmentation data for the test set. . 45
4.10 Two-dimensional projection of SDPP on the Isolet data for the test set. 45
4.11 Two-dimensional projection of FDA on the Isolet data for the test set. 46
4.12 Two-dimensional projection of SPCA on the Isolet data for the test set. 46

viii

List of Tables

4.1 Description of the data sets for regression tasks. 35
4.2 RMSE (“mean± std”) on the test sets of three data, Servo, Tecator-fat

and Auto-price. 40
4.3 Description of data sets for classification tasks. 43
4.4 Classification accuracies by percentage on the test sets of data, Glass,

Segmentation and Isolet. 43

ix

Chapter 1

Introduction

Scientists and engineers often work with a large amount of high-dimensional data,
such as images, texts, global climate patterns or human genes. One of the problems
when analyzing these data is that the number of dimensions of these data can be
extremely large—several thousands, and in some cases, even millions. Such a high
number of dimensions may be enough to either make storing the data in memory
infeasible, or analyzing and exploring the data difficult. The latter problem is more
common, because in the area of machine learning there are many models and algo-
rithms of practical interest that do not perform efficiently if we start with a very large
number of dimensions compared with only a few data samples.

This induces the so-called“curse of dimensionality”[6] that has pestered researchers
in a wide range of fields for many years. For any data, as the number of dimensions
increases, the number of data samples required to learn a specific model increases at
an exponential rate, which makes all but the most trivial manipulations and analysis
impractical. A dilemma occurs because naturally we would like to be able to use as
many informative dimensions as are available to us—however, the “curse” is that since
more dimensions are collected, we spend dramatically more time trying to make sense
of them.

Here we show a simple example of the “curse” under the task that we try to get
representative samples of the set [0, 1]d, where d is the dimension of the data, see Figure
1.1. In the one-dimensional case, this is just an interval—and 10 random samples are
enough to obtain a good representation of this interval (for example, it is very unlikely
that all samples will be on one half of the interval). When we move to the case with
two dimensions, 10 samples are reasonable, but we can see that it is now more likely
that we will leave some areas unexplored. Once we get to three dimensions, we notice
that these 10 samples are not enough any more and begin to get rather sparse in this
cube. This is also called “empty space phenomenon” [46]. It is easy to imagine the
problem with several thousands of dimensions—by linearly increasing the number of
dimensions, the number of points required should be increased by an exponential rate
to fill the new space.

In addition, some high-dimensional data usually contain noise. The inclusion of

1

Figure 1.1: Curse of dimensionality: 10 points to fill the one, two and three-
dimensional space, [0, 1]d, where d = 1, 2, 3.

unnecessary variables, called noisy variables, could complicate or even ruin the data
structure [15]. Fan and Fan [17] have theoretically proved that if the signal-to-noise
ratio is too small, linear discriminant rules in classification tasks become no better
than random guessing due to the noise accumulation in the estimation of the popula-
tion mean vectors.

Moreover, the high-dimensional nature of data is often simply a product of its rep-
resentation. In many instances data dimensions are redundant and entirely correlated
with some combination of other dimensions within the same data set. In these cases,
although the retrieved data seem to exhibit a naturally high dimension, it is actually
constrained to a lower dimensional representation of the measurement space.

1.1 Dimensionality Reduction

Based on these considerations on high-dimensional data, it is necessary to find an
approximation (or representation) in low-dimensional space, which is referred as di-
mensionality reduction (DR). The intent here is that by reducing the number of di-
mensions, we reduce significantly the time that is needed for our analysis, but, at the
same time, we keep as much information as we can about the original data, so that
it is a good representation. From this point of view, DR can be a preprocessing step
for many data analysis tasks (for example, clustering, classification and regression).
That is, instead of performing our analysis with the original data, we work on the low-
dimensional representation. Additionally, by reducing the original high-dimensional
data into a two or three-dimensional space, DR also serves as a visualization tool for
unveiling the intrinsic structure of the original data.

2

Generally, based on different settings of original data, there are two kinds of DR
categories, unsupervised DR and supervised DR. Next, we will present a brief overview
of the two kinds of DR.

1.1.1 Unsupervised Dimensionality Reduction

When handling high-dimensional data in unsupervised settings (i.e., the unlabelled
data samples), dimensionality reduction is mainly used as a preprocessing step for
clustering or visualization of the data. For example, in Figure 1.2, the input consists
of many images of a person’s face observed under different pose and lighting conditions.
These images can be thought of as points in a high-dimensional vector space, with
each input dimension corresponding to the brightness of one pixel in the image. There
are not any labels for these images and we do not know any information of the pose
and lighting conditions. Although the input dimensionality may be quite high (e.g.,
4096 for these 64 by 64 pixels images), the perceptually meaningful structure of these
images has much fewer independent degrees of freedom. Within the 4096-dimensional
input space, all of the images lie on an intrinsically three-dimensional space, which
can be represented by two pose variables plus an azimuthal lighting angle. The goal of
unsupervised dimensionality reduction is to discover, given only the unlabelled high-
dimensional inputs, low-dimensional representations, with coordinates that capture
the informative structure of the data, and to visualize them. Figure 1.2 presents a
two-dimensional projection of a person’s faces, with a sample of the original input
images (red circles) superimposed on all the data points (blue) and horizontal sliders
(under the images) representing the third dimension. Each coordinate axis of the
embedding correlates highly with one degree of freedom underlying the original data:
left-right pose (x-axis), up-down pose (y-axis), and lighting direction (slider position).

Depending on different criteria, much research devotion has focused on the un-
supervised learning settings of dimensionality reduction. Generally, there are two
criteria used commonly, distance preservation and topology preservation.

In the first category, all the methods aim to preserve specific distances between
the original data and their embeddings. Principal component analysis (PCA), multi-
dimensional scaling (MDS) and its variants, Sammon’s nonlinear mapping [44], and
curvilinear component analysis [14] try to retain the spatial distances after embedding.
The adjective “spatial” indicates that the distance metrics compute the distance only
using the coordinates of the two points matter, without regards to any other informa-
tion like the presence of a submanifold. For instance, Euclidean distance is the most
commonly used spatial distance. To reduce the dimensionality of highly folded mani-
folds, ISOMAP [51] preserves the geodesic distances which are approximated by graph
distance based on neighborhood construction. Stemming from mathematical consid-
erations about kernel functions, kernel PCA [45] considers the pairwise distances in
feature space. Different from kernel PCA, maximum variance unfolding (MVU) [59]
learns a kernel matrix by defining a neighborhood graph on the data and preserving
pairwise distances in the resulting graph. Concretely, MVU attempts to maximize

3

Figure 1.2: A two-dimensional projection of a person’s faces, from [51].

the sum of squared Euclidean distances between all data points, under the constraint
that the distances inside the neighborhood graph are preserved.

In the second category, the methods reduce the dimensionality by preserving the
topology of data rather than their pairwise distances. Self-organizing map (SOM) [27]
implements a spatially ordered mapping of a high-dimensional data onto a predefined
lattice based on competitive learning of artificial neurons. In contrast with SOM using
a predefined lattice, local linear embedding (LLE) [43] and Laplacian eigenmaps [4]
make no assumption on the shape and topology of the embedding. Instead, they
consider the information contained in data in order to establish the topology of the
data set and compute the shape of the embedding accordingly. LLE assumes the local
linear structure of the manifold and describes the local properties of the manifold
around a data point by considering the data point as a linear combination of the
its nearest neighbors. In the low-dimensional representation of the data, LLE tries
to retain the reconstruction weights in the linear combination as much as possible.
Laplacian eigenmap finds a low-dimensional data representation by preserving local
properties of the manifold. The local properties in Laplacian eigenmaps are based on
the pairwise distances between nearest neighbors. For a more detailed comparative
survey of unsupervised DR techniques, see [34, 29].

1.1.2 Supervised Dimensionality Reduction

In supervised settings, each data sample is labelled which can guide the search of
low-dimensional space. In classification tasks, the labels are valued by discrete num-
bers to show that which data samples belong to the same class. This supervised
dimensionality reduction framework with class-labelled information is often referred
as discriminative learning. The most widely investigated method is Fisher discrim-

4

inant analysis (FDA) [8], together with its kernelized form kernel FDA [36] and its
generalized version GDA [3]. All of them try to find projection axes for a good sep-
aration of classes based on the ratio of between-class and within-class covariance.
Moreover, some metric learning algorithms [21, 58, 62] search an appropriate metric
to maximize the discriminative power in the new metric space.

In some cases, the labels of data samples take continuously varying real values
(referred as output responses) in the task of regression. Thus, in this setting of su-
pervised dimensionality reduction for regression, the aim is to find a low-dimensional
representation of the input covariates that can lead regression prediction as accurately
as possible.

Partial least square (PLS) [60, 41] is a classic dimensionality reduction method
for regression, which constructs orthogonal latent components by maximizing the co-
variance between the input covariates and output responses. In spirit, PLS is similar
to Canonical correlation analysis (CCA) where latent components with maximal cor-
relation are extracted. In order to handle the nonlinear case, its kernelized version
kernel PLS was developed in [42]. Another way to achieve dimensionality reduction
for regression tasks is known as sufficient dimensionality reduction (SDR) [31, 63, 20].
To preserve the information for the purpose of prediction, SDR finds the subspace (or
central subspace) bases such that the projection results the conditional independence
of output responses and the original covariates. Kernel dimension reduction (KDR)
[20] demonstrates itself as an effective approach for SDR that maximizes the condi-
tional dependency by a positive definite ordering of the expected covariance operators
in the so-called probability-determining Reduced Kernel Hilbert Space (RKHS). Re-
cently, based on Hilbert-Schmidt independence criterion (HSIC) [23], Barshan et.al [2]
proposed another supervised dimensionality reduction method called supervised prin-
cipal component analysis (SPCA). SPCA attempts to create the principal components
with maximum dependency on the output responses. The optimization of SPCA is
solved by eigen-decomposition of weighted covariance matrix of low-dimensional rep-
resentations enhanced by the kernel of output responses.

1.2 Highlights and Organization of the Thesis

1.2.1 Highlights of the Thesis

In this thesis, we consider dimensionality reduction under the supervised setting, es-
pecially for regression. Our goal is to learn a low-dimensional representation of the
original high-dimensional data such that this new representation can lead to the regres-
sion predictions (or classification) as accurately as possible. Also the low-dimensional
representation can help us to reveal the relationship between input covariates and out-
put responses. Different from unsupervised dimensionality reduction, in supervised
setting, the output responses (or labels) provide us a guide to search for the low-
dimensional representation. Therefore, we incorporate the supervised information
into our objective function to find a proper parametric mapping for dimensionality
reduction. Inspired by the usage of neighborhood graph in many manifold learning

5

algorithms, we consider the distance preservation locally.

Summing up these considerations, we propose a novel algorithm for supervised di-
mensionality reduction, named as Supervised Distance Preserving Projection (SDPP).
Briefly, SDPP works as follows. Inside a neighborhood, SDPP tries to minimize the
difference between the distances of projected covariates and distances of the responses.
Consequently, this minimization of distance difference leads to the effect that the local
geometric structure of the input subspace“mimics”the geometric characteristics of the
response space. This not only facilitates the efficient regressor design but also uncov-
ers the necessary information for visualization and accurate response prediction. This
is our main contribution for solving the problem of dimensionality reduction under the
supervised setting. Moreover, the parametric mapping we learned can easily handle
the out-of-sample data points. Also kernelized version of SDPP is derived for nonlinear
data. An intuitive extension of SDPP is also presented suitable for classification tasks.

In this thesis, we formulate this criterion and present the interpretation behind
this criterion. Different optimization schemes are applied to solve the problem of
minimizing this criterion. We compare the performance of our method with state-of-
the-art algorithms on both synthetic and real-world data. These comparisons show
many superiorities of our approach on the task of supervised dimensionality reduction.

1.2.2 Thesis Structure

Generally, the thesis consists of two parts: the first part involves the theory contents
of the thesis to overview the state-of-the-art approaches for dimensionality reduction
for regression and present the novel method SDPP we have proposed; the second part
contains the experimental evaluation of our method compared with other algorithms.
Figure 1.3 provides an overview of the thesis structure.

In Part I (Theory), Chapter 2 describes related work on supervised dimensionality
reduction. We analyze three representative approaches for supervised dimensional-
ity reduction, PLS, SPCA and KDR and compare them with each other. Chapter 3
presents the criterion of our method SDPP and three optimization schemes for SDPP.
Additionally, different neighborhood selection strategies for SDPP are shown in this
chapter. To handle the nonlinear data, the kernel version of SDPP is also derived.
Toy examples are provided through Chapter 2 and Chapter 3 to show the performance
of these approaches.

In Part II (Experiments), Chapter 4 conducts various experiments on both syn-
thetic and real-world data to demonstrate the effectiveness on supervised dimension-
ality reduction compared with other state-of-the-art methods.

Lastly, in Chapter 5, we conclude the thesis and propose some further research
directions based on our current study.

6

Figure 1.3: Thesis structure.

7

Part I

Theory

8

Chapter 2

State-of-the-art Approaches for
Dimensionality Reduction in
Regression

In this chapter, the main scope is to describe three representative methods for super-
vise dimensionality reduction in regression, partial least squares, supervised PCA and
kernel dimensionality reduction. Afterwards, we analyze the three methods in detail
and compare them with each other.

In the following, unless stated otherwise, we always suppose to have n data points
{x1,x2, . . . ,xn} ∈ Rd and their multiple responses {y1,y2, . . . ,yn} ∈ Rl stored in
zero-mean matrices Xn×d and Yn×l.

2.1 Partial Least Squares (PLS)

PLS is a technique for modelling linear relationship between a set of input covariates
and output responses. PLS decomposes these matrices into

X = ZAT + E

Y = TBT + F, (2.1)

where Z and T are n×r are the score matrices, A and B are the loading matrices and E
and F are the residuals. PLS aims to find the projection matrices W = [w1, . . . ,wr]
and U = [u1, . . . ,ur] such that the covariances between the projected inputs and
responses are maximized.

max
wi,ui

[Cov(zi, ti)]
2 = max

wi,ui

[Cov(Xwi,Yui)]
2, (2.2)

where Cov(zi, ti) = zTi ti/n denotes the sample covariance between score vectors z and
t. PLS is implemented as an iterative procedure. In each iteration, after extraction of
z and t, matrices X and Y are deflated by subtracting the information contained in
the derived vectors z and t [41]. Depending on the form of deflation, several variations
of PLS have been proposed. In most of the proposed variations, X and Y are deflated

9

separately. This usually leads to an iterative solution.

In its original form, NIPALS [60] algorithm is used, which is a robust procedure
for solving singular value decomposition problems. NIPALS starts with a random
initialization of the score vector t and repeats following steps until convergence.

1. w = XT t/(tT t), w = w/‖w‖

2. z = Xw

3. u = YTz/(zTz), u = u/‖u‖

4. t = Yu

Note that t = y if l = 1, i.e., output response Y is a one-dimensional vector y.
After the extraction of these vectors, w, z, u and t, we deflate X, Y matrices:
X ← X − zzTX, Y ← Y − ttTY. The PLS is an iterative process as mentioned
before; i.e. after extraction of one component the NIPALS algorithm starts again
using the deflated matrices X and Y. Thus we can achieve the sequence of the com-
ponents upto the point when the rank of X is reached.

Furthermore, there is another variant of PLS called PLS-SB [57], where deflations
are performed on the cross-product matrix XYT instead of separate deflations of X
and Y. This scheme leads to extraction of all latent vectors at once by solving an
eigenvalue problem directly:

XTYYTXw = λw (2.3)

and computing Z and T as

Z = XW

U = YTT

T = YU (2.4)

It can be shown that the two above-mentioned variants of PLS are equivalent [26].

Kernel PLS

The linear PLS is limited when handling the data sets exhibiting nonlinear behaviours.
Kernel PLS (KPLS) [42] is designed for dealing with nonlinear data based on a map-
ping of the original data by means of a nonlinear function to a new representation
where PLS is applied.

KPLS maps the original X -space (original input space) into a high-dimensional
feature space F corresponding to a reproducing kernel Hilbert space (RKHS), x →
φ(x). Denote the Gram matrix K of the cross dot products between all mapped
input data points, Kij = k(xi,xj) = 〈φ(xi),φ(xj)〉, i.e., K = ΦTΦ, where Φ =
[φ(x1), . . . ,φ(xn)]. By using kernel trick, kernelized NIPALS algorithm implements
as follows.

10

1. randomly initialize t

2. z = Ku, z = z/|z‖

3. t = YYTz, t = t/|t‖

4. repeat step 2-3 until convergence.

5. deflate K and Y. K←
(
Φ− zzTΦ

)T (
Φ− zzTΦ

)
, and Y ← Y − ttTY .

Similar to the original PLS, the kernelized NIPALS is applied sequentially until the
rank of K is reached.

2.2 Supervised Principal Component Analysis (SPCA)

SPCA [2] is a supervised generalization of classic PCA that has shown effectiveness
for regression and classification problems with high-dimensional data. SPCA aims
to find the subspace such that the dependence between the projected data and the
responses is maximized. The dependence measure is based on the Hilbert-Schmidt
Independence Criterion (HSIC) [23, 24]. HSIC is equal to zero if and only if two
random variables are independent. An empirical estimation of HSIC is

HSIC(Z,Y) =
1

(n− 1)2
Tr(KzHKyH), (2.5)

where Kz and Ky are the kernel matrices for projected covariates and output re-
sponses, respectively, and H = I − 1

n
1n1

T
n act as centering matrix, I is the identity

matrix, 1 is the vector of all ones with length n and Tr(·) denotes the trace of a matrix.

In dependence measure HSIC, Tr(HKzHKy), we compute the kernel matrix for
the projected inputs as Kz = XWWTXT by a linear kernel, and the kernel matrix
for the responses Ky = YYT . Thus, the objective function for SPCA is formulated
as

Tr(HKzHKy) = Tr(HXWWTXTHKy) (2.6)

= Tr(WTXTHKyHXW). (2.7)

Since we would like to capture the dependence between the projected inputs and the
output responses as much as possible, the maximization of HSIC should be conducted.
We also prefer to search for an orthogonal transformation matrix W so that the
the projected features are uncorrelated. Consequently, the constrained optimization
problems is

arg max
W

Tr(WTXTHKyHXW)

s.t. WTW = I. (2.8)

By Rayleigh quotient theorem, the optimization can be easily solved in eigen-
decomposition form,

(XTHKyHX)w = λw. (2.9)

11

Algorithm 1 Supervised PCA
Input: training data matrix X, test data point x, kernel matrix for response Ky and
dimensionality of subspace, r.
Output: projected training data matrix Z and projected test point
z.

1. H = I− 1
n
eeT ;

2. compute the orthogonal basis, W← eigenvectors of XTHKyHX corresponding
to the top r eigenvalues;
3. project training data, Z← XW;
4. project test data, z←WTx.

Concretely, we summarize SPCA procedure in Algorithm 1.
We can observe that SPCA is a supervised generalization of PCA. In the scenario of

unsupervised setting, the response information is unknown, and then the kernel matrix
Ky for the response should be identity matrix. Maximization of the dependence
between kernel matrix Kz and the identity matrix is equivalent to preserving the
maximal variance among all the observations, which can be seen as classical PCA.
The form of XTHKyHX in the unsupervised setting demonstrates the equivalence,

XTHKyHX = (XH)T (XH)

=

(
X(I− 1

n
eeT)

)T (
X(I− 1

n
eeT)

)
= (X− µX)T (X− µX)

= Cov(X), (2.10)

where µX denotes the mean of X.

Kernel SPCA

The kernelized version of SPCA is also derived in [2] to handle the nonlinear data.
The key idea is to assume the projection matrix as a linear combination of the data
points mapped into feature space, W = ΦΩ, by the representation theory [1]. In this
case, the objective function can be written as

Tr(WTΦHKyHΦTW) = Tr(ΩTΦTΦHKyHΦTΦΩ)

= Tr(ΩTKHKyHKΩ),

under the constraint that

WTW = ΩTΦTΦΩ = ΩTKΩ = I.

Thus, the optimization problem is formulated as follows:

arg max
Ω

Tr(ΩTKHKyHKΩ)

s.t. ΩTKΩ = I. (2.11)

12

This formulation can be solved by a generalized eigen-decomposition procedure,

(KHKyHK)ω = λKω, (2.12)

where ω is one column of Ω. The procedure of kernel SPCA (KSPCA) is summarized
in Algorithm 2.

Algorithm 2 Kernel supervised PCA
Input: kernel matrix of training data K, kernel matrix of test data Ktest, kernel ma-
trix for response L and dimensionality of subspace, r.
Output: projected training data matrix Z and projection of test point
z.

1. H = I− 1
n
eeT ;

2. compute the orthogonal basis, Ω← generalized eigenvectors of (KHKyHK,K)
corresponding to the top r eigenvalues;
3. project training data, Z← [ΦTΦ]Ω = KΩ;
4. project test data, z← [ΦTφ(x)]Ω = ΩTKtest.

2.3 Kernel Dimension Reduction (KDR)

KDR [19, 20] is a representative approach of sufficient dimensionality reduction (SDR).
SDP tries to find an orthogonal transformation W such that Y and X are condition-
ally independent provided the subspace WTX , i.e., Y ⊥ X|WTX 1.

Most of the SDR algorithms are developed based on the idea in [31, 32], which sets
the SDR problem as an inverse regression problem. Some examples are sliced inverse
regression (SIR) [31], principal Hessian directions (pHd) [32], sliced average variance
estimation (SAVE), [13] and contour regression [30]. The main intuition behind these
algorithms is to find the expectation E(X|Y), due to the fact that if the conditional
distribution P (Y|X) varies along a subspace of X , then the inverse regression E(X|Y)
should also lie in X [31]. However, inverse regression always makes strong assumptions
on the marginal distribution PX (x) (e.g., the distribution should be elliptical), which
is a limitation for dealing with non-elliptically distributed data.

In order to overcome the above problem, kernel dimensionality reduction (KDR)
[19] was proposed as an alternative method. KDR makes no strong assumption
about either the conditional distribution PY|WTX (y|WTX) or the marginal distribu-
tion PX (x). KDR measures the notion of conditional dependence by taking advantage
of the conditional covariance operators defined on reproducing kernel Hilbert spaces.
The conditional independence is then imposed by minimizing the conditional covari-
ance operator in a RKHS.

1Here we use an abuse notation of WTX as the subspace after projection.

13

More specifically, for two RKHS mappings, x → φ(x) and y → φ(y) induced by
universal kernels kx(·, ·) and ky(·, ·), respectively. We denote E[·] and V (·|·) as ex-
pectation and conditional (co)variance operator, respectively. The following theorem
holds [19]: E[V (φ(x))|x] � E[V (φ(x))|z = WTx], where the equality holds if and
only if y ⊥ x|z = WTx. This theorem asserts that any projection of the input gener-
ally increases uncertainty in predicting the response y, with the minimal uncertainty
achieved by the central subspace bases W, i.e. E[V (φ(x))|x]. The idea behind KDR
investigates that, E[V (φ(x))|z = WTx] can be expressed as the conditional covari-
ance operator, Σyy|z′ inducing W as the one that minimizes Σyy|z, more precisely, its
trace [20]

min
W

Tr[Kc
y(Kc

z + nεIn)−1]

s.t. WTW = I, (2.13)

where Kc
y and Kc

z are centered kernel matrices computed by Kc
y = HKyH and

Kc
z = HKzH, respectively, and H = I− 1

n
1n1

T
n .

The objective function of KDR is nonconvex, so the minimization of the objective
function requires a nonlinear technique; Fuzumiku et.al [20] suggested to use the
steepest descent method with line search. Moreover, to alleviate potential problems
arising from local optima, a continuation method is used where the scale parameter
(in Gaussian RBF kernel) is gradually decreased during the optimization process.
Unfortunately, the computational burden is high due to the inversion of kernel matrix
in each iterative step.

2.4 Comparison of PLS, SPCA and KDR

Based on the description of the three representative approaches for supervised di-
mensionality reduction, we now analyze the similarities and differences of the above-
mentioned PLS, SPCA and KDR.

Generally, all of the three methods try to find a faithful projection to capture the
relationship of inputs and responses. PLS maximizes the correlation between the pro-
jected inputs and responses; SPCA maximizes the dependence between the projected
inputs and responses based on HSIC; KDR minimizes the conditional covariance op-
erator in RHKS to quantify the conditional dependence. As a consequence, PLS
can only reveal the linear dependence between two blocks of variables, while SPCA
shows stronger power for detecting a more general dependence, including both linear
and nonlinear dependences. This observation can be demonstrated by their eigen-
decomposition solution.

PLS : (XTYYTX)w = λw (2.14)

SPCA : (XTHLHX)w = λw (2.15)

It can be seen clearly that when the kernel type of the output response in SPCA is
selected as the linear kernel, SPCA and PLS are identical. However, the kernel for

14

response can be set as any other kind of kernel besides the linear one. This explains
the reason why SPCA is superior to PLS on detecting dependence between two vari-
ables.

Differently, KDR formulates the supervised dimensionality reduction problem from
the point of view of conditional independence. Statistically, KDR does not enforce
strong assumptions on either the conditional distribution PY|WTX (y|WTX) or the
marginal distribution PX (x), that offers more flexibility than the other methods of
sufficient dimensionality reduction, e.g., SIR, pHd SAVE, and contour regression.
The problem of KDR is its high computational cost because KDR cannot be solved
in closed form as PLS and SPCA.

To demonstrate the performance of the three methods and analyze them in prac-
tice, here we implement them on two synthetic data sets. Assuming we are given n
data points for training, {xi}ni=1 and each data point has features x = [X1, . . . , Xd]

T .

2.4.1 Toy example one: plane

Firstly, we generate 1000 5-dimensional data points with Gaussian distribution, x ∼
N(0, I5). Then, only the first two features are used for constructing the responses
based on the following simple linear process,

y = 2X1 + 3X2 + ε,

where the noise term ε ∼ N(0, 0.52). Figure 2.1(a) shows the output responses of the
test data with respect to two effective features X1 and X2, which is a plane. We use
the first half of the points for training and the others for test. A projection matrix
(vector) W ∈ R5 is learned to project the data into one-dimensional space. The true
projection matrix W is [2, 3, 0, 0, 0]T , which only retains the first two informative fea-
tures for regression.

For the test points, compared with the true projection in Figure 2.1(b), Figure
2.1(c-f) present the projection results of the three supervised methods, PLS, SPCA,
KDR and the classical unsupervised approach PCA. In these figures, x-axis and y-axis
represent the projected covariates and their true output responses, respectively. Each
point in the plots is colored by its true response value y, where the value decreases
along the color from red to blue. For this simple model based on linear function, all the
three supervised methods find the correct projection directions. Because PCA does
not consider the response information of data points, we cannot obtain informative
projection results for regression.

2.4.2 Toy example two: “parity”

Different from the first toy example, this time we will consider a regression problem
with strong nonlinearity. This data set is generated by the “parity” function plus a
noise term,

y = sin(2πX1) sin(2πX2) + ε,

15

−5
0

5

−5

0

5
−10

0

10

X
1

X
2

y
(a) y = 2X1 + 3X2 + ε

−20 −10 0 10 20
−20

−10

0

10

20

z

y

(b) true projection of test set

−4 −2 0 2 4
−20

−10

0

10

20

z

y

(c) PLS projection

−4 −2 0 2 4
−20

−10

0

10

20

z

y
(d) SPCA projection

−4 −2 0 2 4
−20

−10

0

10

20

z

y

(e) KDR projection

−4 −2 0 2 4
−20

−10

0

10

20

z

y

(f) PCA projection

Figure 2.1: Projection comparison on linear data.

where X1 and X2 are the first two features used for constructing the response, and
the noise term ε ∼ N(0, 0.12). We generate 1000 5-dimensional data points uniformly
distributed in [0, 1]5. The same splitting of the data set as toy example one, is used
for training and test. Figure 2.2(a) shows the output response of “parity” function
with respect to X1 and X2.

Clearly, after dimensionality reduction, only the first two features should be pre-
served as much as possible. The true two-dimensional projection is plotted in Figure
2.2(b). Figure 2.2(c-f) show the two-dimenional projection on test set by PLS, SPCA,
KDR and PCA. As an unsupervised method, PCA again fails to obtain the effec-
tive projection for regression. Under such a nonlinear regression problem, the three
supervised methods, PLS, SPCA and KDR are also unable to detect the first two
informative features, which may not reveal the local structure of the data.

16

0
0.5

1

0

0.5

1

−1

0

1

X
1

X
2

y

(a) y = sin(2πX1) sin(2πX2) + ε

0 0.5 1

0.2

0.4

0.6

0.8

X
1

X
2

(b) true projection of test set

−1 −0.5 0 0.5 1
−0.5

0

0.5

Z
1

Z
2

(c) PLS projection

−1 −0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Z
1

Z
2

(d) SPCA projection

−1 −0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

1.2

1.4

Z
1

Z
2

(e) KDR projection

−0.5 0 0.5 1
0

0.5

1

Z
1

Z
2

(f) PCA projection

Figure 2.2: Projection comparison on “parity” data.

To observe more details of the performances of the four methods, we list the learned
projection matrix W ∈ R5×2 below.

WPLS =

0.3356 0.3901
0.3299 0.6134
0.8082 −0.5730
−0.3396 −0.3781
0.1000 0.0139

 ,WSPCA =

−0.2474 −0.6743
−0.3137 −0.2945
−0.7168 −0.1486
0.3697 −0.5390
−0.4357 0.3820

 ,

WKDR =

−0.7370 −0.0514
0.6753 −0.0327
−0.0091 0.8669
−0.0247 0.2464
−0.0042 0.4290

 ,WPCA =

−0.0838 0.6937
0.0075 0.0090
0.9469 0.2763
−0.2052 0.3506
−0.2328 0.5652

 .

17

We find that in both of two projection directions, PLS, SPCA and PCA give much
weight to the three uninformative input variables, X3, X4 and X5. For KDR, in the
first projection direction, it identifies the first two useful features, X1 and X2, but
in the second direction, X3, X4 and X5 have the dominant weighting. Consequently,
KDR still cannot provide a faithful projection into two-dimensional subspace. An-
other problem of KDR is its computational complexity. On a PC with 2.83GHz CPU
and 4GB RAM, KDR spends much longer time for training, 65.77 seconds for 50 itera-
tions compared with less than one second of training time for the other three methods.

From the theoretical and empirical comparison of the three approaches, we find
that: for the simple linear data, all the three supervised DR algorithms can yield
a faithful dimensionality reduction result; but for the data with strong nonlinearity,
they are limited to find effective projection directions for regression, and for some of
the algorithms, the computational complexity is unbearable for large-scale data sets.
Thus, in this work, to overcome these drawbacks, we aim at designing a well-working
algorithm for supervised dimensionality reduction, especially for regression. At the
same time, the efficient optimization schemes should also be proposed.

18

Chapter 3

Supervised Distance Preserving
Projection (SDPP)

The main problem of three methods in last chapter is that they only consider the
global characteristics of data. Preserving local geometry plays a significant role in
manifold learning algorithms, e.g., LLE, Laplacian eigenmap and ISOMAP, as men-
tioned in Section 1.1.1. These successful applications of preserving local geometry
inspire us to explore its usefulness in supervised dimensionality reduction, especially
for regression. Based on these considerations, in this chapter we propose a new cri-
terion for supervised dimensionality reduction. This criterion is analyzed and cast
into an optimization problem. Then, Different optimization schemes are implemented
for an efficient computation. Finally, we evaluate our approach based on different
parameter settings by a toy example.

3.1 Criterion

We start to motivate our approach by considering a continuous function f : X 7→ Y .
From Weierstrass definition, the continuity of the function f at point x′ ∈ X means
that for every εx > 0 there exists a εy > 0 such that for all x ∈ X :

‖x− x′‖ < εx ⇒ |f(x)− f(x′)| < εy.

This definition of continuity claims that if two input covariates x and x′ are close to
each other, their responses y = f(x) and y′ = f(x′) should also be close. Since we
focus on the task of dimensionality reduction for regression now, we try to reduce the
dimensionality without loss of the continuity of the original regression function f . To
preserve the continuity, we resort to considering the local geometry of the input space
X and response Y . After dimensionality reduction, we aim to minimize the difference
between the local dissimilarities in the X -space and Y-space.

Here we assume the subspace Z of X is obtained by a linear transformation,
that is, for the input x, the new representation in the subspace is z = WTx, where
the projection matrix W ∈ Rd×r. Concretely, we seek the linear transformation by

19

minimizing the following criterion,

J (W) =
1

n

∑
i

∑
xj∈N (xi)

(d2ij − δ2ij)2, (3.1)

where N (xi) is a neighborhood of xi, d
2
ij = ‖zi − zj‖2 is the square of Euclidean

distance between zi and zj and δ2ij = ‖yi − yj‖2 is the square of Euclidean distance
between yi and yj.

Alternatively, the criterion of SDPP can also be written in a more compact form,

J (W) =
1

n

∑
ij

Gij(Dij −∆ij)
2, (3.2)

where Dij = d2ij, ∆ij = δ2ij and neighborhood graph G is defined as follows,

Gij =

{
1 if xj is a neighbor of xi,

0 otherwise.

We refer to this novel criterion for dimensionality reduction as Supervised Distance
Preserving Projection (SDPP). We observe that, to achieve the continuity preserva-
tion during DR, SDPP attempts to match the local geometrical structure between the
subspace Z and response space Y as much as possible. Here, the local geometrical
structure is expressed by the pairwise distances over the neighborhoods of the input
covariates. This interpretation of SDPP can be illustrated in Figure 3.1. From this
point of view, SDPP retains the information of original function between the inputs
and response as much as possible, which is beneficial for the regression in the subspace.

Despite the simple formulation, SDPP has several advantages for DR in regression
tasks:

• SDPP is possible to work for the cases with multiple responses because our
model is based on the pairwise distances, where the Euclidean distance for two
response vectors is still valid.

• Since SDPP learns an affine transformation matrix, this parametric mapping
can easily find the projection of out-of-sample data.

3.2 Optimization of SDPP

For the minimization of the objective function in Equation 3.1, we have

d2ij = (xi − xj)
TWWT (xi − xj) = (xi − xj)

TP(xi − xj),

where P = WWT is a positive semidefinite (PSD) matrix, i.e., P � 0. For notational
simplicity, we denote τij = xi − xj, thus,

d2ij = τ TijPτij = vec(τijτ
T
ij)

Tvec(P) = lTijp, (3.3)

20

Figure 3.1: Illustration of SDPP

where the vector lij = vec(τijτ
T
ij),p = vec(P), and vec(·) is an operator that concate-

nates all the columns of a matrix into a new vector.

Now we formulate the optimization problem into an instance of Convex Quadratic
Semidefinite Programming (QSDP) [7]. The objective function can be rewritten as

J (p) = pT (
1

n

∑
i

∑
xj∈N (xi)

lijl
T
ij︸ ︷︷ ︸

A

)p + (− 2

n

∑
i

∑
xj∈N (xi)

δ2ijlij︸ ︷︷ ︸
b

)Tpv

+
1

n

∑
i

∑
xj∈N (xi)

δ4ij︸ ︷︷ ︸
c

= pTAp + bTp + c, (3.4)

where A is symmetric of the size d2 × d2,b ∈ Rd2 , and c is a constant that can be
ignored later in optimization. Then, SDPP optimization becomes the following QSDP
problem,

min
p

pTAp + bTp

s.t. P � 0 (3.5)

Note that the objective of the QSDP problem in Equation 3.5 is a quadratic function
with respect to the matrix P. The similar QSDP formulations also arise in colored
MVU [49], Conformal Eigenmaps [47], Kernel Matrix Completion [22]. Here we will
introduce two kinds of existing methods for addressing the QSDP.

3.2.1 Semidefinite Programming Formulation for SDPP

Before we formulate the QSDP in Equation 3.5 into the Semidefinite Programming
(SDP) problem, it is necessary to have a brief overview on SDP.

21

Semidefinite Programming (SDP)

In SDP, one minimizes a linear function subject to the constraint that an affine com-
bination of symmetric matrices is positive semidefinite [55]. Such a constraint is
nonlinear and nonsmooth, but convex, so semidefinite programs are convex optimiza-
tion problems [9]. Semidefinite programming unifies several standard problems (e.g.,
linear and quadratic programming) and finds many applications in engineering and
combinatorial optimization. The following is an example of SDP problem:

min
X

X13

s.t. − 0.2 ≤ X12 ≤ −0.1

0.4 ≤ X23 ≤ 0.5

X11 = X22 = X33 = 1

X � 0,

where X is a 3× 3 matrix and the semidefinite constraint is X � 0.
Although semidefinite programs are much more general than the linear programs,

they are not much harder to solve. Most interior-point methods for linear program-
ming have been generalized to semidefinite programs. There are many toolboxes
available for solving SDP, for example, SeDuMi [50] and YALMIP [35].

Schur complement

In linear algebra and the theory of matrices, the Schur complement of a matrix block
(i.e., a submatrix within a larger matrix) is defined as follows. Suppose C1, C2, C3,
C4 are respectively p× p, p× q, q × p and q × q matrices, and C1 is invertible. Let

M =

[
C1 C2

C3 C4

]
,

where M is with the size (p+ q)× (p+ q). Then the Schur complement of the block
C1 of the matrix M is the q × q matrix

Sc = C4 −C3C
−1
1 C2.

Now we consider a characterization of symmetric positive semidefinite matrices
using Schur complements. Assume the matrix M is symmetric of the form

M =

[
C1 B
BT C4

]
,

if C1 � 0, then the following property hold: M � 0 if and only if the Schur comple-
ment Sc = C4 −BTC−11 B � 0 [64].

Based on this characterization of symmetric PSD matrices using Schur comple-
ments, now we rewrite the QSDP problem into a SDP problem. Firstly, we introduce
a slack variable µ acting as an upper bound of pTAp in Equation 3.5,

µ ≥ pTAp.

22

Then we do the factorization pTAp = (A
1
2 p)T (A

1
2 p), where A

1
2 is the matrix square

root of A. The following inequality holds,

µ− (A
1
2 p)T I−1d2 (A

1
2 p) ≥ 0,

where Id2 is the d2 × d2 identity matrix. We find that µ − (A
1
2 p)T I−1d2 (A

1
2 p) is the

Schur complement of Id2 in the large matrix

Maux =

[
Id2 A

1
2 p

(A
1
2 p)T µ

]
.

Due to the positive semidefiniteness of the matrix Id2 and its Schur complement, the
large matrix Maux is also positive semidefinite.

According to the derivation above, we have an equivalent SDP formulation for the
QSDP presenting as follows:

min
p,µ

µ+ bTp

s.t. P � 0[
Id2 A

1
2 p

(A
1
2 p)T µ

]
� 0. (3.6)

The similar reformulation of the QSDP problem also exist in [47, 28, 33].

We observe that this SDP formulation for the QSDP has two semidefinite cone
constraints, with size d×d and (d2 +1)× (d2 +1), respectively. They scale poorly and
causes difficulties to process numerically [7]. Additionally, in the dual form of SDP in
Equation 3.6, the number of iterations required by classical interior-point algorithms
is O(d), and the total number of arithmetic operations needed is O(d9) [7]. In the work
[61], the experiments for the SDP problem were conducted in Matlab 7.6.0(R2008a)
on a PC with 2.5GHz CPU and 4GB RAM. The reported results show that when the
dimension d is very small, e.g., d = 10, it spends only a few seconds to solve this SDP
problem, but takes more than one day when d = 40.

3.2.2 SQLP Formulation for SDPP

In this thesis, we apply the idea from [61], which takes advantage of low rank structure
of A and reformulates the QSDP into the Semidefinite Quadratic Linear Programming
(SQLP) problem. Concretely, since matrix A is symmetric positive semidefinite, we
can factorize A as A = BTB with Cholesky factorization, where B ∈ Rq×d2 and q is
the rank of B. Assume f = Bp, then the QSDP problem (3.5) can be written as

min
p,f ,µ

µ+ bTp (3.7)

s.t. f = Bp, (3.8)

fT f ≤ µ, (3.9)

P � 0. (3.10)

23

In work [61], the authors show that the constraint in (3.9) is equivalent to a second-
order cone constraint. We define Km as the m-dimensional second-order cone con-
straint,

Km = {[x0; x] ∈ Rm|x0 ≥ ‖x‖}.

Now we introduce an auxiliary vector u = [1+µ
2
, 1−µ

2
, fT]T , then following theorem

holds (see [61] for proof): fT f ≤ µ if and only if u ∈ Kq+2. Let ei be the ith basis
vector with length of q + 2, and C = [0q×2, Iq×q]. Thus, we have following equalities,

(e1 − e2)
Tu = µ,

(e1 + e2)
Tu = 1,

f = Cu.

Based on these manipulations, the problem (3.7-3.10) can be reformulated as:

min
p,u

(e1 − e2)
Tu + bTp

s.t. (e1 + e2)
Tu = 1,

Bp−Cu = 0,

u ∈ Kq+2,

P � 0, (3.11)

which is an instance of SQLP problem and be solved efficiently.

In this reformulation, the semidefinite cone constraint of size (d2 + 1) × (d2 + 1)
in Equation 3.6 is replaced with one second-order cone constraint of size (q + 2) and
(q + 1) linear constraints, which are much easier to optimize numerically and can be
solved more efficiently. Thanks to utilizing the low rank structure of A, when we
use standard interior-point algorithm, the number of arithmetic operations required
is O(

√
d) compared with O(d) in SDP formulation. Additionally, the total number of

arithmetic operations required is O(d6.5) compared with O(d9) in the SDP form. The
Matlab toolbox SDPT3-4.0 [53, 54] can be used to solve the SQLP in practice.

After learning the matrix P, we can factorize P as P = WWT . One reasonable
way is to apply Singular Value Decomposition (SVD) on P, and then the ith column of
W is

√
λivi, where λi and vi are the ith eigenvalue and eigenvector of P, respectively.

Determining Dimension r of the Subspace

Generally, the dimension of the subspace is given beforehand by user or determined
by cross-validation according to a specific prediction model. Fortunately, in the SQLP
optimization of SDPP, the low-rank structure of P benefits us to determine the di-
mension of the subspace. We take advantage of so-called “eigengap” [56], i.e., the gap
between eigenvalues in SVD. Assume the eigenvalues of P are sorted by descending
order, λ1 ≥ λ2 ≥ . . . ≥ λd, the eigengap is defined as

γi = λi − λi+1, i = 1, . . . , d− 1.

24

We then choose the index of eigenvalue with the maximal eigengap as the optimal
dimension for the projection subspace,

ropt = arg max
i
γi.

In our further experiments when applying the SQLP formulation to solve SDPP, this
heuristic is used to identify the optimal dimension for the projection space. We plot
the eigengap in Figure 3.2 for the two synthetic data sets linear and “parity” data,
where the true dimension is 1 and 2, respectively. We can see that the eigengap
successfully identifies the true dimensions of the subspaces.

0 1 2 3 4 5
0

5

10

15

Eigenvalue index

E
ig

e
n

g
a

p

(a) Linear data

0 1 2 3 4 5
0

1

2

3

Eigenvalue index
E

ig
e

n
g

a
p

(b) “Parity” data

Figure 3.2: Eigengap plots for linear, “parity”and curve data sets.

3.2.3 Conjugate-Gradient Optimization for SDPP

The above-mentioned two optimization methods the SDP and the SQLP for SDPP
do not optimize the projection matrix W directly, instead, both of them optimize
the PSD matrix P = WWT . The advantage of these formulations is that they set
the SDPP problem into the standard framework of optimization with semidefinite
or second-order cone constraint, that can be solved by many popular optimization
libraries or toolboxes, e.g., SeDuMi [50] and SDPT3-4.0 [53, 54]. When the dimen-
sionality d < 100, these toolboxes work efficiently for the SQLP problem based on our
experimental validation. However, the parameter matrix A is with the size d2 × d2.
When the dimensionality of original data set is high, A becomes extremely large and
brings impossibility for storage and further optimization even shielded by efficient
optimization toolboxes. Regarding to the poor performance of the SDP and SQLP
formulations under high-dimensional data, it is necessary to develop an optimiza-
tion algorithm that scales well with respect to the dimensionality. In this thesis, the
Conjugate-Gradient (CG) optimization approach is used for handling this problem.

CG optimization method works when the cost function is twice differentiable at
the minimum, which is satisfied by the objective function of SDPP. The CG algo-
rithm selects the successive direction vectors as a conjugate version of the successive

25

gradients obtained as the method progresses. Thus, the directions are not specified
beforehand, but rather are determined sequentially at each step of the iteration. At
step t one evaluates the current negative gradient vector and adds to it a linear com-
bination of the previous direction vectors to obtain a new conjugate direction vector
along which to move.

In our case, the objective function and its gradient of SDPP are listed below:

J (W) =
1

n

∑
ij

Gij(Dij −∆ij)
2, (3.12)

∇WJ =
4

n

∑
ij

Gij(Dij −∆ij)τijτ
T
ijW. (3.13)

Denote Q = G�(D−∆), where � represents the element-wise product of two matri-
ces, symmetric matrix R = Q+QT , S a diagonal matrix with Sii =

∑
j Rij. Following

some algebraic manipulations, we obtain a more compact form of the gradient ∇WJ ,

∇WJ =
4

n

∑
ij

Qij(xi − xj)(xi − xj)
TW

=
4

n

∑
ij

(xiQijx
T
i + xjQijx

T
j − xiQijx

T
j − xjQijx

T
i)W

=
4

n

[∑
ij

xi(Qij + Qji)x
T
i −

∑
ij

xi(Qij + Qji)x
T
j

]
W

=
4

n

(∑
ij

xiRijx
T
i −

∑
ij

xiRijx
T
j

)
W

=
4

n

(∑
i

xi
∑
j

Rijx
T
j −

∑
ij

xiRijx
T
j

)
W

=
4

n

(∑
i

xiSiix
T
j −

∑
ij

xiRijx
T
j

)
W

=
4

n

(
XTSX−XTRX

)
W

=
4

n
XT (S−R)XW, (3.14)

where each row of data matrix X is a data point xi and S − R is the well-known
Laplacian matrix [11]. The form of gradient in Equation 3.14 is much more compact
and easier to calculate than that in Equation 3.13. We summarize the CG optimiza-
tion for SDPP in Algorithm 3.

Since the CG directly optimizes the projection matrix W, the dimension r of the sub-
space must be given before optimization or determined by cross-validation according
to the specific prediction model.

26

Algorithm 3 Conjugate-Gradient optimization for SDPP
Input: training data matrix X and Y, neighborhood graph G, initialized projection
matrix W0

Output: optimized projection matrix W.

1. Compute gradient ∇WJ ;
2. Vectorize the projection matrix, w0 = vec(W0);
3. Vectorize the gradient, g0 = vec(∇WJ);
4. Initialize the conjugate direction as Λw0 = −g0;
for t = 1→ T do

5. Calculate βt by Polak-Ribiére’s rule, βt =
gT
t (gt−gt−1)

gT
t−1gt−1

;

6. Update the conjugate direction, Λwt = −gt + βtΛwt−1;
7. Perform line search, ηt = arg minη J (w + ηΛwt);
8. Update w, wt+1 = wt + ηtΛwt

end for
9. Reshape the vector wT+1 into the matrix W, which is the optimized projection
matrix.

3.3 Neighborhood Selection Strategies for SDPP

In the criterion of SDPP, for each training point, we need to determine its neighbors
and construct neighborhood graph for further computation and optimization. In this
section, we will describe several neighborhood selection strategies for SDPP, from a
geometrical point of view.

We divide the different neighborhoods into two categories: not-enclosing neighbor-
hood and enclosing neighborhood, based on whether the neighborhood N (g) always
encloses the current training point g. If N (g) always encloses g, we call it an en-
closing neighborhood; that is, g ∈ conv(N (g)), where the convex hull of a point set
S={s1, . . . , sn} is defined as conv(S)={

∑n
i=1 ωisi|

∑n
i=1 ωi = 1, ωi ≥ 0}. Intuitively,

the enclosing neighborhoods can provide geometrically balanced neighbors. Now, we
overview the two kinds of neighborhood selection strategies and explore their perfor-
mances in SDPP by a toy example.

3.3.1 Not-enclosing neighborhoods

Firstly, we overview two different strategies for defining a not-enclosing neighborhood:
classic k-nearest neighborhood (kNN) and ε-neighborhood.

k-nearest neighborhood (kNN)

In the area of machine learning, kNN is the most common-used neighborhood con-
struction strategies. Classic kNN defines a neighborhood of g using the first k of its
nearest neighbors, according to a specified distance metric. Usually, the Euclidean
metric is used and the number of neighbors k is fixed or cross-validated. Figure 3.3(a)
shows an example of a kNN neighborhood of size k = 3 for the point g, where its
neighborhood N (g)kNN={x1,x5,x6}.

27

x2

x3

x4

x5

x6

x7

x8

x9

x10

g
x1

(a) k-nearest neighborhood

ε

x2

x3

x4

x5

x6

x7

x8

x9

x10

g
x1

(b) ε-neighborhood

Figure 3.3: Not-enclosing neighborhoods.

The ε-neighborhood

For each training point g, we treat the point xi as its neighbor if the distance between
them is smaller than ε. Figure 3.3(b) is an example of a ε-neighborhood for g, where
its ε-neighborhood: N (g)ε = {x1,x5,x6,x8}.

According to the definitions of these two neighborhoods, we have the following
important observations. In the ε-neighborhood, when we have data distributing in
different regions (sparse or dense) of the space, i.e., in different regions of the space,
the distances between points are different, we cannot find any neighbors for some
points distributing in the sparse regions with small ε. In this case, the parameter ε
is often difficult to determine in practice. A commonly-used heuristic for selecting ε
is (log(n)/n)1/d [40]. On the other hand, k-nearest neighborhood avoids this problem
to guarantee that each point has k neighbors, that is preferred in our algorithm SDPP.

However, for kNN, the determination of the parameter k is still an open problem
in many machine learning problems. Currently, barely any theoretical results are
known to guide us in this task. There are only some heuristics for selecting k. In
our algorithm, we use the heuristic that chooses k in the order of log(n), which is
popularly used in spectral clustering [10, 56]. For the experiments conducted in this
thesis, we find this heuristic works effectively for SDPP.

3.3.2 Enclosing neighborhoods

Enclosing k-nearest neighbors (ekNN):

It is based on the kNN of the point g and extends it to define a neighborhood that
encloses it. ekNN is the neighborhood of the nearest neighbors with the smallest k

28

such that g ∈ conv(N (g, k)), where N (g, k) is the set of kNNs of g [25]. If g is outside
of convex hull of the set X\g, no such k exists. Define distance to enclosure as

D(g,N (g)) = min
s∈conv(N (g))

‖g − s‖2, (3.15)

where s is any point in the convex hull around the neighborhood of g. Note that
D(g,N (g)) = 0 only if g ∈ conv(N (g)). Then, the ekNN neighborhood is N (g, k∗)
with

k∗ = min
k
{k|D(g,Jg(k)) = D(g,X)}. (3.16)

The computational complexity for building a convex hull using k neighbors is (kbd/2c),
where b·c is a floor function. For large-scale and very high-dimensional data, the
computational cost of ekNN is high because for each training point, we need to increase
the number of the nearest neighbors and recompute the convex hull. An example of
ekNN is presented in Figure 3.4(a), where N (g)ekNN={x1,x3,x5,x6,x8}.

Natural neighbors (NN)

Natural neighbors are based on the Voronoi tessellation of the training points [48].
The natural neighbors of g are defined as those points whose Voronoi cells are adja-
cent to the cell including g. The computational complexity of Voronoi tessellation is
related to both the number of points and dimensions: O(n log(n)) when d < 3 and
O((n/d)d/2) when d ≥ 3. Clearly, the Voronoi tessellation is much computationally
involving in very high-dimensional cases. Figure 3.4(b) shows an example of natural
neighbors, where N (g)NN={x1,x2,x3,x5,x6}.

x2

x3

x4

x5

x6

x7

x8

x9

x10

g
x1

(a) Enclosing k-nearest neighborhood

x2

x3

x4

x5

x6

x7

x8

x9

x10

g
x1

(b) Natural neighborhood

Figure 3.4: Enclosing neighborhoods.

Although the two enclosing neighborhoods, ekNN and NN are both parameter-free
and geometrically balanced, their computational complexities increase exponentially
with respect to dimensionality and size of the data set. When handling large-scale
and high-dimensional data, the computational costs of ekNN and NN are unbearable.

29

3.3.3 Evaluation by A Toy Example

Now we evaluate the performance of SDPP under the two types of neighborhoods.
The synthetic data for the evaluation is the “parity” data in Section 2.4. The same
experimental settings are used, including the process of data generation and splitting
of the training and test sets.

For the not-enclosing neighborhoods, Figure 3.5 shows the two-dimensional pro-
jection results on the test sets. In the settings of kNN, around the heuristic k =
round(log(n)) = 6, we use the half, 2 times and 4 times of this heuristic to com-
pare their performances in SDPP. The operator round(·) rounds a real number to its
nearest integer. We observe that when k = 6, 12 and 24 in Figure 3.5(b-d), faith-
ful projections for visualization are obtained, and the four centers indicating the two
peaks and two valleys are more clear than that when using less nearest neighbors. For
the “parity” data, kNN neighborhood is robust to the number of the nearest neighbors
in the range k ∈ [6, 24]. For the ε-neighborhood, the same strategy as kNN is used
to set the values of ε for comparison. However, from the projections results in Figure
3.5(e-h), we can see that the performance of SDPP is empirically sensitive to the value
of ε. A large ε can totally ruin the correct projection structure, as shown in Figure
3.5(g) and Figure 3.5(h).

For the enclosing neighborhoods, the projection results based on ekNN and NN
are presented in Figure 3.6. Enclosing kNN obtains a better results than natural
neighborhood, but worse than the results from kNN. Additionally, compared with not-
enclosing neighborhoods, although ekNN is parameter-free, its computational time is
much more than classic kNN.

These comparisons of different neighborhoods provide us a practical guide to select
the neighborhood type in SDPP. Considering the robustness of kNN neigbhorhood,
in the remaining parts of this thesis, unless stated otherwise, we always use kNN base
on its heuristic as the strategy for neighborhood selection.

30

0 1 2

0

0.5

1

1.5

2

Z
1

Z
2

(a) k = 3

−3 −2 −1 0

−1

0

1

Z
1

Z
2

(b) k = round(log(n)) = 6

−3 −2 −1 0

−0.5

0

0.5

1

1.5

Z
1

Z
2

(c) k = 12

−3 −2 −1 0
−0.5

0

0.5

1

1.5

Z
1

Z
2

(d) k = 24

−3 −2 −1 0

0

0.5

1

1.5

Z
1

Z
2

(e) ε = 0.21

−2 −1 0

0

0.5

1

1.5

Z
1

Z
2

(f) ε = (log(n)/n)1/d = 0.42

0 0.5 1 1.5 2

−1

−0.5

0

0.5

Z
1

Z
2

(g) ε = 0.84

−0.5 0 0.5 1

0

0.5

1

Z
1

Z
2

(h) ε = 1.68

Figure 3.5: Projection results based on not-enclosing neighborhoods.

31

−2 −1 0

0

0.5

1

1.5

Z
1

Z
2

(a) Projection based on ekNN

−2 −1 0

0

0.5

1

Z
1

Z
2

(b) Projection based on NN

Figure 3.6: Projection results based on enclosing neighborhoods.

3.4 Kernel extension of SDPP

Generally, the performance of supervised dimensionality reduction by a linear projec-
tion may degrade in cases with a nonlinear mapping between the inputs and responses.
In this section, we extend SDPP into kernelized version by the usage of kernel trick.
The important intuition of the kernel trick is to map the data from the original input
space to another higher (even infinite) dimensional feature space, φ : X 7→ F , and
then perform a linear projection in this new feature space.

Denote the kernel matrix Kij = k(xi,xj) = 〈φ(xi),φ(xj)〉. If we denote the
matrix Φ = [φ(x1), . . . ,φ(xn)], we have K = ΦTΦ. Before proceeding, the mapped
data in the feature space needs to be centered as follows. For the n×n kernel matrix
of training data, K, we have

K← (I− 1

n
1n1

T
n)K(I− 1

n
1n1

T
n).

where I is an n-dimensional identity matrix, 1nrepresent the vectors whose elements
are ones with length n. respectively.

Based on the representation theory [1], assuming the projection matrix W = ΦΩ,
then we have the squared distance in the reduced feature space,

d2ij = (φ(xi)− φ(xj))
TWWT (φ(xi)− φ(xj))

= (φ(xi)− φ(xj))
TΦΩΩTΦT (φ(xi)− φ(xj))

= (ΦTφ(xi)−ΦTφ(xj))
TΩΩT (ΦTφ(xi)−ΦTφ(xj))

= (Ki −Kj)
TP(Ki −Kj), (3.17)

where PSD matrix P = ΩΩT is with the size n× n and Ki is the ith column of the
kernel matrix K. Note that the square of the distance for the responses in the feature
space is

δ2ij = Ky
ii + Ky

jj − 2Ky
ij, (3.18)

where Ky is the kernel matrix for response space.

32

The optimization of kernelized SDPP is same with original SDPP, replacing X
and W by K and Ω, respectively. Moreover, the out-of-sample projections under the
kernelized SDPP is Ztest = ΩTKtest, where Ktest is the kernel matrix between test
points and training points and it should be centered before the projection,

Ktest ← (Ktest −
1

n
1nt1

T
n)(I− 1

n
1n1

T
n),

where nt is the number of test points.

In some application areas such as image processing and genomics, the dimension-
ality of the data d is much larger than the number of data points (i.e., d � n). In
these situations, applying SDPP is impractical due to the large PSD matrix with the
size d× d. Favourably, another important benefit of kernel SDPP is that it can reduce
the computational complexity by learning a much smaller projection matrix Ω with
the size n× n.

33

Part II

Experiments

34

Chapter 4

Experimental Evaluation

In this section, we firstly apply SDPP on both synthetic and real-world data sets to
demonstrate its effectiveness as a tool of dimensionality reduction for regression. We
compare our algorithm with other state-of-the-art dimensionality reduction methods,
including PLS, SPCA and KDR. Secondly, we extend SDPP to make it suitable for
classification tasks. Compared with FDA, SPCA and KDR, SDPP is applied on sev-
eral real-world data sets for classification.

In this section, unless stated otherwise, we always use kNN as the strategy to
construct the neighborhood graph, and number of k is selected as k = round(log(n)),
where n is the number of training points.

4.1 SDPP for Regression

Both synthetic and real-world data sets are considered for evaluating SDPP in re-
gression tasks. The data sets used in this section are described briefly in Table 4.1.

Data sets d r Size of training set Size of test set
Curve line 10 1 500 1500

Servo 4 1-4 111 56
Tecator-fat 100 1-4 143 72
Auto-price 15 1-4 106 53

Ducks 4096 1 62 10

Table 4.1: Description of the data sets for regression tasks.

4.1.1 Curve line

The curve line data set is constructed as follows by a latent variable t uniformly
distributed in [0, 4π],

x = [cos t, sin t, 0.01t, εx]T

y = t+ εy,

35

where εx is a seven-dimensional vector as input variables, εx ∼ N(0, I7), thus x ∈ R10,
and εy is the noise term for the response, εy ∼ N(0, 1). Figure 4.1(a) is the plot of
three useful features of this data set associated with their responses indicated by
different colors. We can observe that the underlying manifold is determined by the
latent variable t along a straight line, as plotted in Figure 4.1(b). We generate 2000
data points, and use 500 for training and the remaining for test.

−1
0

1

−1

0

1
0

0.1

0.2

X
1

X
2

X
3

(a) y = t + εy, X1 = cos t,X2 =
sin t,X3 = 0.01t.

0 5 10 15
−5

0

5

10

15

z

y

(b) True projection of test set

−15 −10 −5 0 5
−5

0

5

10

15

z

y

(c) SDPP projection

−4 −2 0 2 4
−5

0

5

10

15

z

y

(d) PLS projection

−2 −1 0 1 2
−5

0

5

10

15

z

y

(e) SPCA projection

−4 −2 0 2
−5

0

5

10

15

z

y

(f) KDR projection

Figure 4.1: Projection comparison on curve line data set.

Figure 4.1(c-f) presents the one-dimensional projections of the four methods on
the test set, where x-axis is the projected variable z and its true response is along
the y-axis. SDPP successfully unfolds this manifold structure along a straight line
while the other three methods fail. We list the projection matrix W ∈ R10×1 below,

36

obtained from the four methods.

WSDPP = [−0.04, −0.01, −99.14, 0.06, −0.04, 0.07, −0.05, 0.02, −0.08, −0.01]T ,

WPLS = [0.05, −0.83, 0.13, 0, 0.04, 0.25, 0.17, 0.27, −0.29, −0.22]T ,

WSPCA = [−0.10, 0.98, −0.04, −0.03, 0.03, −0.06, −0.13, −0.02, 0.11, 0.01]T ,

WKDR = [0.10, −0.93, −0.14, 0, 0.07, 0.16, 0.09, 0.12, −0.17, −0.15]T .

We underline the weights with absolute value larger than 0.10 for comparison. SDPP
weights the third feature most and ignores the other ones, thus, learns the correct
projection direction. However, PLS, SPCA and KDR are not capable to identify the
correct projection directions and even assign large weights to the noisy features X4 to
X10.

4.1.2 Predicting rotation angles on an image manifold

In this experiment, we apply our approach to predict rotation angles on an image
manifold. The real-world data set is a collection of duck images with different rotation
angles in 3D scene, selected from Amsterdam Library of Object Images (ALOI) 1 image
database. The ducks data set contains 72 images with equally spaced rotation angles,
[0◦, 5◦, . . . , 355◦]. The original size of each image is 192 × 144 pixels. To reduce the
computational complexity, we resize the original images and crop them into a suitable
size of 64 × 64. Figure 4.2 shows four sample images of this data set. We select 10
equally spaced images for test and the remaining 62 images for training.

Figure 4.2: Four sample images of rotating ducks

Here we care about the rotation angles and aim to embed the high-dimensional
images into a low-dimensional space that can unveil this aspect of image variations.
Clearly, the dimensionality of each image is much larger than the number of samples,
i.e. d � n. It is impractical to employ non-kernelized SDPP for two reasons. The
first one is that we cannot learn a large projection matrix W ∈ R4096×r accurately,
from only tens of samples. The second reason is the low learning speed for such a
large projection matrix. To overcome this problem, the kernelized SDPP is applied
for this task. Also kernel PLS and kernel SPCA are used for comparison. Since there

1http://staff.science.uva.nl/ aloi/

37

is no kernelized version for KDR, we only use KDR for this task.

In our experiment, RBF kernel is used in all the four methods, k(xi,xj) = exp(−‖xi−xj‖2
2σ2).

The kernel width is chosen by cross-validation around the median value of the pair-
wise Euclidean distances among all the data samples. Based on our experimental
validation, this strategy of setting the kernel width works effectively for these four
approaches.

−0.1 −0.05 0 0.05 0.1
0

100

200

300

400

z

a
n
g
le

30
65

100
135

170
205

240
275

310

(a) KSDPP embedding

−0.5 0 0.5
0

100

200

300

400

z

a
n

g
le

30
65

100
135

170
205

240
275

310

(b) KPLS embedding

−2 −1 0 1 2
0

100

200

300

400

z

a
n
g
le

30
65

100
135

170
205

240
275

310

(c) KSPCA embedding

−5 0 5 10
0

100

200

300

400

z

a
n

g
le

30
65

100
135

170
205

240
275

310

(d) KDR embedding

Figure 4.3: One-dimensional embedding of the ducks data set.

We plot the one-dimensional embeddings of the four methods in Figure 4.3, where
x-axis represents the one-dimensional embedding, y-axis is the rotation angle. Small
and large dots are used to indicate the training and test images, respectively. To
be more clear, the test images are marked by their measured rotation angles. The
plot in Figure 4.3(a) yielded by KSDPP reveals a clear linear relation between the
projections and the rotation angles. Therefore, if we regress the angles on the low-
dimensional representations, a linear regression function is appropriate and likely to
be efficient. From this point of view, KSDPP successfully unfolds this image manifold
for the regression task. In the embeddings from the other methods, a key observation
is that the same embedding point might correspond different rotation angles which
violates the definition of a surjective function. The violation can cause difficulties for
an accurate regression in the low-dimensional space because in regression we assume
the mapping from the input space to the output space are surjective. Hence, KPLS,

38

KSPCA and KDR fail to yield appropriate embeddings for regression.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Z
1

Z
2

30 65
100

135

170

205

240275
310

(a) KSDPP embedding

−0.4 −0.2 0 0.2 0.4

−0.2

0

0.2

Z
1

Z
2

30

65

100

135170

205

240
275

310

(b) KPLS embedding

−1 0 1 2

−1

−0.5

0

0.5

1

Z
1

Z
2

30
65

100

135

170

205

240
275

310

(c) KSPCA embedding

0 5 10

−10

−5

0

Z
1

Z
2

30

65

100135170
205

240

275

310

(d) KDR embedding

Figure 4.4: Two-dimensional embedding of the ducks data set.

We also plot the two-dimensional embeddings of this data set in Figure 4.4. KS-
DPP obtains smooth embeddings of the ducks with different rotation angles. The
embeddings of KSDPP and KDR show a larger gap in the transition from 355◦ to
0◦ due to the significant different between their rotation angles. KPLS produces an
unfaithful embeddings due to the presence of the tangle of the embeddings.

4.1.3 Regression on UCI data sets

Three commonly-used data sets from UCI repository [18], Servo, Tecator-fat and
Auto-price, are used for experimental evaluation. The description of the data sets
are shown in Table 4.1. All the data sets are preprocessed by mean centering and
normalizing to the unit variance. We randomly split each data set into two parts,
two thirds for training and the remaining for test. The experiments are run ten times
according to the different splitting of the training and test sets. After the step of
dimensionality reduction, a simple linear regression model is applied.

Table 4.2 depicts the RMSE (“mean± std”) on the test sets for each method with
respect to different reduced dimensions. For each value of r, we highlight the minimal
RMSE by boldface numbers. In most cases, SDPP exhibits an equivalent or better
generalization performance compared with other three methods. Advantageously, the

39

performance of SDPP does not change too much with respect to the altering of pro-
jection dimensions. This behaviour is beneficial in practical applications when the
projection dimension needs to be determined laboriously by cross-validation. More-
over, SDPP performs more stably with the random splitting of the data sets since the
standard deviation of RMSE is less than that of other methods.

Data sets r SDPP PLS SPCA KDR

Servo

1 1.3283±0.0748 1.3555±0.1194 1.3852±0.1194 1.1946±0.1083
2 1.2070±0.1140 1.2432±0.1568 1.3264±0.1495 1.2308±0.1475
3 1.1826±0.1344 1.1719±0.1305 1.2879±0.1581 1.1592±0.1179
4 1.1733±0.1315 1.1733±0.1315 1.1733±0.1315 1.6181±0.1427

Tecator-fat

1 2.6552±0.3943 6.9072±0.5501 7.2070±0.5689 5.6043±2.1468
2 2.5606±0.3286 5.4518±0.4608 5.7623±0.4530 3.3827±1.6056
3 2.4589±0.1870 2.3142±0.1795 5.0767±0.9667 2.1919±0.1645
4 2.2061±0.1472 2.2071±0.2393 2.1791±0.2192 2.2523±0.2812

Auto-price

1 2.8772±0.3536 2.8733±0.3405 2.9272±0.3173 2.7282±0.3909
2 2.6987±0.3750 2.7205±0.3912 2.9043±0.2737 2.7680±0.4145
3 2.6757±0.3728 2.6978±0.3941 2.7348±0.3399 2.8321±0.3362
4 2.6955±0.3753 2.7033±0.3823 2.6901±0.3937 2.7853±0.3937

Table 4.2: RMSE (“mean± std”) on the test sets of three data, Servo, Tecator-fat and
Auto-price.

40

4.2 SDPP for Classification

In SDPP formulation for regression in Eq. 3.1, the criterion sets the dissimilarity
between two output responses (i.e., δij) as their Euclidean distance. To extend the
SDPP for classification tasks, here we redefine this dissimilarity by a binary set {0, 1}
to indicate their difference of class labels. That is, if two data points belong to the
different classes, δij = 1, otherwise, δij = 0. This simple extension facilitates SDPP
for dimensionality reduction in classification.

4.2.1 Tai Chi

Figure 4.5 presents the well-known Tai Chi model in the Asian culture. The black and
white regions indicate two classes Yin and Yang, respectively. The concepts of Yin
and Yang provide the intellectual framework for much of ancient Chinese scientific
development especially in fields like biology and traditional Chinese medical science
[16]. As illustrated by the Tai Chi figure, the exercise of Yin and Yang is the foundation
of the entire universe. Yang, the element of light and life (in white), and Yin, the
element of darkness and death (in black), are the most natural and original type of
classes. Originated from each other, they represent all possible kinds of opposite forces
and creatures, yet Yin and Yang work with each other in proper harmony. This makes
the understanding and separation of them a difficult binary discriminant problem in
real life applications.

Figure 4.5: Tai Chi with two classes Yin and Yang.

The basic structure of Tai Chi is formed by drawing one large circle, two medium
half circles and two small circles. The two small Yin and Yang circles located at the
centers of the Yang and Yin half circles that are tangent to each other and also to the
large circle. The Tai Chi model can be simulated as follows:

• X1 and X2 distribute uniformly from within the large circle. We then assign the
class label y = 1 and y = 2 to the points located in the Yin area and the Yang
area accordingly, see Figure 4.2.1.

• X3, X4, X5 are the noisy features following the distribution N(0, I3).

Thus, the original input x is a five-dimensional vector. The goal is to identify the
first two effective directions for classification. We generate 2000 points and use the
first 500 of them for training and the remaining for test. Four methods, SDPP, Fisher

41

discriminant analysis, SPCA and KDR are employed for this task. Figure 4.7 presents
the two-dimensional projections for the test set. Clearly, SDPP finds the two correct
projection directions successfully while the other three methods fail.

−1 0 1

−1

0

1

X
1

X
2

 Yin

Yang

Figure 4.6: Simulation of Tai Chi model.

−1 0 1

−1

0

1

Z
1

Z
2

(a) SDPP projection

−5 0 5
−5

0

5

Z
1

Z
2

(b) FDA projection

−2 0 2
−2

0

2

Z
1

Z
2

(c) SPCA projection

−5 0 5
−2

0

2

Z
1

Z
2

(d) KDR projection

Figure 4.7: Two-dimensional projection of the Tai Chi data for the test set.

4.2.2 Classification on UCI data sets

Now we apply SDPP in some of UCI data sets to demonstrate its effectiveness in
classification tasks. Compared with SDPP, three other methods, Fisher discriminant
analysis, SPCA and KDR, are also used for supervised dimensionality reduction. The

42

description of these UCI data sets is presented in Table 4.3.

Data sets d r Number of class Size of training set Size of test set
Glass 10 1-4 6 143 71

Segmentation 18 1-4 7 140 70
Isolet 617 1-4 26 1039 520

Table 4.3: Description of data sets for classification tasks.

For each data set, we use two thirds of the data for training and the remaining for
test. Ten independent runs are implemented based on different splitting of the train-
ing and test sets. For the data set Isolet with a high dimensionality, we apply PCA to
reduce the dimensionality into 30 as a preprocessing step. Since the size of this data
set is large, we do not implement KDR on it due to the computational issue. After the
projections according to different values of dimension r, k-nearest neighbor classifier
is applied for classification in the new subspaces. We set the number of nearest neigh-
bors in kNN classifier as kc = C+1, where C is the number of classes for each data set.

Table 4.4 shows the classification accuracies of the four methods on the test sets,
in the form of “mean± std”. On the Glass data set, all the four methods exhibit the
effectiveness for this classification task. SDPP provides slightly better results than the
other three methods. For the Segmentation and Isolet data, SDPP and FDA performs
better than the others.

For the purpose of visualizing these three data sets, we plot the two-dimensional
projections for both the training and test samples. For the Glass data, Figure 4.8
shows the projections of the four methods, where dots (·) and squares (�) are used to
distinguish the training and test samples. SDPP yields a better projection because all
the classes are clearly separated and there are no points of mixing between different
classes. The Segmentation data set is more difficult for the four methods to separate all
the seven classes clearly, as seen in Figure 4.9. There are four classes mixing with each

Data sets r SDPP FDA SPCA KDR

Glass

1 99.58±0.68 99.15±0.98 99.30±1.04 99.44±0.98
2 99.72±0.59 98.87±0.89 99.44±0.98 99.44±0.98
3 99.58±0.68 98.73±1.04 99.44±0.98 99.44±0.98
4 99.58±0.68 98.59±1.15 99.44±0.98 99.44±0.98

Segmentation

1 91.14±5.38 86.29±3.76 74.29±4.95 83.43±6.03
2 81.14±4.09 89.86±3.12 76.29±5.80 85.14±6.91
3 91.14±5.98 93.57±2.36 81.57±5.53 83.57±5.05
4 98.29±1.13 97.00±2.07 82.71±4.88 84.57±5.63

Isolet

1 93.70±1.23 93.77±0.91 93.34±1.24 -
2 97.69±1.06 97.09±0.89 94.13±1.02 -
3 98.46±0.62 98.73±0.44 96.96±0.59 -
4 98.89±0.46 98.68±0.67 97.62±0.66 -

Table 4.4: Classification accuracies by percentage on the test sets of data, Glass,
Segmentation and Isolet.

43

other in all the four projections. However, KDR obtains the best separation. Lastly,
on the data Isolet, Figure 4.10-4.12 present the projection results of SDPP, FDA and
SPCA, respectively. Both SDPP and FDA produce a more separated projection while
SPCA tends to congregate different classes together.

−5 0 5
−10

−5

0

5

Z
1

Z
2

(a) SDPP projection

−10 0 10
−10

−5

0

5

Z
1

Z
2

(b) FDA projection

−200 0 200
−4

−2

0

2

Z
1

Z
2

(c) SPCA projection

−200 0 200
−10

−5

0

5

Z
1

Z
2

(d) KDR projection

Figure 4.8: Two-dimensional projection of the Glass data for the test set.

44

−200 0 200 400
−100

0

100

200

Z
1

Z
2

(a) SDPP projection

−20 0 20 40
−10

0

10

20

Z
1

Z
2

(b) FDA projection

−200 0 200 400
−1000

−500

0

500

Z
1

Z
2

(c) SPCA projection

−400 −200 0 200
−200

0

200

400

Z
1

Z
2

(d) KDR projection

Figure 4.9: Two-dimensional projection of the Segmentation data for the test set.

−20 −10 0 10 20
−10

−5

0

5

10

Figure 4.10: Two-dimensional projection of SDPP on the Isolet data for the test set.

45

−10 −5 0 5 10
−10

−5

0

5

10

15

Figure 4.11: Two-dimensional projection of FDA on the Isolet data for the test set.

−20 −10 0 10 20
−10

−5

0

5

10

Figure 4.12: Two-dimensional projection of SPCA on the Isolet data for the test set.

46

Chapter 5

Conclusions

This work presents a novel supervised dimensionality reduction method, especially
for regression tasks named Supervised Distance Preserving Projection (SDPP). Mo-
tivated by continuity preservation for a continuous regression function, SDPP casts
the goal of continuity preservation into the match of local geometry between the low-
dimensional subspace and the response space. SDPP finds an affine transformation
such that the difference between local pairwise distances in the subspace and those in
the response space are minimized. We have provided a geometrical interpretation on
the criterion of SDPP and several advantages of SDPP were also presented, such as
the capability of handling multiple outputs and out-of-sample data points.

Three optimization schemes, SDP, SQLP and conjugate-gradient optimization,
were introduced for solving the SDPP efficiently. Conjugate-gradient optimization
for SDPP scales well with the dimensionality of the original data while SDP and
SQLP fail. To evaluate the performance of SDPP in different parameter settings, we
employed two categories of strategies for neighborhood selection, not-enclosing neigh-
borhood and enclosing neighborhood. We also derived a kernelized version of SDPP
to deal with nonlinear data. Kernel SDPP can reduce the computational complexity
of DR tasks where the dimensionality of the input covariates is much larger than the
number of data samples. An intuitive extension of SDPP is also presented suitable
for classification tasks.

The experimental evaluation has demonstrated the effectiveness of SDPP and its
kernelized version on dimensionality reduction for regression and classification tasks.
Various synthetic and real-world data sets are used for the evaluation. Empirically,
SDPP and its kernelized form have shown their superiority on the task of supervised
dimensionality reduction compared with other existing state-of-the-art techniques.

To summarize, our approach of supervised dimensionality reduction has several
appealing merits. Firstly, for dimensionality reduction in regression, to our knowl-
edge, we are the first to propose to preserve continuity of a regression function. This
preservation guarantees that the regression information between the original inputs
and outputs are retained as much as possible. Secondly, our criterion is based on the
local geometry of the input space and local pairwise distances are used to describe

47

the local geometry. Thus, our method is capable of reducing the dimensionality only
provided pairwise distance of the training set, without the pairs of the inputs and
outputs. Finally, the optimization schemes are efficient for handling extremely high-
dimensional data.

With regard to the future work and extension of SDPP, there are several possibil-
ities to investigate.

• In the criterion of SDPP, for each data point, we only consider the points inside
its neighborhood and try to make them stay close after projection. From the
view of energy models [39], this can be seen as a attraction force in the neigh-
borhood. SDPP ignores the points that do not belong to the neighborhood.
Therefore, adding the repulsion force to the criterion for the points which are
not inside the neighborhood can be a promising improvement for SDPP.

• SDPP considers the local match between geometrical structure of the low-
dimensional subspace and output space. In this work, we use the squared
Euclidean distance as a divergence to quantify this match. Other types of di-
vergences, such as Kullback-Leibler divergence, Itakura-Saito divergence [12], or
a more general one Bregman divergence [37], are potential choices to apply to
capture more statistically meaningful projections.

• To extend SDPP for controlling the solution of the projection matrix, some
regularization terms are possible to add to the criterion of SDPP, such as l1-
norm to yield a sparse solution for feature selection [52] or l2,1-norm to weight
the features across all data points with joint sparsity [38].

• It is also possible to extend SDPP under the semi-supervised setting, where both
the data samples with responses (or labels) and the ones without responses (or
labels) are given. The manifold regularization [5] can be an alternative in this
case.

48

Bibliography

[1] J.L. Alperin. Local representation theory: Modular representations as an intro-
duction to the local representation theory of finite groups. Cambridge University
Press, 1993.

[2] E. Barshan, A. Ghodsi, Z. Azimifar, and M. Zolghadri Jahromi. Supervised
principal component analysis: Visualization, classification and regression on sub-
spaces and submanifolds. Pattern Recognition, 44:1357–1371, 2010.

[3] G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel
approach. Neural Computation, 12(10):2385–2404, 2000.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for em-
bedding and clustering. Advances in Neural Information Processing Systems,
1:585–592, 2002.

[5] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of Machine
Learning Research, 7:2399–2434, 2006.

[6] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University
Press, 1966.

[7] A. Ben-Tal and A.S. Nemirovski. Lectures on modern convex optimization: anal-
ysis, algorithms, and engineering applications, volume 2. Society for Industrial
Mathematics, 2001.

[8] C.M. Bishop. Pattern recognition and machine learning. Springer New York,
2006.

[9] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

[10] M.R. Brito, E.L. Chavez, A.J. Quiroz, and J.E. Yukich. Connectivity of the
mutual k-nearest-neighbor graph in clustering and outlier detection. Statistics &
Probability Letters, 35(1):33–42, 1997.

[11] F.R.K. Chung. Spectral graph theory. American Mathematical Society, 1997.

[12] J.F. Coeurjolly, R. Drouilhet, and J.F. Robineau. Normalized information-based
divergences. Problems of Information Transmission, 43(3):167–189, 2007.

49

[13] R.D. Cook and X. Yin. Dimension reduction and visualization in discriminant
analysis. Australian and New Zealand Journal of Statistics, 43(2):147–199, 2001.

[14] P. Demartines and J. Hérault. Cca: Curvilinear component analysis. In Colloque
sur le traitement du signal et des images, FRA, 1995. GRETSI, Groupe dEtudes
du Traitement du Signal et des Images, 1995.

[15] D.L. Donoho. High-dimensional data analysis: The curses and blessings of di-
mensionality. AMS Math Challenges Lecture, pages 1–32, 2000.

[16] P.B. Ebrey. Chinese civilization: a sourcebook. Free Pr, 1993.

[17] J. Fan and Y. Fan. High dimensional classification using features annealed inde-
pendence rules. Annals of statistics, 36(6):2605, 2008.

[18] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[19] K. Fukumizu, F.R. Bach, and M.I. Jordan. Dimensionality reduction for su-
pervised learning with reproducing kernel hilbert spaces. Journal of Machine
Learning Research, 5:73–99, 2004.

[20] K. Fukumizu, F.R. Bach, and M.I. Jordan. Kernel dimension reduction in re-
gression. Annals of Statistics, 37:1871–1905, 2009.

[21] A. Globerson and S. Roweis. Metric learning by collapsing classes. Advances in
Neural Information Processing Systems, 18:451, 2006.

[22] T. Graepel. Kernel matrix completion by semidefinite programming. pages 141–
142, 2002.

[23] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical
dependence with Hilbert-Schmidt norms. In Algorithmic learning theory, pages
63–77. Springer, 2005.

[24] A. Gretton, K. Fukumizu, C.H. Teo, L. Song, B. Schölkopf, and A. Smola. A
kernel statistical test of independence. In Advances in Neural Information Pro-
cessing Systems, 2008.

[25] M. R. Gupta, E. K. Garcia, and E. Chin. Adaptive local linear regression with ap-
plication to printer color management. IEEE Transactions on Image Processing,
17:936–945, 2008.

[26] A. Höskuldsson. PLS regression methods. Journal of Chemometrics, 2(3):211–
228, 1988.

[27] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480,
1990.

[28] Q. Zhu K.Q. Weinberger, F. Sha and L.K. Saul. Graph laplacian regularization
for large-scale semidefinite programming. In Advances in neural information
processing systems, pages 1489–1496, 2006.

50

[29] J.A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer Verlag,
2007.

[30] B. Li, H. Zha, and F. Chiaromonte. Contour regression: A general approach to
dimension reduction. The Annals of Statistics, 33(4):1580–1616, 2005.

[31] K.C. Li. Sliced inverse regression for dimension reduction. Journal of the Amer-
ican Statistical Association, 86(414):316–327, 1991.

[32] K.C. Li. On principal hessian directions for data visualization and dimension
reduction: Another application of Stein’s lemma. Journal of the American Sta-
tistical Association, 87(420):1025–1039, 1992.

[33] Z. Li and J. Liu. Constrained clustering by spectral kernel learning. In Internal
Conference of Computer Vision, 2009.

[34] E.O. Postma L.J.P. van der Maaten and H.J. van den Herik. Dimensionality
reduction: A comparative review. Technical report, Tilburg University Technical
Report.

[35] J. Löfberg. Yalmip : A toolbox for modeling and optimization in matlab. In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[36] S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and KR Mullers. Fisher discrimi-
nant analysis with kernels. In Neural Networks for Signal Processing IX, 1999.
Proceedings of the 1999 IEEE Signal Processing Society Workshop, pages 41–48.
IEEE, 1999.

[37] N. Murata, T. Takenouchi, T. Kanamori, and S. Eguchi. Information geometry of
U-Boost and Bregman divergence. Neural Computation, 16(7):1437–1481, 2004.

[38] F. Nie, H. Huang, X. Cai, and C. Ding. Efficient and robust feature selection via
joint l2,1-norms minimization. In Advances in Neural Processing Systems, 2010.

[39] A. Noack. Energy models for graph clustering. Journal of Graph Algorithms and
Applications, 11(2):453–480, 2007.

[40] M.D. Penrose. A strong law for the longest edge of the minimal spanning tree.
Annals of Probability, 27:246–260, 1999.

[41] R. Rosipal and N. Krämer. Overview and recent advances in partial least squares.
Subspace, Latent Structure and Feature Selection, pages 34–51, 2006.

[42] R. Rosipal and L.J. Trejo. Kernel partial least squares regression in reproducing
kernel hilbert space. Journal of Machine Learning Research, 2:97–123, 2002.

[43] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323, 2000.

[44] J.W. Sammon Jr. A nonlinear mapping for data structure analysis. IEEE Trans-
actions on Computers, 100(5):401–409, 1969.

51

[45] B. Schölkopf, A. Smola, and K.R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

[46] D.W. Scott and J.R. Thompson. Probability density estimation in higher dimen-
sions. In Computer Science and Statistics: Proceedings of the Fifteenth Sympo-
sium on the Interface, volume 528, pages 173–179. North-Holland, Amsterdam,
1983.

[47] Fei Sha and Lawrence K. Saul. Analysis and extension of spectral methods for
nonlinear dimensionality reduction. In In Proceedings of the Twenty Second Inter-
national Conference on Machine Learning (International Conference on Machine
Learning, pages 785–792, 2005.

[48] R. Sibson. A brief description of natural neighbors interpolation. In V. Barnett,
editor, Interpreting Multivariate Data, pages 21–36. Wiley, New York, 1981.

[49] L. Song, A. Smola, K. Borgwardt, and A. Gretton. Colored maximum variance
unfolding. In Advances in neural information processing systems, 2008.

[50] J.F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric
cones. Optimization methods and software, 11(1):625–653, 1999.

[51] J.B. Tenenbaum, V. Silva, and J.C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319, 2000.

[52] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[53] K.C. Toh, M.J. Todd, and R.H. Tutuncu. Sdpt3-a matlab software package for
semidefinite programming. Optimization Methods and Software, 11(12):545–581,
1999.

[54] R.H. Tütüncü, K.C. Toh, and M.J. Todd. Solving semidefinite-quadratic-linear
programs using sdpt3. Mathematical Programming, 95(2):189–217, 2003.

[55] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review,
38(1):49–95, 1996.

[56] U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007.

[57] J.A. Wegelin. A survey of partial least squares PLS methods, with emphasis on
the two-block case. Technical report, Seattle: Department of Statistics, Univer-
sity of Washington, 2000.

[58] K.Q. Weinberger, J. Blitzer, and L.K. Saul. Distance metric learning for large
margin nearest neighbor classification. In Advances in Neural Information Pro-
cessing Systems, 2006.

52

[59] K.Q. Weinberger, F. Sha, and L.K. Saul. Learning a kernel matrix for nonlinear
dimensionality reduction. In Proceedings of the 21st International Conference on
Machine learning, page 106. ACM, 2004.

[60] H. Wold. Soft modeling by latent variables: the nonlinear iterative partial least
squares approach. Perspectives in probability and statistics, papers in honour of
MS Bartlett, 9:520–540, 1975.

[61] X.M. Wu, A.M.C. So, Z. Li, and S.Y.R. Li. Fast graph laplacian regularized
kernel learning via semidefinite–quadratic–linear programming. In Advances in
Neural Information Processing Systems, 2009.

[62] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric learning with
application to clustering with side-information. pages 521–528, 2003.

[63] Y.R. Yeh, S.Y. Huang, and Y.J. Lee. Nonlinear dimension reduction with kernel
sliced inverse regression. IEEE Transactions on Knowledge and Data Engineer-
ing, 21:1590–1603, 2009.

[64] F. Zhang. The Schur complement and its applications. Springer Verlag, 2005.

53

	Acknowledgements
	Abbreviations
	Notation
	List of Figures
	List of Tables
	Introduction
	Dimensionality Reduction
	Unsupervised Dimensionality Reduction
	Supervised Dimensionality Reduction

	Highlights and Organization of the Thesis
	Highlights of the Thesis
	Thesis Structure

	I Theory
	State-of-the-art Approaches for Dimensionality Reduction in Regression
	Partial Least Squares (PLS)
	Supervised Principal Component Analysis (SPCA)
	Kernel Dimensionality Reduction (KDR)
	Comparison of PLS, SPCA and KDR
	Toy example one: plane
	Toy example two: ``parity''

	Supervised Distance Preserving Projection (SDPP)
	Criterion
	Optimization of SDPP
	Semidefinite Programming Formulation for SDPP
	SQLP Formulation for SDPP
	Conjugate-Gradient Optimization for SDPP

	Neighborhood Selection Strategies for SDPP
	Not-enclosing neighborhoods
	Enclosing neighborhoods
	Evaluation by A Toy Example

	Kernel extension of SDPP

	II Experiments
	Experimental Evaluation
	SDPP for Regression
	Curve line
	Predicting rotation angles on an image manifold
	Regression on UCI data sets

	SDPP for Classification
	Tai Chi
	Classification on UCI data sets

	Conclusions

