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Chapter 1

Introduction

1.1 What is Music Information Retrieval?

A little over a decade ago, music was popular usually in physical media in the
form of casette tapes, or CDs. The methods to listen to music were limited
to radio broadcasts or casette players. Keeping a track of emerging trends
in music was not as challenging as today, since the methods to distribute
music were limited to physical storage media. However, all this has changed
in the last decade with the rise of digital music. Digital music has now made
new music more easily available, and thus the magnitude of music available
is increasing at a rapid rate. It is estimated that over 10,000 new albums are
released and more than 100,000 works are registered for copyright each year
[33]. In 2005, legal music and mobile phone ringtone downloads witnessed
a three-fold growth, and in the UK, digital music sales have overtaken sales
of CDs and records [4]. With the proliferation of mp3 players, ipods, smart-
phones and the like, listening to music, from a community activity, is now
becoming more personalised. Thus there is a growing need now to manage
digital music collections and make personalised recommendations for users
to discover more music. Managing and analysing digital music collections is
also beneficial for record companies to keep track of emerging music trends,
as also for musicians and musicologists to see which pieces of music are more
similar to a given piece, or to study the evolution of a certain genre of mu-
sic over the decades. The various strategies to search and organise massive
digital music collections can be termed as music information retrieval (MIR)
[6].

MIR is an inherently interdisciplinary field, drawing upon knowledge from
various fields like signal processing, machine learning, computer science, mu-
sic theory, to name a few. It is evident from the number of papers published
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in the proceedings of the International Society for Music Information Re-
trieval (ISMIR) conference, that the research activity in MIR is increasing.
The first conference was held in 2000 and the proceedings included 35 papers,
whereas this year more than 100 papers have been accepted [16].

1.2 Aspects of MIR

All MIR systems incorporate the following modules - query formation, de-
scription extraction, matching and finally music document retrieval [6]. Based
on the kind of query, MIR systems can be categorised into:

1. High specificity systems - These require that the returned results match
the query perfectly. The most common application of this is audio
fingerprinting. Only a short excerpt, say 30 s of the song is given as a
query, and information about the track like artist/ album name, genre,
year is returned, as in the case of the popular application Shazam
[35] or Microsoft Bing Audio search. Another application is plagiarism
detection.

2. Mid specificity systems - The returned results share some commonali-
ties with the query but are not identical to it. They retrieve music with
similar high level music descrption like melody, harmony, rhythm etc,.
but do not match the exact audio content for e.g. cover song detection,
melodic similarity.

3. Low specificity systems - The returned results have little direct simi-
larity with the query but share certain global characteristics, for e.g.
genre/style/ mood retrieval, retrieving music with similar instrumen-
tation.

Downie [9] has described many aspects of music, which interact to make
MIR complex and challenging. These are pitch, temporal, harmonic, timbral,
editorial, textual and bibliographic aspects. The pitch of a note is measured
by its fundamental frequency F0. Note names, scale degrees or pitch class
numbers are some of the methods used to represent pitch. The temporal
and rhythmic aspect deals with duration of notes, musical meter, beat track-
ing, tempo estimation etc. The harmonic aspect of music is important when
two or more pitches are played at the same time, also known as polyphony.
Chords in music are a prime example of the harmonic aspect. Musical timbre
can be defined as the colour of sound, or that aspect of music which helps to
distinguish two notes played at identical pitches and having identical loud-
ness [11]. Thus it is an inherent property of the musical instrument and is
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useful in instrument detection. The editorial aspect deals with performance
instructions, like loudness levels, instrument fingerings, and other informa-
tion on how to play a particular piece of music. Not all performances of
a piece of music are the same, thus a single song could have many versions
like unplugged versions, studio recordings, album and live concert recordings.
The lyrics of a song constitute the textual aspect of music. Since the textual
fact is more independent from other aspects of music, it will not be discussed
further in this thesis. Finally, the bibliographic aspects deals with the meta-
data of music or music tags like track title, track length, artist name, genre,
year, mood etc.

In the next section, we look at two methods which have been used for
MIR - metadata approach or the audio content analysis approach.

1.3 Metadata vs Audio Content Analysis

Metadata, or the bibliographic aspect of music as introduced in the previ-
ous section is used by some MIR systems. Websites like All Music Guide
(AMG) and Gracenote provide metadata for millions of tracks. Metadata
can be broadly divided into two: factual metadata and cultural metadata [6].
Factual metadata provide technical details about music for e.g. song name,
artist/album, year, length etc. while cultural metadata provide subjective
information about music such as genre, mood, and style. MIR systems mine
this metadata along with other information like play count of the song, or
the number of ‘likes’ it receives to recommend similar music. Maintaining a
metadata repository is useful for audio fingerprinting as in the case of Shazam
and Bing Audio search described earlier.

However, there are many challenges facing metadata based methods and
it cannot solve all possible MIR tasks. Some of the challenges are:

1. Metadata Consistency and Completeness - It is extremely difficult to
get a consistent set of metadata. Misspellings, capitalization or punc-
tuation differences in artist/album names make metadata consistency
difficult. It is also quite possible that the metadata for the track may
be incomplete or absent. This is often the case when the artist/genre
is not popular.

2. Time Consuming Process - Metadata has to be entered by human ex-
perts. It is estimated that about 20-30 minutes time is taken to enter
the metadata for a single song. Scaling to music collections of mil-
lions of songs makes entering metadata extremely time-consuming and
infeasible.
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3. Metadata cannot solve MIR tasks that deal with the aspects of music
discussed earlier. For instance, a task like melodic similarity, or beat
tracking, or chord detection can be performed only when one listens to
the audio and identifies the melody, chords or beat. Hence, relying just
on the metadata will be insufficient in these cases. Such kind of tasks
can only be performed by analysis of the audio content.

Thus, metadata approaches need to be complemented with audio content
analysis approaches. The next section briefly introduces the first two steps
in audio content analysis - feature extraction and dimensionality reduction.

1.4 Feature Extraction and Dimensionality Re-

duction

In audio content analysis, the audio is converted into a feature representa-
tion using signal processing techniques. However, these features are generally
in a high-dimensional space, and thus dimensionality reduction needs to be
performed on the features to reduce it to lower dimensions for machine learn-
ing algorithms. Reduction to lower dimensions helps to construct algorithms
with lesser number of parameters, thus reducing the algorithm complexity.
It helps to understand and visualize the structure of complex datasets. Also
some statistical properties like independence and uncorrelatedness which may
not be in the high-dimensional space, may be observable in the lower dimen-
sional space.

Many techniques for dimensionality reduction have been developed, which
can be categorized into linear and non-linear methods. Linear methods like
Principal Component Analysis (PCA) and classic metric multidimensional
scaling (MDS) were the first methods to be developed, and these will be dis-
cussed in this thesis. Over the past few years, many non-linear methods like
self-organizing maps, geodesic mappings, locally linear embeddings, laplacian
eigenmaps etc have been developed. Also termed as manifold learning, these
are discussed in great detail in [20].

1.5 Scope and Purpose of the thesis

The main goal of the thesis is to illustrate how dimensionality reduction tech-
niques can be applied to a personalised music collection. The raw audio files
are first converted to a feature representation, using signal processing tech-
niques as mentioned earlier. A tensor representation of the music dataset
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is then obtained. Two ways of decomposing or unfolding this tensor are
then applied. Next, dimensionality reduction techniques are performed on
the unfolded tensor. Using a validation dataset, the appropriate number of
components to be retained is selected. An evaluation of these dimensionality
reduction methods is performed, and it is shown how effectively the dimen-
sionality reduction techniques capture the data. Finally, a cross comparison
is performed, ie certain songs selected from one dimensionality reduction
technique are compared in other methods. The end goal of this thesis is to
obtain an appropriate and efficient dimensionality reduction for music data,
so that the features in the reduced space can be used for some audio content
analysis task. Thus, this thesis can be placed in the broader domain of audio
content analysis.

1.6 Structure of the Thesis

The purpose of this chapter is to provide a broad overview to this field of
MIR, and introduce the problem statement of the thesis. Chapter 2 covers the
process of feature extraction i.e. how to convert the raw audio into a feature
representation. The dimensionality reduction algorithms are discussed in
detail in Chapter 3, this is the core of the thesis work. Chapter 4 discusses
the experiments performed on these dimensionality reduction methods and
the results are discussed and interpreted in Chapter 5. Finally, Chapter 6
summarizes and concludes the thesis.





Chapter 2

Feature Extraction

2.1 Introduction

Feature extraction is the process where raw data is converted into a fea-
ture representation that can be used for further processing. For instance, in
the case of image processing, the image is converted into feature descriptors
which capture pixel intensity. In the field of text processing, the text could
be converted, say into a term-document matrix. In audio content analysis,
the digital audio track is converted into a feature representation that cap-
tures different aspects of the music, like pitch, loudness, duration, melody,
harmony, or timbre. As discussed in Section 1.2 these aspects interact with
each other, thus making music information retrieval a multifacted problem
[9]. The features are extracted based on the audio content analysis task
since features suitable for one task may not be suitable for another task.
Thus different audio content analysis tasks like cover song detection, audio
fingerprinting or instrument detection use different set of features.

Figure 2.1 shows the block diagram of a general audio content analysis sys-
tem. Firstly, some preprocessing steps are applied to the digital audio track,
or the song. This is next followed by the process of feature extraction where
the preprocessed audio signal is usually converted into a high-dimensional
feature representation. Due to the high dimensionality, this feature repre-
sentation is not very suitable to be directly used. Thus using the methods
discussed in Chapter 3 the features are projected into a lower dimensional
space. This step is known as feature transformation. Then some machine
learning algorithm is applied on these transformed features, resulting in a set
of trained model parameters. Next, a test song is fed into the system, and the
transformed features are obtained for the test song. The model parameters
calculated earlier are applied on the transformed features of the test song

21
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Figure 2.1: General Audio Content Analysis System. Coloured Blocks indi-
cate the scope of the thesis.

and results of the audio content analysis task, like classification or clustering
are obtained.

This chapter discusses feature extraction, and the next chapter discusses
feature transformation.

2.2 Preprocessing

Before the feature extraction step, a few audio preprocessing steps are un-
dertaken. Some common preprocessing steps are described as follows:

1. Downmixing - An audio track could be recorded in many channels.
Usually, two channels are used in a stereo recording. Downmixing
refers to taking the arithmetic mean of the two channels. Thus, the
resultant audio track gets represented by a single channel.

2. Downsampling/Upsampling - The sampling rate of an audio signal is
defined as the number of discrete audio samples recorded per second.
Downsampling is a process where the audio signal is converted from a
higher sampling rate to a lower sampling rate by means of some sample
rate conversion algorithm. The reverse process is called upsampling.

3. Standardising the bit rate - The concept of bit rate is borrowed from
computer networks. In audio processing field, bit rate refers to how
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many bits are needed to represent a second of audio. In other words,
bit rate is a quantifier for the number of volume levels of an audio track.
Higher the bit rate, better is the sound quality, however the size of the
audio file is increased.

2.3 Feature Extraction

2.3.1 Instantaneous or Low-Level Features

The purpose of feature extraction is to convert raw audio data into a nu-
merical dataset with instances and features. These features are extracted
from various properties of the audio signal, using several signal processing
techniques. These features are called instantaneous features, since they are
extracted from a short frame (or time block) of the audio signal, and produce
a value for each frame. Segmentation into frames can be done in two ways
[6]:

1. Fixed length segmentation - A fixed frame length of (10-1000 ms) is
used.

2. Beat Synchronous segmentation - The frames are aligned to musical
beat boundaries. This is commonly used in applications like beat track-
ing.

They can also be termed short-term features or low-level features. Peeters
[26] proposed the following categorisation of low-level features:

1. Temporal Shape - Features computed from the waveform of the signal,
for example attack time, effective duration.

2. Temporal Features - Features computed from the statistical properties
of the signal are used. for example auto-correlation, zero-crossing rate.

3. Energy Features - Features referring to the energy content of the signal,
for example global energy, harmonic energy, noise energy.

4. Spectral Shape Features - Features computed from the Short Time
Fourier Transform (STFT) of the signal, for example spectral centroid,
spectral rolloff, kurtosis, spectrogram, Mel spectrogram, Mel Frequency
Cepstral Coefficients (MFCCs).

5. Harmonic Features - Features derived from the sinusoidal harmonic
modelling of the signal, for example harmonic noise ratio, harmonic
derivation.
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Figure 2.2: Pictorial Representation of Low-Level Audio Features [6] with
the two kinds of segmentation, fixed length and beat-synchronous. Coloured
blocks in the centre shows the feature used in the thesis.

6. Perceptual Features - Features computed using a model of human hear-
ing or human perception, for example loudness, sharpness, spread.

A pictorial representation of the features is given in Figure 2.2.

2.3.2 Mid-level Features

Another classification of features is given in [19]. Here the features are di-
vided into the aforementioned low-level, mid-level and high-level features. A
large variety of mid-level features have been proposed, such as the instro-
gram, timbregram and chromagram. These attempt to connect the low-level
features to the high-level features.

2.3.3 High-level Features

High-level features are representations of music that are not generated by
the audio content of the signal. These can also be called as symbolic rep-
resentation of music. The most common example of this being the score or
sheet music, where notes are arranged in a staff notation. This captures mu-
sical elements like melody, chords, harmony, key, and time signature. Thus
is it is a very commonly used music representation. Guitar tabs, where the
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notes are arranged in terms of the frets of the guitar is another widely used
high-level representation. Another high-level representation used is Musical
Instrument Digital Interface (MIDI).

Thus to summarize, instantaneous features describe the audio content
of the music, while high-level features represent the various elements of music
like melody, harmony, chords, instruments used etc. Mid-level features aim
to bridge the gap between these two sets of features, as depicted in Figure
2.3.

Representation

Names of

Low−Level

Mid−Level

High−Level

Non−Symbolic

Symbolic

Melodic TimbralHarmonic

Spectral/

Spectrogram

Waveform

Psychophysical

Vector
Chroma
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Function
Onset Detection
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Rhythm Map
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F0 trajectory
Timbregram

Quantized

Instruments

Score

Onset Times
Actual

Onset Times
Symbols

Rhythmic

Figure 2.3: Classification of features into low-level, mid-level and high-level
features as suggested in [19]. Low-level features are obtained from the audio
content, while high-level features are symbolic representation of music.

The main feature used for this thesis is the mel spectrogram. First a
description of the spectrogram is provided and then the mel spectrogram is
described.

2.3.4 Spectrogram

The simplest among these features is the Short Time Fourier Transform ab-
breviated as STFT [22]. The STFT forms the basis for other features like
spectral centroid, spectral roll-off etc. It can be visualised using a colour plot
called spectrogram. Let us assume that an audio track can be represented
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by a discrete time signal x(t), the time-domain representation of the signal.
Fixed length segmentation is used, so the input signal is now split into over-
lapping blocks or frames of equal length by choosing a fixed window time
duration Twin. The number of samples in the window Nwin can be calculated
by multiplying the sampling rate fs with Twin, so Nwin = fsTwin. The num-
ber of overlapping samples is decided with a hop size parameter h. Thus the
input signal gets split into Nb overlapping frames, which can be calculated
as follows:

Nb =

⌊
N −Nwin

h

⌋
+ 1. (2.1)

Hence the nth frame xn, 1 ≤ n ≤ Nb, can be written as a Nwin dimensional
vector as follows:

xn =


x[(n− 1)h+ 1]
x[(n− 1)h+ 2]

...
x[(n− 1)h+Nwin]

 . (2.2)

If the Discrete Fourier Transform (DFT) of xn is calculated, it is assumed
that the signal is periodic in each frame. However, due to finite frame length,
xn is not periodic. Due to this, the spectral energy at a particular frequency
gets distributed or leaks to the surrounding frequencies. This is known as
spectral leakage. Window functions are multiplying functions applied to
each sample in the frame to make the resulting signal periodic, thus reducing
spectral leakage. A detailed discussion of different types of window functions
is provided in [12]. Hamming window function has been used in this thesis
[30]. The Hamming window function for the tth sample in the frame is given
as follows:

w(t) = α− β cos

(
2πt

Nwin − 1

)
. (2.3)

where α = 0.54 and β = 1− α [12].
The next step is to apply a Short Time Fourier Transform, or STFT to

each frame. STFT converts the audio signal in the time domain represen-
tation x(t) to the frequency domain representation, with Fb frequency bins
and Nb frames. The number of frequency bins can be calculated as:

Fb =


nfft + 1

2
if nfft is odd

nfft

2
+ 1 if nfft is even

. (2.4)

Here nfft refers to the number of points taken for calculating the STFT,
usually a power of 2 due to the Fast Fourier Transform (FFT) algorithm.
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The STFT for frequency bin b, b = 1, ..., Fb and frame n is given as follows:

Sb,n =

Nwin−1∑
t=0

xn(t)w(t) exp

(
(−
√
−1)2π

b

Nwin

t

)
. (2.5)

The STFT produces a complex number, and magnitude of the complex
number |S| is called the magnitude spectrum. A visualisation with time of
song vs frequency being the two axes and the magnitude spectrum |S| shown
in colour is called spectrogram.

Figures 2.4 and 2.5 are spectrograms of 0.5 s of a single tone at 440 Hz,
and a guitar song. We can clearly see that at 440 Hz, the spectrogram shows
bands which are higher in magnitude. A single tone can be easily visualised
in this manner. However, music contains multiple instruments and voice at
different frequencies combining with each other across time. Also, the in-
struments contain overtones, which are integer multiples of the fundamental
frequency, and the overtones of several instruments may overlap with each
other. In the time domain, the waveform of each instrument has its own
attack, sustain and decay time. When the spectrogram of multiple instru-
ments in a song is visualised, the waveforms of the individual instruments
will overlap, which is observed in Figure 2.5. Thus drawing any conclusions
of the high-level music content like classification of the genre, instrumenta-
tion, mood, artist or performance style from just the spectrogram of the song
becomes a difficult task.

The spectrogram, thus helps to visualise both temporal and spectral evo-
lution of audio. However, the vertical dimension (number of frequency bins)
is in a linear scale, from 0 to fs/2. Since humans do not perceive frequency
linearly, a compressed version of the spectrogram would be a better represen-
tation. The mel spectrogram is one such representation, which is described
below.

2.3.5 Mel Spectrogram

The mel spectrogram is a compressed version of the spectrogram in which
the frequencies are ordered in the mel scale. The mel scale is a perceptually
motivated scale based on human hearing. Given a frequency f in Hz, the
mel value can be calculated as follows [23]:

mel(f) = 1127.01048 log

(
1 +

f

700

)
. (2.6)

As shown in Figure 2.6, the mel scale is approximately linear upto 1 kHz
and logarithmic thereafter [27].



CHAPTER 2. FEATURE EXTRACTION 28

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

log |S| of 0.5s single tone 440 Hz

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

1000

2000

3000

4000

−4

−2

0

2

4

Figure 2.4: Spectrogram of 0.5 s of a single computer generated tone. We
can observe that around 440 Hz there are bands of higher magnitude.
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Figure 2.5: Spectrogram of 0.5 s of a guitar song. Note that bands of higher
magnitude are observed parallel to each other, these are the overtones.

An overlapping set of n triangular filters is created, such that the maxi-
mum weight for each filter reduces with increase in frequency. This can be
mathematically written as a mel multiplying matrix M of dimension n×Fb.
The jth element 1 ≤ j ≤ Fb of the ith filter bank can be written as:

Mij =


2

f(ih)− f(il)

f(j)− f(il)

f(im)− f(il)
, if f(il) < f(j) ≤ f(im)

2

f(ih)− f(il)

f(ih)− f(j)

f(ih)− f(im)
, if f(im) < f(j) ≤ f(ih)

0 , otherwise

. (2.7)

f(il), f(im) and f(ih) denote the lower, mid and highest frequency of
each mel filter bank respectively, and f(j) denotes the lowest frequency of
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Figure 2.6: The mel scale, used to map the linear frequency scale to a loga-
rithmic one.

each linear frequency bin as obtained through the STFT. The term in the
denominator f(ih) − f(il) would increase for higher values of i, since the
frequencies are in the mel scale. Hence, higher frequency bands get lower
weight compared to lower frequency bands, as illustrated in Figure 2.7. The
mel spectrogram is then scaled to the log scale. It can be written in terms
of a matrix product as follows:

X = log (M |S|) . (2.8)
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Figure 2.7: 30 Mel Filterbank used in obtaining the mel spectrogram.

A triangular filterbank of n = 30 mel filters is applied to the spectrogram
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to create the mel spectrogram. The use of mel spectrogram is justifed since
many speech processing applications use the Mel Frequency Cepstral Coef-
ficients (MFCC), which are obtained through a Discrete Cosine Transform
(DCT) of the mel spectrogram. In order to calculate the MFCC, a small
number 30 - 40 mel filters are used. Thus, a similar number of 30 mel filters
have been used for the thesis.

2.4 Conclusion

Only two features have been described in this thesis, however many more are
present in the literature. At the end of feature extraction the size of the mel
spectrogram of a 3 minute song would be around 1800 × 30. This is a huge
matrix, and if possible should be reduced to lower dimensions. Reduction to
lower dimensionality also offers some useful statistical properties among the
features. This will be dealt with in the next chapter.



Chapter 3

Feature Transformation

3.1 Introduction

Feature transformation is a process where a dataset in a high-dimensional
space, is projected to a lower dimensional space. This transformation from
higher dimensional space to lower dimensional space is also called dimension-
ality reduction.

Chapter 1 briefly mentioned the three main advantages of feature trans-
formation. These are:

1. Reduction in training algorithm complexity - A lower-dimensional dataset
requires a training algorithm with smaller number of parameters, thus
also reducing the chance of overfitting.

2. Avoiding Curse of Dimensionality - As the number of dimensions in-
creases, the search space of features grows exponentially. This is known
as curse of dimensionality.

3. Reduction in memory to store the features, and computational time.

4. Some useful statistical properties like uncorrelatedness, and statistical
independence can be observed in the transformed space.

The next section provides a broad overview of feature transformation.
Then two feature transformation methods are discussed in detail. This chap-
ter forms the core of the thesis work.

3.1.1 Feature Transformation - An overview

There are different techniques that can be used for dimensionality reduction,
depending on application. Both supervised and unsupervised methods are

31
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used. Dimensionality reduction can be classified into two categories, feature
transformation methods and feature subset selection approaches.

The main difference between subset selection and feature transformation
is that in feature subset selection approaches, a subset of the original feature
set is obtained. On the other hand, in feature transformation, the original
features combine among themselves to form a subspace, with certain desirable
properties.

One of the important feature transformation methods is linear projec-
tion. In this method, a linear combination of the input features in a high
dimensional space is projected to a lower dimensional space. Let X be the
input data, with m instances and n features. Each individual data point xi,
i = 1, ...,m is an n-dimensional row vector, and X(1) =

[
x11 x21 . . . xm1

]
,

X(2) =
[
x21 x22 . . . xm2

]
, ..., X(n) =

[
x1n x2n . . . xmn

]
denote the

original feature space.
Linear projection can be summarized as multiplication of the input data

matrix X with a loading matrix P as T = XP. The loading matrix can be
considered as a set of basis vectors, which projects the data to a subspace
of the input space. The first component of the lower dimensional space T(1)

can be obtained by linearly combining the features X(l), l = 1, ..., n with n
scalars Pl1, so

T(1) =
n∑

l=1

X(l)Pl1. (3.1)

The second dimension T(2) can be obtained as follows:

T(2) =
n∑

l=1

X(l)Pl2. (3.2)

The above can be repeated for k ≤ n dimensions. This transformed represen-
tation of the input data is called scores. Reconstruction to the original space
is achieved by multiplying the scores with the transpose of the loading ma-
trix. However, reconstruction results in errors if k < n. Thus introducing an
error matrix E, we can express the reconstruction as follows: X = TPT +E.
Note the error matrix E = 0 if k = n. This can be pictorically represented
in the Figure 3.1.

One of the common linear projection methods is Principal Component
Analysis (PCA) [17], which finds a subspace where the features are uncor-
related. Another technique is called whitening, which is also a decorrelat-
ing transformation, with an additional property of unit variance for each
feature. A stronger assumption than uncorrelatedness is statistical inde-
pendence, which has been widely used in Independent Component Analysis
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X T PT E

Figure 3.1: Pictorial representation of reconstruction of data matrix X from
scores T and transpose of loading matrix PT

(ICA) [15]. ICA finds wide applications in fields such as image denoising and
blind source separation. Another linear projection method that preserves dis-
tances between datapoints is Metric Multidimensional Scaling (MDS), which
is equivalent to PCA.

In the recent years, many non-linear projection methods have also been
used for dimensionality reduction [20]. Self-organising maps (SOM), are a
good example of a non-linear method which preserves the topology of the in-
put space. Some other examples of non-linear methods are Laplacian Eigen-
maps, Locally Linear Embeddings etc.

All these methods mentioned till now are unsupervised, however if the
data is provided with label or class information then dimensionality reduc-
tion can be performed with the aim to maximise separability between the
classes. This forms the basis of Linear Discriminant Analysis (LDA). Thus
feature transformation is a wide class of operations that can be used not
only for dimensionality reduction, but to obtain other useful properties like
uncorrelatedness, independence, or class separability.

The scope of this thesis is Linear Projection methods. Before any of the
Linear Projection methods are applied, there are two steps which are taken
to further process the data, Mean Centering and Scaling to Unit variance.
These are described below.

Mean Centering Mean centering as the term suggests, is to remove the
mean of each feature from the original data. Thus the resultant features
become zero mean. Mean centering can be expressed as follows:

X := X− µ. (3.3)
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Figure 3.2: Correlation plot of an example song. Higher dimensional features
20-30 are highly correlated.

Scaling to Unit Variance The mean centered data points are divided
by their individual standard deviations for each feature. This produces data
points with unit variance along each dimension.

X := XWu. (3.4)

Wu is a n×n digaonal matrix containing the reciprocals of the individual
standard deviations σi, i = 1, ..., n.

Next, two linear projection methods for dimensionality reduction, Prin-
cipal Component Analysis (PCA) and Multidimensional Scaling (MDS) are
discussed in detail. The motivation for using PCA is that the music data
is highly correlated, especially among the higher dimensional features. A
correlation plot of a sample music file is provided in Figure 3.2.

It is hoped that PCA can decorrelate such data. Also we have seen
that the Mel Frequency Cepstral Coefficients (MFCC), mentioned in Chapter
2 are obtained by performing a Discrete Cosine Transform (DCT) on the
mel spectrogram. Logan has shown in his paper [21] that the DCT is an
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approximation of PCA. Also in another paper by Hamel et al for annotation
and ranking of music [10], PCA has been applied on the mel spectrogram to
obtain a set of Principal Mel Spectrum Coefficients (PMSC). Thus, the use
of PCA is justified and appropriate.

3.2 Principal Component Analysis

Principal Component Analysis (PCA), also known as Karhunen-Loeve
Transform or Proper Orthogonal Decomposition, is a linear projection method
where the input data is projected to a lower dimension using the covariance
matrix of the data [2]. It is an unsupervised algorithm, so no addtional in-
formation regarding the classes or clusters is needed. Let us take the general
dataset X, as described in Section 3.1.1. After mean centering it, or scaling
it to unit variance, the first step is to estimate the covariance matrix.

C =
1

m− 1
(XTX). (3.5)

Here onwards, X shall denote either mean centered data, or mean centered
and scaled data. Then, the next step is to perform eigenvalue decomposition
(EVD) of the covariance matrix. This produces a product of an orthog-
onal matrix P, a diagonal matrix and transpose of the orthogonal matrix
P, with the diagonal matrix D containing the eigenvalues λk, k = 1, ..., n.
The eigenvalues, are infact equal to the variances of different dimensions,
and P contains the eigenvectors arranged in the decreasing order of their
eigenvalues, known as the loading matrix.

C = PDPT . (3.6)

To project into lower dimensional space of k < n components choose k
columns from P thus getting a smaller subspace Pk and multiply with the
mean centered data point, thus the scores ti, i = 1, ...,m , are obtained as
follows

ti = xiPk. (3.7)

Reconstructing xi from ti is just the reverse process. Here the scores are
taken and the transpose of the loading matrix Pk is used.

x̂i = tiP
T
k . (3.8)

PCA can also be thought of as rotation of the axis of reference, in such
a way that the resulting scores ti become uncorrelated. A simple example is
the 3 dimensional toy data, depicted in Figure 3.3.
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Figure 3.3: Toy Data in 3 dimensions. PCA transforms this data into a 2
dimensional representation shown in Figure 3.4.
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The inital frame of reference is the Euclidean coordinate system with

basis vectors e1 =

1
0
0

 , e2 =

0
1
0

 and e3 =

0
0
1

. Any vector v, corre-

sponding to a data point in this 3-dimensional space can be written as a
linear combination of these basis vectors. But it is clear that most of the
points are enclosed by the plane in which the ellipse, depicted by red colour
in Figure 3.3 lies. This ellipse is, in fact, the boundary of the µ± σ2 extent
of the normal distribution with unequal variances lying in this plane. Next,
the frame of reference is now rotated to obtain a new reference system which
lies along the plane of this ellipse. Now the two basis vectors of this new
reference system aligned parallel to the principal components (PC) PC1 and
PC2 are enough to represent the data, since all the data lies along the plane
given by these two basis vectors. Thus a dimensionality reduction from 3 to
2 is achieved, as shown in Figure 3.4, and a 2 dimensional embedding of the
3 dimensional data has been found.

It can be observed from Figure 3.4 that the 2 dimensional scores are ac-
tually Gaussian distributed variables with unequal variances along the PCs.
If the variance along the second PC can be ignored, then all the data can
now be represented by one dimension along PC1, and the new basis vectors
are orthogonal to each other. These new basis vectors are the eigenvectors of
covariance matrix C. Hence, we observe that by rotation of the axis of refer-
ence, we can perform a linear transformation such that the resulting scores
are uncorrelated. Thus, PCA corresponds to rotation of axis of reference.

It can also be proved that the objective of PCA is to find directions that
maximise the variance. Appendix A provides a proof.

3.2.1 Measures of Fitness

As illustrated in the earlier section, PCA can be used to reduce dimensional-
ity. But how many dimensions is enough? To answer this question, there is a
need to develop some measures of fitness for the PCA model. As the number
of PCs k increases, the amount of variance explained would also increase.
As illustrated in Figure 3.4, with one component, the variance only along
PC1 can be captured, with two components however, the entire variance is
captured. This leads to the formulation of fraction of explained variance as
a measure of fit for the PCA model.

Fraction of Explained Variancek =
λk∑n
k=1 λk

. (3.9)
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When k = n the fraction of variance = 1. A curve of fraction of explained
variance vs k is drawn and a cut-off value for fraction of explained variance
is taken. For instance, the number of components which capture say 0.85 or
0.9 of the total variance

∑n
k=1 λk is chosen. Plotting a fraction of variance

curve for the 3 dimensional toy dataset of Figure 3.3 is not very useful, since
the number of dimensions is just 3 and with 2 dimensions all the variance is
captured. Hence we take another toy dataset of 10 dimensions. The first 5
dimensions are Gaussian distributed variables, and the next 5 are the square
of these variables.

Figure 3.5 shows the plot of fraction of variance for the 10 dimensional
toy data described above.
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Figure 3.5: Fraction of Variance plot for 10 dimensional toy data. Elbow in
the curve is an indicator for choosing appropriate number of PCs.

We can observe an elbow in the curve, which means that adding another
component increases the fraction of variance only marginally. Then the num-
ber of components which correspond to the elbow in the curve is taken.

Another method to measure PCA fitness is the reconstruction error, de-
fined as the L2-norm between the reconstructed data points and the original
data points.
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E(k) =
1

m

m∑
i=1

||x̂i − xi||2. (3.10)

The reconstruction error is a decreasing curve, and reaches 0 when k = n.
The reconstruction error for the 10 dimensional toy dataset is shown in Figure
3.6.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Number of Principal Components

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

Elbow in Curve

Figure 3.6: Reconstruction error for 10 dimensional toy data. Similar to
Figure 3.5, the elbow in the curve is an indicator for choosing appropriate
number of PCs.

Similar to the previous figure, there will be an elbow in the curve, where
the rate of decrease is marginal. This point is taken as the optimal number
of components.

3.2.2 T 2 and Q statistic

The above two measures of fitness are a characteristic of the entire dataset.
To characterize each data point and to determine how well the PCA model fits
each data point, two measures of fitness with respect to distance of points
have been used in the thesis. These are T 2 and Q statistic [17],[18]. T 2

distance measures the distance of a data point score from the origin of the
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PC space, while Q distance is the perpendicular distance of a data point
from the PCA hyperplane. These are illustrated for the 3 dimensional toy
dataset, in Figures 3.7 and 3.8.
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Figure 3.7: Illustration of T 2 distances for 2 dimensional scores. µ±σ2 limit
of the Gaussian distribution is shown in the red ellipse.

Most of the scores of data points in Figure 3.7 lie close to the origin of the
2 dimensional PC plane, but there are certain points which are far away from
the origin, thus showing a large T 2 distance, and variation within the model.
In Figure 3.8 there are certain points which lie at high distances above or
below the PC plane, and thus have a large Q distance, hence showing large
variation outside the model.

The T 2 and Q distance for a PCA model with k components for the ith
data point with scores ti is given as follows:

T 2
i,k =

k∑
l=1

t2i,l
λl
. (3.11)

The sum in the right hand side of Equation (3.11) is called the Maha-
lanobis distance, since the components of the scores are normalized by their
corresponding eigenvalues. The general equation for the Mahalanobis dis-
tance for data point xi and with score ti is given by:
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Figure 3.8: Illustration of Q distances for 3 dimensional data points. µ± σ2

limit of the Gaussian distribution in the red ellipse, and PC hyperplane are
shown.

DM = tiD
−1tTi . (3.12)

It can be seen that Equation (3.12) is the same formulation as Equation
(3.11).

The Q distance for ith datapoint and k PCs is defined as follows:

Qi,k = ||xi − µ− tiP
T
k ||2. (3.13)

The Q statistic is another name for the reconstruction error that was de-
scribed in Equation (3.10). The difference being that Q statistic is calculated
per data point, while reconstruction error is calculated for the entire dataset.

To detect if a data point has an unusually high value of T 2 or Q, there
is a need for a bound on T 2 distance and Q distance. Thus a cut-off distance
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is defined such that the probability of finding a point beyond this distance
is low. In other words, the cut-off distance must ensure that majority of the
data points are present at distances less than the cut-off distance. Hubert et
al [14] have provided a probabilistic method to estimate the cut-off distances.
The cut off on the T 2 distance for k components, T 2

limk
can be calculated

by assuming that the squared value T 2
i,k of normally distributed scores are

approximately k-variate chi-square distributed. Thus the square root of the
inverse of the Chi-square distribution for a confidence value of 97.5% can be
used to calculate T 2

limk
. To calculate the Q distance limit for k components

Qlimk
, it is assumed that the squares of the cube roots of the Q distances,

Q
2
3
i,k are normally distributed. Thus the inverse of the normal distribution

with mean µ(Q
2
3
i,k) and standard deviation σ(Q

2
3
i,k) with the same probability

value of 0.975 is calculated to obtain Qlimk
.

A point could be an outlier due to its T 2 distance, its Q distance or
both. Hence, an outlier map can be drawn for all the scores with respect to

the ratio
T 2
i,k

T 2
limk

and
Qi,k

Qlimk

for all i,k.

This completes the discussion of PCA. Next, we move to Multidimen-
sional Scaling (MDS).

3.3 Multidimensional Scaling

Multidimensional Scaling (MDS) refers to a family of dimensionality reduc-
tion techniques in which the main objective is to preserve pairwise distance
among instances [5]. The initial methods which were developed used the Eu-
clidean Distance between data points, this is known as classic metric MDS
[32]. It can be proved that classic metric MDS and PCA are equivalent.
Please refer to Appendix B for a simple proof. Over the years, many non-
linear methods have been used for MDS, the most common method among
them being Sammon’s mapping [28]. This thesis is restricted to classic metric
MDS.

Classic Metric MDS is not a true distance-preserving method since it
preserves pairwise scalar products and not the distances. However, pairwise
Euclidean distances can be transformed into scalar products and then Classic
Metric MDS can be applied. It is a useful technique when the number of
features per instance n is very high, for instance n ≥ 104 and the number of
instances is much less than the number of features (m << n). Calculating
the covariance matrix of such a dataset would involve calculating a huge
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n × n matrix, which would be cumbersome and may not fit into memory.
So instead of using the covariance matrix, the first step is to calculate the
m×m normalized inner product matrix Ip.

Ip =
1

m
(X− µ)(X− µ)T . (3.14)

Then EVD of Ip is performed. Thus we get the following equation after EVD
similar to Equation (3.6).

Ip = PDPT . (3.15)

A k dimensional representation of the dataset, where k < m, is obtained
by taking k columns out of m from D, thus obtaining a m×k smaller matrix
Dk. The MDS scores ti for the ith data point are obtained as follows:

ti = piD
1/2
k . (3.16)

However, the above equation cannot be used for test data. For test data,
we use the equivalance of classic metric MDS and PCA and obtain the eigen-
vectors of the covariance matrix C from EVD of Ip, and then use Equation
(3.7). This is becuase the eigenvalues of XTX and XXT are equal [7], and
thus the eigenvectors of XTX and XXT are related by a linear transforma-
tion. More details regarding this can be found in Appendix B.

Reconstruction of the original data point from the MDS scores is done as
follows:

x̂i = tiD
1/2
k

T
. (3.17)

For reconstruction of test data, first eigenvectors of C are calculated from
EVD of Ip and then Equation (3.8) is used.

To calculate an error measure for MDS, the reconstruction is calculated
according to equation (3.17) and the reconstruction error can be calculated
as illustrated in Equation (3.10). Also, the T 2 and Q statistics that were
defined in Section 3.2.2 can be similarly defined for MDS.

In the next section, the music dataset and the feature transformation
methods used on the dataset are described.

3.4 Multiway Data for Music Collection

As the previous chapter demonstrated, each song is represented by its mel
spectrogram. Thus a collection of songs would be represented by their indi-
vidual mel spectrograms. Since the length of each song is different, a 3-way
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Figure 3.9: 3 way Tensor Representation of Music Collection X. Each song
has Ki frames and n features.

tensor data X for the music collection is obtained, which is represented in
Figure 3.9.

Hence, each audio track or song, gets represented by a data matrix Xi ,
i = 1, ...,m of Ki frames and n features. To decompose this 3-way tensor, two
linear projection methods have been used, Multiway Principal Component
Analysis (Multiway PCA) and Multilevel Simultaneous Component Analysis
(MLSCA).

3.5 Multiway PCA

Multiway PCA is a generalization of Principal Components Analysis
to multiway arrays. Multiway data occurs where there is a set of batches
or iterations, and in each batch there is a multiway matrix of variables. In
the case of 3-way data, there is a set of batches and a set of 1-way variables
varying across time. The decomposition of 3-way data is done by allowing
the batches direction to be expressed as vectors and the other directions by a
2-way array, and the Kronecker product between the two is calculated. Thus
the 3-way music collection X can be decomposed for k components as follows
[37], [36]:
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X =
k∑
i=i

ti ⊗Pi + E. (3.18)

ti denotes the score vector and Pi denote the loading matrices for each
component respectively. Note the presence of Kronecker product, thus mak-
ing it a sum of k 3-way arrays and a residual E. It can be shown that the
decomposition given in Equation (3.18) can be converted to a 2-way PCA by
unfolding.

3.5.1 Unfolding for 3-way PCA

As demonstrated in Section 3.4, the input data is not 2-way matrix, but a 3-
way tensor with one direction having unequal number of dimensions per song,
the frames direction. For regular PCA to be applied, this 3-way tensor must
be unfolded. Unfolding is the process where a 3-way tensor is collapsed into
a 2-way data matrix. This unfolding method has been described in detail for
a different application in Timo Honkela’s Grounded Intersubjective Concept
Analysis (GICA) model [13]. Since there are 3 directions to view the tensor,
unfolding could be done in 3 ways. However, for this dataset, there are only
2 unfoldings of interest and practicality. The first type of unfolding is along
the songs direction, and the second one along the frames direction. Both
methods are described below.

3.5.1.1 Unfolding along songs

Here the dataset X is unfolded in such a way that the data matrix of each song
is placed beneath the other, thus getting a matrix Xunf.songs of dimension
K × n, K denotes the sum of all frames of all the songs in the collection.
Thus, K = Σm

i=1Ki. Figure 3.10 provides a pictorial representation of the
same.

In this case, regular PCA algorithm as described in Section 3.2, can be
used. Thus for each song matrix Xi a song wise score representation Ti,k

with k PCs is obtained, it is thus the Equation (3.7) applied to a matrix.

Ti,k = XiPk. (3.19)

The reconstruction of the song is obtained similar to Equation (3.8).

X̂i = Ti,kP
′
k. (3.20)

The calculation of the reconstruction error, however undergoes a slight
modification due to the presence of song matrices. The Average Root Mean
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Figure 3.10: Dataset X unfolded along songs. Each song matrix Xi is placed
beneath other song matrices to produce a

∑m
i=1Ki × n matrix Xunf.songs.

Square (RMS) Error measure is used. This error is defined as the RMS
error taken across all frames, and then averaged by the number of features.
Mathematically,

µRMS(i) =
1

n

n∑
j=1

√
ΣKi

k=1(Xi,j,k − X̂i,j,k)2

Ki

. (3.21)

Another error measure which could be used is the Frobenius norm between
Xi and X̂i.

Thus, unfolding along songs helps to characterise the framewise evolu-
tion of each song and build a PCA model for all the frames in all the songs.
No data is truncated before applying the PCA model. Since each song is
represented by its own data matrix Xi, measuring distances or similarities
betweeen two songs cannot be done by using the PCA scores, since the ma-
trices are not of the same size. One possibility is to calculate a mean vector
for each song and use a distance measure, such as the Euclidean distance,
between the two mean vectors. However, since the mean is highly sensitive to
outliers, this method would not give satisfactory results. Thus probabilistic
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methods have to be used to characterise the frame-wise behaviour of each
song, in order to build a global song model. One such probabilistic method
based upon Gaussian Mixture Models of MFCCs has already been developed
by Accourtier and Pachet [3], and more improvements have been made by
subsequent researchers, yielding promising results. Thus applying a global
song model on the PCA scores looks to be an interesting work for the future.

3.5.1.2 Unfolding along frames

In this method, the dataset X is unfolded along the frames direction. This is
achieved by concatenating all the frames of a particular song adjacent to each
other. This would mean that in the resultant dataset matrix, every row vector
corresponds to a single song. Hence it is a convenient approach to represent
each song as a single feature vector and not as a collection of frames. For
tasks like song similarity the distance between the individual feature vectors
can be calculated. However, this method suffers from a weakness. Since all
the songs are not of the same length, the number of features in this new
dataset is different per instance. Thus, thresholding needs to be performed.
Again, thresholding can be done in a variety of ways, thresholding upto the
length of the shortest song.

1. Start from the beginning of each song,

2. Start from the end of each song and go backward, cut off at threshold
point described above, or

3. Cut off from the middle of each song.

The unfolding has been pictorially described in Figure 3.11.
Thresholding method 1 has been used in this thesis, in order to obtain a

matrix Xunf.frames of dimension m × nKsh, where Ksh denotes the number
of frames of the shortest song. Usually, the order of magnitude of Ksh = 103.
Then the order of magnitude of the number of features nKsh would be 104,
which is an extremely high value. Also, the number of features nKsh >>
number of instances m. If classic PCA as described in Section 3.2 is applied,
a covariance matrix of order of 104 × 104 would have to be calculated. Since
this calculation would be cumbersome, PCA is not applied, instead MDS as
described in Section 3.3 is used. This results in a dimensionality reduction
where number of reducible dimensions k is in the range 1 ≤ k ≤ m. It differs
from the classic PCA case where 1 ≤ k ≤ n.

The scores for a particular song i, can be defined similar to Equation
(3.16) and the reconstruction can be performed similar to Equation (3.17).
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Figure 3.11: Unfolding Along frames. Each song is represented by a single
feature vector. Then thresholding to the shortest number of frames Ksh is
done, obtaining a m× nKsh data matrix Xunf.frames.

For test data, we use the equivalence between classic metric MDS and PCA
as described earlier.

ti = piD
1/2
k . (3.22)

x̂i = tiD
1/2
k

T
. (3.23)

3.6 Multilevel Simultaneous Component Anal-

ysis

The main weakness in Multiway PCA described above is that the 3-way data
needs to be unfolded. Instead of trying to develop a model for the entire song
collection, a model for each song can be developed. This provides the basis
for Multilevel Simultaneous Component Analysis (MLSCA). In this method,
a model is developed for each song as an additive combination of a global
mean, between song components and within song components. It has been
used in chemometrics to analyse process or chemical experiment data [8]. A
rigorous mathematical understanding of simultaneous component analysis is
provided in [31].

Every song Xi, each of Ki frames and n features uses the following model:
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Xi = 1Ki
m + 1Ki

tb,iP
T
b + Tw,iP

T
w + Ei. (3.24)

The right hand side of Equation (3.24) has three addition terms and a
reconstruction error or residual term Ei. The main objective of MLSCA is
to minimize the reconstruction error in the least square sense over all songs
in the training set. In other words, the model parameters are calculated in
such a way that the sum of squares of the L2-norm of the reconstruction error
over all m songs

∑m
i=1 ||Ei||22 is minimized. Thus a set of model parameters

is obtained as shown below:

F (m, tb,i,Pb,Tw,i,Pw) =
m∑
i=1

||Xi − 1Ki
m− 1Ki

tb,iP
T
b −Tw,iP

T
w||22. (3.25)

subject to constraints Σm
i=1Kitb,i = 0 and 1′Ki

Tw,i = 0, for i = 1, ...,m.
The three additive terms on the RHS of Equation (3.24) from left to right
are the global mean, between song part, and within song part respectively.
Mathematically it can be proven that these three parts of the MLSCA model
can be solved separately [31]. Next, each part of the model is described in
detail below.

Global Mean The global mean m is calculated by unfolding the dataset X
along the songs direction as described in Section 3.5.1.1 and then calculating
the mean vector of the resultant unfolded matrix Xunf.songs. 1Ki

in Equation
(3.24) denotes a vector of ones as long as the number of frames in the current
song Ki. Thus, the first addition term consists of the global mean repeated
as many times as there are frames in the current song Ki.

Between Songs Part To calculate the second part or the between song
part of the model, the mean of each song is calculated, and the mean vectors
of all songs xb,i, i = 1, ...,m are stacked together, obtaining a m× n matrix
Xb of means. Next, a diagonal matrix Wb is constructed, such that Wbii =√
Ki. Then Singular Value Decomposition (SVD) is performed on the matrix

WbXb.

WbXb = UbSbV
T
b . (3.26)

Here Ub denotes the left singular matrix, Sb a diagonal matrix of sin-
gular values and Vb, the right singular matrix. In order to perform feature
transformation, the right singular vectors corresponding to the first Rb ≤ n
singular values arranged in decreasing order are taken. Thus the first Rb
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columns of Vb and Ub producing smaller submatrices VRb
and URb

, and an
Rb ×Rb subset of Sb, SRb

are required.
The betweeen song scores Tb of all songs and between song loadings Pb

are calculated as follows [8]. Note that tb,i, the between song scores for the
ith song, is the ith row vector of Tb.

Tb = W−1
b URb

. (3.27)

Pb = VRb
ST
Rb
. (3.28)

However, the betweeen song scores in Equation (3.27) needs to be ex-
pressed in terms of the right singular matrix VRb

and not the left singular
matrix URb

, so that it can be generalized to new test data points. This is
because the number of rows in URb

= m, but VRb
is of dimension n × Rb,

independent of number of songs m. Using some matrix manipulations, this
can be achieved. Proceeding from Equation (3.26) but replacing the matrices
on RHS with Rb components,

WbXb = URb
SRb

VT
Rb
. (3.29)

Multiplying both sides by VRb
, it can be further simplified as:

WbXbVRb
= URb

SRb
. (3.30)

Note: VT
Rb
VRb

= I, the identity matrix. This is becuase since Vb is
orthogonal, the columns of VRb

are orthogonal to each other.
Since SRb

is a Rb ×Rb diagonal matrix, we have

S−1Rb
SRb

= SRb
S−1Rb

= I. (3.31)

Thus, multiplying both sides of Equation (3.30) by S−1Rb
, we have

WbXbVRb
S−1Rb

= URb
SRb

S−1Rb
. (3.32)

Using the result of Equation (3.31) and substituing that in the RHS, we
get

URb
= WbXbVRb

S−1Rb
. (3.33)

Mutiplying on the LHS of the terms by W−1
b , we obtain

W−1
b URb

= XbVRb
S−1Rb

. (3.34)
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The LHS of the Equation above is the between songs scores as given in
Equation (3.27). So finally, the between songs scores and loadings can be
expressed as follows:

Tb = W−1
b URb

= XbVRb
S−1Rb

. (3.35)

tb,i = xb,iVRb
S−1Rb

. (3.36)

Pb = VRb
ST
Rb
. (3.37)

In other words, the between song scores are obtained by multiplying the
mean vector for the ith song xb,i by the loading matrix VRb

, and then scaling
down by the singular values present in SRb

.
To reconstruct the mean vector of the song data matrix multiply the be-

tween song scores tb,i with the transpose of the between songs loading matrix
Pb. Then the reconstructed mean vector is replicated for Ki frames. This
corresponds to the second additive term of Equation (3.24). The between
songs part of the model tries to model the inter song variations and is con-
trolled by the number of between song components Rb. Higher is the value
of Rb, better is the reconstruction.

Within Songs Part The third additive part of Equation (3.24) is the
within song part, and tries to model the intra song data. Each song is now
centered around its own mean xb,i (calculated in the previous part), and
then all the mean centered versions of each song is unfolded along the songs
direction. This is similar to Xunf.songs, but here the song is centered around
its own mean. So, Xw,i = Xi − 1Ki

xb,i for i = 1, ...,m, is obtained and then
all the Xw,i are stacked together, giving the K × n within song matrix Xw.
Next, SVD is performed on Xw.

Xw = UwSwV
T
w. (3.38)

Similar to the between songs part, the number of within song components
Rw ≤ n are chosen, to get smaller submatrices of the right singular orthogonal
matrix Vw and diagonal matrix Sw, taking the first Rw singular values. This
orthogonal loading matrix VRw , is used to project the within song data. Thus
the within song scores for the ith song Tw,i and loadings Pw are obtained as
follows:

Tw,i = Xw,iVRw . (3.39)

Pw = VRw . (3.40)

To reconstruct the within song data, the transpose of Pw is taken and
multiplied with Tw,i, as depicted in third part of Equation (3.24).
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The three parts of the model are now added to calculate the recon-
structed song X̂i = 1Ki

m + 1Ki
tb,iP

T
b + Tw,iP

T
w.

3.6.1 Measures of Fitness

Since MLSCA returns a reconstruction for each song, the average RMS error
for each song as introduced in Equation (3.21) can be calculated, and a plot
of the mean average RMS error over the entire dataset can be drawn. The av-
erage RMS error plot is now a surface, since there are two parameters Rb and
Rw controlling the amount of reconstruction. The proportion of explained
variance for the singular values in the between part and the within part can
be plotted separately, to choose appropriate values for Rb and Rw. Details
of the validation part and selecting appropriate number of components is
provided in the next chapter.

3.6.2 T 2 and Q statistic

The T 2 and Q statistics can be defined similar to Section 3.2.2. However,
it should be noted that unlike PCA or MDS, there are two constituent sub-
models in MLSCA, the between song part and the within song part. Each
has its own scores and loadings, and thus T 2 and Q statistics have to be
developed for both between song hyperplane and within song hyperplane
separately.

3.6.2.1 Between song hyperplane

In the between song part of Section 3.6, we had seen the between song scores
and loadings defined according to the paper [8]. But for the between song
T 2 calculation, we do not use these scores. Instead, we use the SVD defined
scores which do not involve scaling down by singular values unlike Equation
(3.36). We use a new set of scores tSb,i

, defined as follows:

tSb,i
= wb,iXbVRb

. (3.41)

Here the term wb,iXb is the same as scaling up each component of the
mean song vector xb,i by

√
Ki. Then similar to Equation (3.11), we can

define the between song T 2 distance. But we also require the eigenvalues of
the covariance matrix of WbXb. How do we obtain eigenvalues, when we
only have the singular values present in SRb

? For this, we need to utilize the
connection between eigenvalues and singular values.

Given any matrix X, it can be proved that non-zero singular values of X
are the square roots of the non-zero eigenvalues of outer product matrix XTX
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and inner product matrix XXT , provided X is mean centered. Appendix B
provides a simple proof.

Also, when X is mean centered, the outer product matrix is just a scaled
version of the covariance matrix, the scaling factor being 1

m−1 . So, we mean
center the matrix WbXb, calculate the SVD of the mean centered matrix,
and store the vector of singular values σbmc . Then the eigenvalues of the
covariance matrix of WbXb can be calculated as:

λb =
1

m− 1
diag(σbmc)σbmc . (3.42)

The expression on the RHS of the previous equation refers to squaring
each element of the vector σbmc . Now, once the eigenvalues are obtained, we
can define the between song T 2 distance for ith song and Rb retained between
song components, similar to Equation (3.11).

T 2
b,i,Rb

=

Rb∑
l=1

t2b,i,l
λb,l

(3.43)

where tb,i,l and λb,l are the lth elements in tb,i and λb respectively.
The between song Q distance for the ith song can also defined similar to

Equation (3.13). It can be defined as follows for Rb retained between song
components. Here we use the between song scores and loadings as defined in
Equations (3.36).

Qb,i,Rb
= ||wb,iXb − tb,iP

T
b ||2. (3.44)

Thus, the between song hyperplane characterizes each song with a T 2

distance and a Q distance. An outlier map can be drawn for each song based
on their T 2

b,i,Rb
and Qb,i,Rb

. Hence it is similar to the unfolding along frames
described in Section 3.5.1.2.

3.6.2.2 Within song hyperplane

For the within song hyperplane, the scores and loadings as defined in Equa-
tions (3.39) and (3.40) are used. However, unlike the previous section where
a T 2 and Q distance is obtained per song, a T 2 and Q distance is obtained
per frame of the song. The eigenvalues of the covariance matrix of within
songs matrix Xw are needed for computing the T 2 distance, these can be
calculated in a similar manner as was calculated for the between song hyper-
plane. Then the T 2 and Q distance for the jth frame in the ith song can be
defined as follows for Rw retained within song components:
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T 2
w,j,i,Rw

=
Rw∑
l=1

t2w,j,i,l

λw,l

. (3.45)

Qw,j,i,Rw = ||xw,j,i − tw,j,iP
T
w||. (3.46)

where tw,j,i,l denotes the lth component of the within song score vector
for jth frame in ith song tw,j,i and λw,l, l = 1, ..., Rw are the eigenvalues of
the covariance matrix of Xw.

Thus, the within song hyperplane characterises each song with a set of
T 2 and Q distances. A limit can be placed on each distance measure and we
can calculate for each song the number of frames exceeding the T 2 and Q
limits. Thus, it is similar to the unfolding along songs described in Section
3.5.1.1.

Thus, it is evident that MLSCA is a model that tries to capture both
between song variations and within song variations. The inter song variations
are modelled by the between song sub-model, which is the second addition
term of Equation (3.24), where the mean vector of each song is reconstructed.
This portion is similar to unfolding along frames. The intra song variations
are modelled by the within song sub-model, represented in the third addition
term of Equation (3.24), where the song mean centered around its own mean
is modelled. This replicates the unfolding along songs.

Thus, MLSCA is a composite model that tries to capture both the un-
foldings of multiway PCA as described in section 3.5.1.

3.7 Conclusion

In this chapter, a brief overview of the methods for dimensionality reduction
used in the thesis was provided. Then the methods Multiway PCA, and
MLSCA were discussed in detail. The next chapter discusses the experimen-
tal setup to test these methods.



Chapter 4

Experiments

4.1 Introduction

In the previous Chapter 3 we had seen how we can apply multiway techniques
for dimensionality reduction. Some measures of fitness were described in
Section 3.2.1, to choose the number of components. In this chapter, we
describe the process to select the appropriate number of components using a
separate validation dataset. There are several validation techniques available
like Hold out Cross Validation, k-fold Cross Validation, Leave One Out Cross
Validation etc. Due to the large number of data points, we chose to do Hold
out Cross Validation. This is explained in Section 4.4 and Section 4.5.

Once the validation process is complete and appropriate number of com-
ponents is selected, we retrain the model using both the training and valida-
tion datasets, and report the results on the test datasets. Then we calculate
how well the model fits the data using the T 2 and Q statistics described in
section 3.2.2.

4.2 Dataset Description

The personal music collection consists of 903 songs, divided across 5
major classes according to language: English Pop/Rock music, Hindi film
soundtracks and Hindi Pop/Rock music, soundtracks from two regional lan-
guages and some classical/ instrumental music. Since the average length of
the songs in the collection was around 3 minutes, it was decided to partition
the dataset into songs greater than 3 minutes and songs less than 3 minutes.
Then, from the set of songs greater than 3 minutes, a random sample of 50%
of the songs was chosen for the training dataset. The next 25% were chosen
for the validation dataset and the next 25% were segregated for the test set.
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Figure 4.1: Pictorial representation of Dataset. Shaded portion shows songs
less than 3 minutes, which are part of extra test dataset.

The songs less than 3 minutes in duration formed part of an extra test set.
This is pictorially shown in Figure 4.1.

4.3 Implementation Details

Each song, which was stored as an mp3 file, was read into the Matlab pro-
gramming environment using the mp3read function developed by Dan Ellis
1. Next, the audio was downmixed to a single channel and all songs were re-
sampled to a sampling rate of 44.1 kHz. Then, a Hamming window of length
200 ms and with 50% overlap was used to calculate the spectrogram, and a
30 mel filter bank was used to calculate the mel spectrogram. The code for
the mel filter bank was based on Malcom Stanley’s Auditory Toolbox [29].

The training set was then mean centered. An additional training set with
mean centered and unit variance was also created. The two datasets were
then trained using the different approaches described in Chapter 3. The
dimensionality reduction toolbox developed by Laurens van der Maaten [34]
was used for implementing the dimensionality reduction algorithms.

1http://labrosa.ee.columbia.edu/matlab/mp3read.html
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4.4 Validation Procedure for multiway PCA

4.4.1 Method 1

To choose the number of Principal Components for the two unfoldings of Mul-
tiway PCA described in Section 3.5.1, we use the Predicted Sum of Squares of
Residuals (PRESS statistics) for validation [17]. The square of the Q statistic
as described in Section 3.2.2 when applied to a validation set, is known as
PRESS. A simple procedure for cross-validation is provided in Page 354 of
[17], for a general dataset X with m instances, and n features. It is described
in the following steps:

1. Divide the dataset into training and validation datasets as described
in Section 4.2, and perform the unfolding and subsequent PCA on the
training set, as described in Section 3.5.1.

2. For each data element xval in themval×nval validation dataset, calculate
its Q statistic Qval,k for all components. The PRESS statistic for k,
0 ≤ k ≤ n is defined as follows:

PRESS(k) =



∑
xvalx

′
val

mvalnval

, if k = 0

∑
Q2

val,k

mvalnval

, if k > 0

. (4.1)

PRESS(0) refers to normalized sum of squares of the original data, and
PRESS(k > 0) refers to the normalised sum of squares of Q statistics
with k components.

3. Calculate the value of statistic W1(k) as given by the following equation
for all k PCs, 1 ≤ k ≤ n [17]

W1(k) =
PRESS(k − 1)− PRESS(k)/Dm

PRESS(k)/Dr

. (4.2)

where Dm = m+ n− 2k and Dr = n(m− 1) +
∑k

i=1(n+m− 2i).

4. Retain all those PCs for which W1(k) > 1.

4.4.2 Method 2

Another method of choosing the number of validation components is by using
both the PRESS and RESS [1]. Here RESS denotes residual sum of squares
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over the training set. It can be defined similar to Equation 4.1 as follows, for
the mtr × ntr training set Xtr

RESS(k) =



∑
xtrx

′
tr

mtrntr

, if k = 0

∑
Q2

tr,k

mtrntr

, if k > 0

. (4.3)

Using the RESS and PRESS statistics, we define this term W2(k) for k
retained components [1]:

W2(k) = 1− PRESS(k)

RESS(k − 1)
. (4.4)

Only the components with W2(k) ≥ 0 are retained.

4.4.3 Method 3 - Fraction of Variance

If both methods as described above do not yield any result, then the fraction
of explained variance plot as described in Section 3.2.1 can be used. A cut
off threshold of 0.9 on the fraction of explained variance is used to select an
appropriate number of components.

4.5 Validation Procedure for MLSCA

For MLSCA, the same procedure as presented in Section 4.4 can be used.
However, it is performed twice, one for the selection of between song compo-
nents Rb and another for within song components Rw. Keeping Rb constant,
the change in PRESS statistic is observed to select an appropriate Rw. Next,
Rw is kept constant, and an appropriate value of Rb is chosen using the afore-
mentioned PRESS statistics.

4.6 T 2 and Q statistics

To find out how well the models fit the data, the T 2 and Q statistics as
described in the previous chapter are used. An outlier map is created which
shows the distribution of the data points and their T 2 and Q cutoffs. For the
unfolding along songs method, each song has its own outlier map, whereas for
the unfolding along frames a single outlier map can be drawn for the entire
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dataset. The MLSCA analysis needs to be broken down into the within
song part and the between song part. The within song part corresponds to
the unfolding along songs while the between song part corresponds to the
unfolding along frames.

From each method, we select 6 representative songs. These are as follows:

1. song with maximum T 2,

2. song with maximum Q,

3. song with maximum T 2 and Q,

4. song with minimum T 2,

5. song with minimum Q and

6. song with minimum T 2 and Q.

We then perform a cross comparison: i.e. for the 6 representative songs
selected by one method, how did they appear in another method. For in-
stance, the song with maximum T 2 in one method, is it also the song with
maximum T 2 in another method and vice-versa.

4.7 Conclusion

Thus in this chapter, the purpose and motivation for the experiments has
been explained and all the experiments described. The next chapter infers
the results of these experiments.





Chapter 5

Results

This chapter discusses and interprets the results for the experiments carried
out in Chapter 4. Each method has results for three experiments: selection
of number of components to be retained, error on test set with retained
components, and results of T 2 and Q statistics. Additional observations are
discussed separately.

5.1 Multiway PCA Unfolding along songs

5.1.1 Selection of number of components

Section 4.4 describes two methods to choose an appropriate number of com-
ponents. Method 1 uses only PRESS statistics, while Method 2 uses both
PRESS and RESS statistics. Both these methods are applied, and the results
of these are provided in Figures 5.1 and 5.2.

We can see that for Method 1 W1(k) > 1 and in Method 2 W2(k) ≥ 0
for all k, so both these methods fail to select an appropriate number of
components to retain. Thus we use the fraction of explained variance, shown
in Figure 5.3. Based on the fraction of explained variance, we see that 90%
of the variance is explained by both mean centered and mean centered unit
variance datasets when 5 components are selected.

5.1.2 Test Set Generalisation

Thus we retain 5 components and check the error on the validation set with
5 components. Figure 5.4 shows how the average validation error decreases
with increase in number of components. Next, we move to the test set. With
5 retained components, we obtain an error of 0.4862 on the mean centered
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Figure 5.1: Result of using Method 1 used to select number of components
in Unfolding along songs. W1(k) > 1 for all k, so this method fails.
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Figure 5.2: Result of using Method 2 used to select number of components
in Unfolding along songs. W2(k) ≥ 0 for all k, so even this method fails.
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Figure 5.3: Fraction of Explained Variance with 90% cut off suggests 5 re-
tained components.

test set and 0.3229 on the mean centered unit variance test set. Both results
for test and extra test dataset are summarized in Table 5.1.

5.1.3 T 2 and Q statistics on Test Data

Next, we calculate the T 2 and Q statistics on the test set. Unfolding across
songs produces a T 2 and Q statistic for each frame in each song, so for
each song we find the fraction of frames that exceed the prescribed T 2 and
Q limits. These limits are calculated according to Section 3.2.1. Thus an

Dataset Optimal PCs Average
Test
Error

Average
Extra
Test
Error

Mean Centered 5 0.4862 0.4539
Mean Centered Unit Variance 5 0.3229 0.3013

Table 5.1: Test Error and Extra Test Error for Unfolding along songs with 5
retained components.
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Figure 5.4: Average Validation Error decreases with increase in number of
components. When all 30 components are used, the error on validation set
goes to 0.

outlier map can be drawn for each song in the dataset. Two representative
outlier maps are shown in Figures 5.6 and 5.8. Their corresponding T 2 and
Q plots are shown in Figures 5.5 and 5.7 respectively. These are the songs
that have maximum and minimum number of frames exceeding both the
limits. We observe that, in both songs there are very few frames that break
the T 2 and/or Q limits, illustrating that the PCA model with 5 retained
components was able to capture most of the data. Hence, it shows that the
dimensionality reduction from 30 to 5 is appropriate.

5.2 Multiway PCA Unfolding along frames

5.2.1 Selection of number of components

The results are summarized in Table 5.2, and Figures 5.9 and 5.10.
Method 1 suggests a higher number of components than Method 2. To

choose between the two methods, we use the fraction of explained variance.
We observe that there is a 6-7% increase in the fraction of explained variance
if Method 1 is chosen instead of Method 2. Also the fraction of variance values
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Figure 5.5: Individual T 2 and Q plots for song with maximum no of frames
exceeding T 2 and Q limits.
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Figure 5.7: Individual T 2 and Q plots for song with minimum no of frames
exceeding T 2 and Q limits.
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Figure 5.9: Unfolding along Frames Selection of number of components by
Method 1.
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Figure 5.10: Unfolding along Frames Selection of number of components by
Method 2.



CHAPTER 5. RESULTS 68

Dataset Optimal
Features
Method 1

Optimal
Features
Method 2

Percentage
explained
variance -
Method 1

Percentage
explained
variance -
Method 2

Mean Centered 13 5 35.8% 29.45%
Mean Centered
Unit Variance

10 3 29.45% 23.47%

Table 5.2: Suggested number of retained components using both validation
techniques described in Section 4.4 for Unfolding along frames.

are quite less, the maximum being only 0.36. This is becuase the maximum
number of reducible dimensions is equal to the number of instances m, which
is greater than 400, and not the number of features n = 30 as in the previous
case. Thus we retain 13 components for the mean centered dataset and 10
components for the mean centered unit variance dataset. We then check the
validation error obtained with these components. The validation error for all
components is shown in Figure 5.11. Note that unlike PCA, the validation
error does not decrease to 0.
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Figure 5.11: Unfolding along Frames Validation error for all components.
The error descreases but does not reach 0 when all components are selected.
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5.2.2 Test Set Generalisation

Now after selection of appropriate components, we move to the test set.
The mean centered test dataset gives an error of 221.7 with 13 retained
components and the mean centered unit variance dataset an error of 227.6.
Notice that here, with all m compnents retained, the test error does not go to
0. This is because the maximum number of reducible dimensions m, which
is in the order of 102, is much less than the initial dimension nKsh whose
order of magnitude is 104.

5.2.3 T 2 and Q statistics

Here, a T 2 and Q statistics can be calculated for each song. Based on the
limit set on T 2 and Q distances, we can obtain a single outlier map for the
entire dataset. This is illustrated in Figure 5.12. The songs that were used
to draw outlier maps for the previous unfolding are depicted in red. Again,
we can observe from Figure 5.12 that very few songs are present beyond the
T 2 or the Q limits, indicating the MDS model fits the data well.
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Figure 5.12: Unfolding along Frames Outlier Map for Test Mean Centered
Dataset. For the purpose of cross-comparison, songs that were selected from
PCA Unfolding songs are shown in red.



CHAPTER 5. RESULTS 70

0 5 10 15 20 25 30
18

20

22

24

26

28

30

Average within song components R
w

 returned for between song components R
b

R
b

A
v
e
ra

g
e
 R

w

0 5 10 15 20 25 30
0

5

10

15

20

R
w

A
v
e
ra

g
e
 R

b

Average within song components R
b
 returned for between song components R

w

Figure 5.13: MLSCA selection of between song components Rb and within
song components Rw. When Rb is fixed and Rw is selected then Model2 with
(Rb,Rw)= (10,29) is suggested, and in reverse case Model3 with (Rb,Rw)=
(4,22) is suggested.

5.3 MLSCA

5.3.1 Selection of number of components

There are two sub-models in MLSCA - the between song sub-model and
the within song sub-model. We need to choose an appropriate Rb and Rw

separately. As discussed in Section 4.5, first Rb is kept constant and an ap-
propriate Rw is chosen using Method 1. We thus obtain a plot of appropriate
Rw for each value of Rb. Similarly, if Rw is kept constant and appropriate Rb

is calculated, we obtain a plot of appropriate Rb for all values of Rw. These
plots for the mean centered dataset are shown in Figure 5.13. The results
for the mean centered unit variance dataset are very similar.

We can observe that in the first figure of Figure 5.13 when we increase
Rb beyond 10, Rw does not increase beyond 29. So we can fix one candidate
model with (Rb, Rw) = (10, 29). From the second figure in Figure 5.13, we
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Figure 5.14: Fraction of explained variance with the between and the within
parts done separately, with the 90% cut-off threshold shown.

can observe a sudden increase in Rb, after Rb ≥ 4, once Rw ≥ 22. Thus we
can fix another candidate model with (Rb, Rw) = (4, 22). Also from the 90%
cut off on the fraction of explained variance for the between part and the
within part separately, shown in Figure 5.14, we obtain a third model with
(Rb, Rw) = (12, 23).

To decide between these three models, we look at the average RMS error
surface with the selected components. This is shown in Figure 5.15, with the
three candidate models shown in red. We can observe that an increase in
within song components Rw decreases the RMS error better than increase in
Rb. Thus we choose the final model with Rb = 10 and Rw = 29.

5.3.2 Test Set Generalisation

After the appropriate between songs components and within songs compo-
nents have been selected, we extend this model to the test set. The errors
on the test and extra test dataset are summarized in Table 5.3.
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Figure 5.15: Reconstruction Error Surface for Mean Centered dataset, with
the 3 candidate models shown in Red.

Dataset Optimal
Rb

Optimal
Rw

Average
RMS Error
(Test)

Average
RMS Error
(Extra Test)

Mean Centered 10 29 0.0313 0.0362
Mean Centered
Unit Variance

10 29 0.0209 0.0241

Table 5.3: Test Error and Extra Test Error for MLSCA with Rb = 10 and
Rw = 29.

5.3.3 T 2 and Q statistics - Between songs hyperplane

Next, we calculate T 2 and Q statistics for the between songs hyperplane.
This is similar to the Unfolding across frames, so we get an outlier map for
the entire dataset, similar to Section 3.5.1.2. This outlier map for the mean
centered dataset is shown in Figure 5.16.

5.3.4 T 2 and Q statistics - Within songs hyperplane

The T 2 and Q statistics are now calculated for the within songs hyperplane.
Similar to Section 3.5.1.1, we obtain an outlier map for each song. The
outlier maps of two representative songs - the song with maximum fraction
of frames exceeding T 2 and Q limits, and minimum frames exceeding T 2 and
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Figure 5.16: Outlier map for the MLSCA along the between songs hyperplane
for mean centered dataset. Songs selected in the unfoldings of Multiway PCA
are shown in red and green. As in the previous case of Unfolding along frames,
most songs are present within the T 2 and Q cut off limits.

Q limits are shown in Figures 5.17 and 5.18 respectively.

The between part of MLSCA is similar to PCA Unfolding along frames.
Hence Figures 5.12 and 5.16 are similar to each other. Similarly, the within
part of MLSCA is similar to PCA Unfolding along songs. If we compare the
sets of outlier maps in Figures 5.6 and 5.8 and Figures 5.17 and 5.18, we see
that MLSCA within part has more fraction of frames (5.48%) breaking the
T 2 and Q limits compared to PCA Unfolding along songs model (1.46%).

5.3.5 Cross Comparison

Now a cross comparison is performed, i.e. the songs that were obtained in
the PCA Unfoldings are compared with each other and with the two MLSCA
sub-models. There are 6 songs for each model as described in Section 4.6.
First, we start with PCA Unfolding songs, the 6 songs which are calculated
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Figure 5.17: Outlier map for the MLSCA within songs hyperplane for mean
centered dataset for song with maximum fraction of frames exceeding T 2 and
Q limits.
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as per Section 4.6 are now used in the other unfolding along frames. Table
5.4 in the second column lists these songs for the mean centered dataset
Ss1, ..., Ss6 and Table 5.5 lists the T 2/T 2

lim, Q/Qlim ratios and the ranking in
terms of descending order of

√
(T 2/T 2

lim)2 + (Q/Qlim)2 (which corresponds
to how far away a datapoint in terms of its T 2 and Q distance is from the
origin) of these 6 songs when unfolded across frames. If the ranking is lower,
then it is closer to the origin.

We observe that song Ss1 had the highest fraction of frames exceeding T 2

distance limit, however when unfolded along frames its ranking in terms of
decreasing order of distance is 142 (out of 219). It is interesting to note that
song Ss5 with the minimum numer of frames exceeding the Q distance limits
has the 12th highest distance in terms of T 2 and Q when unfolded along
frames. Song Ss5 if unfolded along the frames is an outlying point, however
when it is unfolded along the songs, it is not an outlier since it has the least
fraction of frames exceeding Q limits. Thus, we can conclude that if a song is
an outlier in one unfolding, it may not necessarily be an outlier in the other
unfolding.

Next, we do the reverse process i.e. take selected songs Sf1, ...., Sf6 from
the Unfolding along frames and unfold them along songs. Each song will
produce an outlier map, from which we calculate the fraction of frames ex-
ceeding T 2, Q and both T 2 and Q distance limits. Also, we get a ranking of
the song based on fraction of frames breaking both T 2 and Q distance limits.
These results are shown in Table 5.6. Here we see that song Sf2 when un-
folded along the frames is an outlier, and remains an outlier when unfolded
along songs direction.

Unfolding across
songs (5 PCs)

Unfolding across
frames (13 PCs)

Max T 2 Ss1 = 84 Sf1 = 117
Max Q Ss2 = 43 Sf2 = 125
Max T 2 and Q Ss3 = 43 Sf3 = 117
Min T 2 Ss4 = 88 Sf4 = 110
Min Q Ss5 = 203 Sf5 = 62
Min T 2 and Q Ss6 = 209 Sf6 = 110

Table 5.4: Song IDs for PCA Unfoldings along songs and along frames for
the mean centered dataset. These songs are compared from one unfolding
onto the other and the MLSCA.

The last step is to compare these selected songs with the MLSCA be-
tween song and within song sub-models. Tables 5.7 and 5.8 show the two
song sets with the MLSCA between songs model and Tables 5.9 and 5.10
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Song ID T 2/T 2
lim Q/Qlim Ranking (descending or-

der of distance from T 2,Q
origin

Ss1 0.3976 0.5716 142
Ss2 0.4345 0.7264 72
Ss3 0.4345 0.7264 72
Ss4 0.2236 0.5981 188
Ss5 0.7458 1.0032 12
Ss6 0.2726 0.6061 169

Table 5.5: Songs selected along PCA Unfolding songs from the mean centered
dataset now unfolded along frames direction.

Song ID Fraction
of frames
exceeding
T 2 limits

Fraction
of frames
exceeding Q
limits

Fraction
of frames
exceeding
both T 2 and
Q limits

Ranking
(descend-
ing order
of values
in previous
column)

Sf1 0.0412 0.0282 0.0027 142
Sf2 0.0692 0.0227 0.0072 8
Sf3 0.0412 0.0282 0.0027 142
Sf4 0.0217 0.0217 0.0013 205
Sf5 0.0364 0.0325 0.0034 96
Sf6 0.0217 0.0217 0.0013 205

Table 5.6: Songs selected along PCA Unfolding Frames from the mean cen-
tered dataset now unfolded along Songs direction.

show the cross-comparison on the MLSCA within song model. We observe
that the song set which was obtained through PCA Unfolding along songs
Ss1, ..., Ss6 have higher T 2 and Q distances in the MLSCA between songs
model and higher fraction of frames exceeding T 2 and Q distance limits in
the MLSCA within songs model compared to the Unfolding along frames
song list Sf1, ..., Sf6.

5.4 Other Observations

Another interesting pattern was observed for songs which contain silence.
The T 2 and Q ratios show an extremely high value in the silence section.
This was true for these ratios extracted from both PCA unfolding along
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Song ID T 2/T 2
lim Q/Qlim Ranking (descending or-

der of distance from T 2,Q
origin

Sf1 0.1215 0.6685 152
Sf2 0.1579 0.4626 214
Sf3 0.1215 0.6685 152
Sf4 0.0967 0.6575 161
Sf5 0.1543 0.7203 132
Sf6 0.0967 0.6575 161

Table 5.7: Songs selected along PCA Unfolding along Frames from the mean
centered dataset now used on the MLSCA between songs model.

Song ID T 2/T 2
lim Q/Qlim Ranking (descending or-

der of distance from T 2,Q
origin

Ss1 0.5632 0.9692 26
Ss2 0.5229 0.7504 69
Ss3 0.5229 0.7504 69
Ss4 0.6232 0.8474 37
Ss5 0.7712 0.5811 53
Ss6 0.7227 0.5236 77

Table 5.8: Songs selected along PCA Unfolding along Songs from the mean
centered dataset now used on MLSCA between songs model.

Song ID Fraction
of frames
exceeding
T 2 limits

Fraction
of frames
exceeding Q
limits

Fraction
of frames
exceeding
both T 2 and
Q limits

Ranking
(descend-
ing order
of values
in prev
column)

Sf1 0.1626 0.0499 0.0260 128
Sf2 0.1301 0.0344 0.0287 72
Sf3 0.1626 0.0499 0.0260 128
Sf4 0.1305 0.0560 0.0201 193
Sf5 0.1806 0.0595 0.0308 38
Sf6 0.1305 0.0560 0.0201 193

Table 5.9: Songs selected along PCA Unfolding along Frames from the mean
centered dataset now used on MLSCA Within songs model.
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Song ID Fraction
of frames
exceeding
T 2 limits

Fraction
of frames
exceeding Q
limits

Fraction
of frames
exceeding
both T 2 and
Q limits

Ranking
(descend-
ing order
of values
in prev
column)

Ss1 0.1889 0.0506 0.0503 2
Ss2 0.0648 0.0357 0.0261 126
Ss3 0.0648 0.0357 0.0261 126
Ss4 0.1327 0.0540 0.0211 187
Ss5 0.1692 0.0575 0.0371 6
Ss6 0.1473 0.0547 0.0298 52

Table 5.10: Songs selected along PCA Unfolding along Songs from the mean
centered dataset now used on MLSCA Within songs model.

songs model and the MLSCA Within songs model.
To illustrate this, we took a song which has 30 s of silence in the audio in

the middle of the song, and plotted the T 2 and Q ratios of MLSCA within
song model and PCA Unfolding along songs. These are shown in Figure 5.19.

For Unfolding along songs, the deviation in Q ratio is not very apparent,
however for MLSCA within song model. we can clearly see a set of high
Q ratios from frames 3200-3700. When we look at the T 2 ratios, we can
see a set of high values for the same frame range. When the audio file was
played, there was absolute silence in the region indicated above. The silence
corresponds to the pause between two songs, which were recorded in the same
audio file.

The log mel spectrogram of this audio file is plotted in Figure 5.20. Note
the presence of a blue region in between frames 3200-3700 which corresponds
to silence. The same area is detected in the T 2 and the Q statistics, hence
verifying the observation.

5.5 Conclusion

We have thus performed a thorough data analysis of the audio dataset, using
the different multiway methods. This concludes the thesis work. The thesis
work is summarized in the next chapter 6.
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Figure 5.19: T 2 and Q ratios from both Unfolding along songs and MLSCA
Within part for a song which has a section of silence in the audio. It can be
observed that both statistics are unusually high in the silence section.
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Figure 5.20: Log mel spectrogram of the audio file with silence zone in the
centre, indicated by a blue region.



Chapter 6

Conclusions

This thesis work proposed the application of two dimensionality reduction
techniques, namely multiway PCA and MLSCA on mel spectrogram features
extracted from a personal music collection, which can be used for audio
content analysis tasks like genre classification, cover song retrieval etc. First,
all the songs were downsampled to a single channel and resampled to 44.1
kHz. Then, the mel spectrogram for all these songs were calculated.

A music tensor for the collection was built by aggregating the mel spec-
trogram features for all songs. Two ways of unfolding this 3-way tensor into
a 2-way a data matrix were studied : Unfolding along songs, and unfolding
along frames. For the first unfolding, PCA was used and for the 2nd unfold-
ing classic metric MDS was used. Then, a third method MLSCA was used
which built a model for each song as an additive combination of global mean,
within song components and between song components.

It was observed in Figure 5.3 that Unfolding along songs does a good per-
formance in dimensionality reduction since we can cover 90% of the explained
variance with just 5 dimensions, 1/6th of the original 30 dimensional feature
space. However, it characterizes the frame wise evolution of each song, and
thus we cannot represent the whole song by a single feature by these dimen-
sionality reduction techniques. Summarization of the feature vectors needs
to be done.

Unfolding along frames, however can represent the entire song as a single
feature vector, however, some thresholding based on the length of the shortest
song has to be done. This method also suggests a low number of components
to retain through the validation methods using PRESS and RESS statistics
(Table 5.2), however the fraction of explained variance is very low. This is
because classic metric MDS and not PCA has been applied, and thus the
maximum number of reducible dimensions equals the number of training
instances, which is much less than the number of features.
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MLSCA is a composite model that is a combination of the two models
described above. The analysis of MLSCA can be broken down into the be-
tween song part, which corresponds to the unfolding along frames, and within
song part, which corresponds to unfolding along songs. It can be observed
from Figure 5.15 that increasing within song components Rw reduces the
recostruction error faster than increasing the between song components Rb.
Hence, we arrive at a value of Rw = 29 and Rb = 10 as the final number of
components. The fitness of each of these models were evaluated with the T 2

and Q statistic, and compared with each other.
There are several areas in which this thesis work can be further extended.

We can validate these features by using them on some audio content analysis
task like genre classification. We need to build a global song model from
these features. Using the bag-of-frames model, the frames of a particular
song can be summarized into a single feature vector with the help of proba-
bility distributions. Then some clustering can be applied to categorize song
features into genres. The accuracy of the genre recognition task can be taken
as a parameter to validate the number of retained features. Other linear and
non-linear dimensionality reduction techniques like SOM, geodesic mappings,
locally linear embeddings etc. and tensor factorization methods like Paral-
lel Factor analysis (PARAFAC), non-negative tensor factorisation (NTF),
higher order Singular Value Decomposition (HOSVD) etc could also be at-
tempted. There has been some recent work in tensor analyis for tasks like
genre classification [24], [25]. Application of these tensor analysis methods
seems to be an interesting work for the future.
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Appendix A

First appendix

A.1 Derivation of PCA

In section 3.2 we had approached PCA from a viewpoint of change of axis of
reference. PCA can also be looked at from another viewpoint of maximiza-
tion of variance. The principal components project data into directions that
maximize the variance.

Let us take a mean centered m×n data matrix X, with m instances and
n features. We first estimate the covariance matrix C according to Equation
(3.5). Let w be a vector that projects X into PC space. The projection gives
component t.

t = Xw. (A.1)

We can calculate the variance of t as follows:

var(t) =
1

m− 1
((Xw)T (Xw)).

= wT

(
1

m− 1
(XTX)

)
w.

= wTCw.

Now, this variance needs to be maximised. To obtain a unique solution
for w, we put a constraint that ||w|| = 1. This can be expressed in terms of
a Lagrange multiplier and the objective function can be written as follows

J(w) = wTCw − α(wTw − 1). (A.2)
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To maximise, set
∂

∂w
J(w) = 0. Thus we obtain

2Cw − αw = 0. (A.3)

The above equation simplifies to Cw = αw. This is an eigenvalue equa-
tion of C with α as an eigenvalue and w as the corresponding eigenvector.
To maximise this, we choose the maximum value of α. This is the highest
eigenvalue of C and hence, w is the eigenvector corresponding to the highest
eigenvalue. So, the first PC is the leading eigenvector of C.

For the next PC, it has to chosen such that it maximizes the variance,
be of unit norm and an additional constraint is that it is orthogonal to the
first PC w. Solving a similar optimization equation gives again an eigenvalue
equation. This can be continued upto k < n desired principal components.

Hence, we have proved that PCA is equivalent to finding projections that
maximize the variance.



Appendix B

Second appendix

B.1 Proof that PCA and classic metric MDS

produce the same solution

Let us take data matrix X of m instances and n features. We ensure that it
is mean centered. First, we perform a singular value decomposition (SVD)
of X.

X = USVT . (B.1)

The covariance matrix can be written according to Equation (3.5).

C =
1

m− 1
(XTX). (B.2)

Ignoring the denominator (m− 1), we can rewrite the above equation as
follows:

C ∝ XTX. (B.3)

Inserting the expression of SVD into the previous equation, we get

C ∝ (USVT )T (USVT ).

∝ VSTUTUSVT .

∝ VSTSVT .

Thus we get,
C ∝ VS2VT . (B.4)

The above equation is now the EVD of C with loading matrix V. Now,
next we follow the procedure of PCA, ie take the columns of V corresponding
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to the k highest diagonal elements in S2 , thus obtaining an n× k submatrix
Vk and project the data. Thus our PCA solution is as follows:

T = XVk. (B.5)

Next, we look at the normalized inner product matrix Ip. According to
Equation (3.14)

Ip =
1

m
XXT . (B.6)

Ignoring the denominator m and substituting SVD expansion of X, we
can rewrite the above equation as follows:

Ip ∝ XXT .

∝ USVT (USVT )T .

∝ USVTVSTUT .

∝ USSTUT .

Thus we get,
Ip ∝ US2UT . (B.7)

Now the above equation corresponds to the EVD of Ip. Next, we take the
k highest eigenvalues and obtain k × k submatrix S2

k. Then, we project the
data for MDS using Equation (3.16).

T = U(S2
k)1/2 = USk. (B.8)

Now, let us take the solution of PCA in Equation (B.5) and try to derive
the MDS solution of Equation (B.8) from it. Substituting the expansion of
SVD in Equation (B.5), we get:

T = USVTVk. (B.9)

Note that VTVk = Ik, a k × k identity matrix. And SIk will produce the
k × k diagonal matrix Sk. Thus, we can clearly see that the equation above
simplifies to Equation (B.8).

Thus, we have proved that classic metric MDS and PCA produce the
same solution, and are thus equivalent.

We can observe that the term S2 appears in both equations (B.4) and
(B.7). Thus the eigenvalues of unnormalized outer product matrix XTX
and unnormalized inner product matrix XXT are contained in the leading
diagonal of S2, which denotes the squares of the singular values of X.
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In Section 3.3 we realized that to extend MDS for new test data, we have
to calculate the eigenvectors of the covariance matrix from the EVD of Ip
obtained from training data. The equivalence of classic metric MDS and
PCA allows us to do this. Let us calculate XTU.

XTU = (USVT )TU.

= VSTUTU.

Since ST = S and UTU = I , we get

XTU = VS. (B.10)

Right multiplying the above equation with S−1, we obtain

V = XTU(S2)−1/2. (B.11)

We observe that we have obtained the eigenvectors of unnormalized outer
product matrix V from the eigenvalue decomposition of unnormalized inner
product matrix (Equation (B.7)). Finally, we normalize V by (m − 1) to
obtain eigenvectors of covariance matrix C. Thus, this can be used as a
loading matrix to project unseen test data.
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