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Dimensionality Reduction (DR) is the process of finding a reduced representation
of a data set according to some defined criteria. DR may be performed in both
unsupervised and supervised settings. Several techniques have been proposed in
the literature for unsupervised DR, where the aim is usually to preserve some in-
trinsic characteristics of the data without using the output information. In most
cases they are preferred as a preprocessing step while some may end up with clus-
tering or visualizations. While much focus has been on unsupervised methods,
supervised techniques are preferred when every sample has its output informa-
tion. Even though obtaining this information may be expensive for some tasks,
this supports supervised methods in trying to avoid the curse of dimensionality
where the space may be sparse. The output information allows the methods to
focus on each points’ real neighbors unlike unsupervised methods.
In this thesis we aim to develop a supervised DR technique called Supervised
Probability Preserving Projection (SPPP) that operates on probabilistic rela-
tions between points. More specifically we learn a linear transformation matrix
that maps the input samples on to a projection space where the differences be-
tween the probabilistic similarities of the input covariates and their responses are
minimized, given a neighborhood function.
This thesis begins by suggesting three probabilistic neighborhood functions for
a recently proposed method called Supervised Distance Preserving Projections
(SDPP). Motivations from the experimental results on synthetic examples leads
to the development and introduction of a novel technique called Supervised Prob-
ability Preserving Projection (SPPP). The formulation of SPPP and optimiza-
tions for three versions namely Gaussian, Heavy-tail and Linear are presented.
The experiments indicate competitive performance of SPPP compared to recent
state-of-the-art methods suggesting its use for both regression and classification
tasks alike.
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Chapter 1

Introduction

The recent advent of affordable electronics and social networking platforms have
been contributing to massive data accumulation. Most parts of this information
such as text, video and audio are mainly in human understandable form. While
this is good for empirical analyses, it makes for example discovering the current
trend in Music, the top performers in some industry or the causal variables in a
drug test analysis, a non-trivial task. This is because such data have dimensional-
ity that run in cases into millions, needless to mention their storage and handling
costs.

1.1 Need for Dimensionality Reduction

Consider for instance a scanned collection of historic newspaper articles accumu-
lated over centuries. Researchers interested in studying the history of a country
would have to browse through the articles manually. Instead if such data were
available in machine readable form, browsing through the articles using advanced
search techniques would make the study easier and informative.

Natural Language Processing (NLP) is a field of computer science that deals
with methods for processing text data. Usually applying NLP techniques require
representing text as vectors which involves creating a term document matrix. Ev-
ery document is converted to a vector of unique words. Depending on the number
of documents considered, the number of unique words (or dimensions) grow, cre-
ating an increasingly sparse matrix. In most cases the dimensionality runs into
millions making analysis harder. Consequently effective means of reducing the
dimensionality of the data is necessary.
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CHAPTER 1. INTRODUCTION 7

As pointed out in [33] Dimensionality Reduction (DR) is usually an ill-posed
problem since neither the true local geometry (manifold) nor the real intrinsic
dimensionality of the data is known beforehand. Moreover the number of points
required to explain every additional dimension grows exponentially making the
space sparse. This is often referred to as ‘the curse of dimensionality ’. Despite
these limitations, researchers have published several promising techniques over the
past few decades.

1.2 Dimensionality Reduction

Dimensionality Reduction can be solved using two different approaches, Variable
Subset Selection and Feature Extraction.

1.2.1 Variable Subset Selection

Variable Subset Selection is defined as the process of identifying a subset of more
informative variables in the data set that can perfectly fit a model. Variable Se-
lection typically works under the assumption that the data set may contain many
redundant variables. Hence the necessity to prune such variables in a system-
atic manner, allows us to fit a model whilst retaining a reduced set of variables.
Variable Selection may be broadly divided into Wrappers, Filters and Embedded
methods [7].

Wrappers

Wrapper techniques are simple yet effective methods of scoring and ranking the
most influential variables in the data set that improve the predictor performance.
To this end, efficient search strategies including forward, backward or nested subset
selection have been proposed. Forward selection implies adding variables in a
manner that improves the predictor performance. Backward selection instead tries
to remove variables one by one. Even though these methods may appear like ‘brute
force’ and time consuming, they provide a good starting point for small datasets or
when some intuition about the data is already available. Both the approaches have
complementary benefits and drawbacks. While a particular variable has already
been chosen by Forward selection, evaluating the performance of the predictor
without this variable is often time consuming since it involves re-running the tests
over an exhaustive set of combinations. The typical arbitrary ordering of variables
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poses a similar problem to Backward selection and nested subset as well. In cases
where the dimensionality is large, Wrapper methods are known to be NP-hard [1].

Filters

Another method of Variable Selection called Filters offer to retain a subset of
the variables normally preferred as a preprocessing step irrespective of the chosen
predictor. The Filters are often used as a limitation imposed over the Wrapper-
scored variables thereby identifying a subset to be used thereon. Such filters may
use mutual information (MI) [31] or some other performance evaluation criterion
such as area under ROC curves [11] and so on.

Embedded methods

Embedded methods are powerful Variable Selection techniques that are more
specific to the predictor chosen. These class of methods have an objective function
that is optimized, eventually finding a reduced representation to let us build a
model. For a detailed overview of Variable selection methods, the reader is re-
ferred to [10].

1.2.2 Feature Extraction

Feature extraction is the process of reducing the dimensionality of the data in
order to obtain a meaningful combination of variables. Often they are preferred
as a preprocessing step that preserves the intrinsic characteristics of the data. A
carefully extracted set of features can be expected to contain a similar amount of
information as in the original while allowing us to use the reduced representation
thereon. These are then called feature vectors which can be made use of for further
analysis or modeling.

Types of Dimensionality Reduction

Dimensionality Reduction may be performed in two main settings, Unsupervised
and Supervised. Unsupervised methods are those that do not use output infor-
mation in their design. One would then have to assume that the data has the
necessary information within itself to reveal its structure. On the other hand



CHAPTER 1. INTRODUCTION 9

when every sample is labeled, Supervised methods utilize the additional informa-
tion to find a reduced representation.

Unsupervised Dimensionality Reduction

Often unsupervised methods are used as a preprocessing step ending up with a
clustering or visualization. Based on the chosen metric-to-be-preserved, several
methods have been proposed in the literature that perform well, given their limi-
tations.

Principal Component Analysis (PCA) [19] is a well known unsupervised
technique that finds a linear subspace mapping of the input data in which much
of the variance is explained. PCA computes an eigenvalue decomposition on a full
input covariance matrix thereby producing a linearly uncorrelated set of variables
called principal components. The obtained principal components represent the de-
creasing order of variance in the data set subject to orthogonality. Kernel PCA
(KPCA) [25] is a kernel extension of PCA that computes the principal eigenvec-
tors of the kernel matrix instead of the covariance matrix. The inner product of
data points computed using the kernel function, allows construction of nonlinear
mappings in that kernel space. Another unsupervised method called Multidimen-
sional Scaling (MDS) [30] minimizes the differences in the Euclidean distances
computed in both the input and the reduced spaces.

Unlike MDS, techniques such as ISOMAP [29] and Maximum Variance
Unfolding (MVU) [37] try to preserve pairwise distances measured along the man-
ifolds called geodesic distances. ISOMAP uses a neighborhood graph constructed
by joining k-nearest neighbors and applies a classical scaling. Unfortunately topo-
logical instabilities occurring due to erroneous short-circuiting in the neighborhood
matrix could hamper the performance of ISOMAP. One solution to this problem
is to remove nearest neighbors that violate local linearity of the neighborhood
graph [24]. ISOMAP may also suffer from ’holes’ in the manifold. This has been
overcome by tearing, which means building a maximum subgraph with no loops
anymore [16]. MVU on the other hand, learns a kernel neighborhood matrix by
maximizing the pairwise geodesic distances allowed by the neighborhood. This
method is said to ’unfold’ the data manifold while retaining its pairwise distances.

Another flavor of neighborhood retaining methods are the more recently pro-
posed techniques such as Stochastic Neighbor Embedding (SNE) [12], t-
distributed Stochastic Neighbor Embedding (t-SNE) [32] and Neighbor
Retrieval Visualizer (NeRV) [36]. These methods consider the probability of
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being neighbors instead of pairwise distances. All the three methods aim to find
a suitable embedding that retains close by neighbors with some probability.

Some other unsupervised methods such as Self Organizing Map (SOM) [15],
Local Linear Embedding [23] and Laplacian Eigenmap [4] preserve topolog-
ical relations within the data set. SOM is an Artificial Neural Networks (ANN)
inspired technique based on competitive learning of neurons. A two dimensional
map of predefined topology of nodes is setup and their corresponding weights are
learned. A U-matrix (unified distance matrix) value of a node represents its rel-
ative distance from its closest neighbors. Autoencoder is also an ANN inspired
technique that offer ways to compress or encode high dimensional data. In the
simplest case an autoencoder is a feedforward, non-recurrent neural network that
reconstructs its input samples and learns useful features from them which can
be decoded to once again recover the input samples. Autoencoders are usually
trained using backpropagation variants such as conjugate gradient or steepest de-
scent, however they may at times be slow to converge. Consequently, initialising
the weights of the network that approximate the final solution have been suggested,
often called as pretraining [13]. For a detailed review of other unsupervised meth-
ods, the reader is referred to [33].

Supervised Dimensionality Reduction

While much work has been focused on unsupervised methods, fewer prominent
techniques exist for supervised methods.

Partial Least Squares (PLS) [38] computes a linear relationship between a
set of input covariates and their responses by maximizing the covariances on either
space thereby obtaining an orthogonal transformation matrix. The Kernel version
of PLS called KPLS was designed to handle nonlinear cases which maximizes the
covariances in the kernel space [22].

Kernel Dimensionality Reduction (KDR) [8] is a linear DR method which
computes an orthogonal transformation matrix that maximizes the conditional in-
dependence of the input samples and their responses given the subspace. This
is performed in the Reproducing Kernel Hilbert Space (RKHS) wherein the con-
ditional independence is imposed by minimizing the conditional covariance. A
supervised version of PCA called SPCA [3] has been introduced which computes
the principal components with maximum dependency on the responses. The opti-
mization once again follows solving an Eigen problem, this time with a weighted
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covariance matrix. The measure of dependence in SCPA is based on the Hilbert-
Schmidt Independence Criterion (HSIC). The HSIC is zero if and only if two
random variables are independent. A more recently introduced method called Su-
pervised Distance Preserving Projections (SDPP) [39] learns a linear trans-
formation matrix leading to a projection space where the differences in pairwise
distances between the input covariates and their responses are minimized locally.
SDPP operates on pairwise (Euclidean) distances and is motivated on the Weier-
strass definition of continuity. This method uses a binary-valued neighborhood
matrix to indicate the potential neighbors of points in both spaces.

1.2.3 Evaluating Dimensionality Reduction

It is in general impossible to retain all the information from the original space on
to the reduced space. Eventally we are bound to lose some information which we
try to minimize as much as possible. Two commonly used measures for evaluating
the goodness of a projection are precision and recall. Precision is defined as the
ability of a projection to project points closely in the reduced space provided they
were neighbors in the original space. Recall is the ability of a projection to retain
neighbors from the original space and project them closely in the reduced space.

It is often difficult to obtain both good precision and recall. For instance,
imagine a 2D scattered set of points in some X1, X2 plane. If we were to reduce
the number of dimensions to 1, then an immediate solution would be to project
them on to a single axis and lose the other. However not all points may still retain
their neighbors faithfully. Therefore a reasonable solution would be to consider
the faithfulness of neighbors over a range of points in both spaces instead of all
points. This gives us a smooth measure of precision and recall. Based on this idea,
the trustworthiness and continuity measures were introduced [35]. Points are
ranked in both the input space and the projection space based on their pairwise
distances. Intuitively the ratio of match between the ranking from the projected
space and that of the original space gives trustworthiness while continuity is mea-
sured in the opposite direction. Based on trustworthiness and continuity measures,
a few extensions to point-wise quality measures were introduced in [18].

Some of the other evaluation methods of DR are namely visual assessment (as
reported in [34]), reconstruction error [17] provided a reverse mapping is possible,
classification error on projections [33] , preservation of data structures such as
neighborhoods [34].
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1.3 Highlights and Structure of the Thesis

Highlights of this thesis

We notice that DR methods in general are preferred as preprocessing techniques
thereby expected to preserve the internal structure of the data. Some methods
also do produce good visualizations that support empirical analyses.

Inspired by the idea of neighborhood retaining techniques we aim to focus on
a supervised DR method that can retain neighbors in a stochastic manner. The
advantage of using probabilities over distances is that widely separated points are
considered equally farther and assigned similar memberships unlike distances. This
allows focusing more on the closeby neighbors and wasting lesser probabilities on
the wider ones. A common neighborhood function is used to provide this infor-
mation during optimization. Therefore we formally define Supervised Probability
Preserving Projection (SPPP) as a method that learns a linear transformation
matrix that minimizes the probabilistic differences between the input covariates
and their reponses given their neighborhood function. The probabilities in prac-
tice are obtained by normalizing the pairwise distances based on three different
distributions namely Gaussian, Heavy-tail and Linear. All the three distributions
share a common cost function but have different gradients. Experiments on both
synthetic and real world data sets show that SPPP portrays equivalent or better
performances compared to other recent state-of-the-art methods.

The contributions of this thesis begin by suggesting a probabilistic extension
to a more recent technique called Supervised Distance Preserving Projections
(SDPP). This is supported by synthetic examples for regression and classifica-
tion tasks. Building on this idea the most significant contribution of this thesis
is in introducing a novel supervised probabilistic DR technique dubbed as Super-
vised Probability Preserving Projection (SPPP). This includes formulation and
optimization of SPPP followed by experiments and discussions on both synthetic
and real world data sets.

Structure of the thesis

• Since this thesis builds on the work of SDPP, Chapter 2 briefly presents
the formulation and optimization of SDPP and its neighborhood selection
heuristics. This is followed by visualization on two synthetic examples.
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• Chapter 3 suggests the notion of probabilistic neighborhoods for SDPP sup-
ported by visualizations on two synthetic examples.

• The main contribution of this thesis towards supervised DR is introduced in
Chapter 4 called SPPP. The technique is discussed in detail beginning from
the motivation, formulation and optimization, leading to experiments.

• Chapter 5 presents experimental verifications on real world data sets com-
pared to other recent state-of-the-art methods for regression and classifica-
tion tasks followed by discussions. Finally a summary of the work is provided.



Chapter 2

A brief look at SDPP

This chapter discusses a recently proposed supervised DR method called Super-
vised Distance Preserving Projections (SDPP) [39] that aims to preserve local
information based on pairwise distances. SDPP finds a projection space where
the differences between pairwise distances of the projected covariates and their
responses are minimized locally.

2.1 Formulation

SDPP is motivated under the Weierstrass definition of continuity. According to the
definition if two input covariates are close, then their responses should also be close.
Let us consider a given set of data points {x1,x2, ...xn} ∈ Rd with corresponding
responses {y1,y2, ...yn} ∈ Rm. Assuming there is exists a continuous mapping f :
X → Y and that the input space is well sampled, mathematically the continuity
of a function f at a point x ∈ X and for every εy > 0 there exists an εx > 0 such
that for all x ∈ X :

||x− x′|| < εx ⇒ |f(x)− f(x′)| < εy

To achieve this goal SDPP learns a suitable linear transformation matrix W
which projects the input points to a projection subspace that minimizes the differ-
ences between pairwise distances of the covariates and their responses. An effect
of this leads to a projection where the local geometry of points mimics that of
their responses.

The transformation for a point x in the subspace is obtained as:

z = WTx

14
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Figure 2.1: Illustration of SDPP

where W ∈ Rd∗r and r is the reduced dimensions.

The working principle of SDPP can be illustrated using figure 2.1. Let us con-
sider a point x with nearest neighbors {x1,x2,x3}. The transformation matrix W
leads us to the Z space where the local geometry mimics that of the Y space. For
this to happen, after projection, the point x2 (now z2) is moved outside the active
neighborhood of point x (now z) in the Z space while another point is moved
inside the region.

The cost function of SDPP is given by:

J(W) =
1

n

n∑
i=1

∑
xj∈N(xi)

(d2ij(W)− δ2ij)2

where N(xi) denotes the set of points that fall inside the neighborhood of the point
xi, d

2
ij(W) = ||zi − zj||2 and δ2ij = ||yi − yj||2. In a more compact form, the cost

can be rewritten as,

J(W) =
1

n

∑
ij

Gij(Dij −∆ij)
2 (2.1)

Dij is the distance between points i and j in the Z space and ∆ij is their distance
in the Y space. G is the neighborhood matrix represented as follows,

Gij =

{
1, if xj is a neighbor of xi

0, otherwise.
(2.2)
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2.2 Optimization

The cost function of SDPP is quadratic, meaning twice differentiable at its mini-
mum. This allows us to use the Conjugate Gradient (CG) optimization. CG is a
classical numerical optimization technique that basically performs a line search in
an iterative manner by finding the negative direction of the search vector and pro-
ceeding in that direction until the cost has been well minimized. Various methods
have been proposed to speed up the gradient search, still CG may be unstable in
cases where the search directions are not conjugate. Motivated by the fact that
CG is still monotonic, preconditioning on the variables has been suggested by the
Polak-Ribiére formula [21]. We use a minimization code following this method for
all our experiments that uses CG. For a Semidefinite Quadratic Linear Program-
ming (SQLP) based approach for optimization the interested reader is referred to
[39].

Conjugate Gradient

The cost of SDPP mentioned above has a simple gradient when computed with
respect to W.

J(W) =
1

n

∑
ij

Gij(Dij −∆ij)
2 (2.3)

∇WJ =
4

n

∑
ij

Gij(Dij −∆ij)τ ijτ
T
ijW (2.4)

where τ ij = xi − xj. A more compact form of (2.4) could be written after
denoting Q = G� (D−∆) where � represents the element-wise product of two
matrices, the symmetric matrix R = Q + QT and a diagonal matrix S =

∑
j Rij.

The algebraic manipulations are shown below,

∇WJ =
4

n

∑
ij

Qij(xi − xj)(xi − xj)
TW

=
4

n

∑
ij

(xiQijx
T
i + xjQijx

T
j − xiQijx

T
j − xjQijx

T
i )W

=
4

n

[∑
ij

xi(Qij + Qji)x
T
i −

∑
ij

xi(Qij + Qji)x
T
j

]
W
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=
4

n

(∑
ij

xiRijx
T
i −

∑
ij

xiRijx
T
j

)
W

=
4

n

(∑
i

xi

∑
j

Rijx
T
j −

∑
ij

xiRijx
T
j

)
W

=
4

n

(∑
i

xiSiix
T
j −

∑
ij

xiRijx
T
j

)
W

=
4

n
(XTSX−XTRX)W

=
4

n
XT (S−R)XW

where the rows in X denote input samples and (S-R) is the Laplacian matrix.

2.3 Neighborhood Selection in SDPP

The result of the optimization produces a transformation matrix W which may
vary depending on the size of the neighborhood chosen before optimization. The
neighborhood matrix given by G may be set using four different heuristics.

Not-Enclosing Neighborhoods

k-Nearest Neighbor

One of the simple heuristics for continuity preserving DR techniques is to choose
a k-nearest neighborhood. This implies selecting k-nearest points and preserving
their pairwise distances. Depending on the task, the value of k may then be learned
using cross-validation. A heuristic popular among people in spectral clustering is
to set k to be equal to log(n) [5]. Interestingly as the input sample size approaches
infinity, knn has been shown to achieve error rates no worse than twice the Bayes
error rate [6] thereby displaying consistency.

ε -neighborhood

The ε-neighborhood on the other hand imposes a distance as a limit to picking the
neighboring points. In other words points that lie within ε distance away from the
point in question are selected as the nearest neighbors and their pairwise distances
are preserved within the resulting neighborhood. A common heuristic used for
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setting ε is usually (log(n)/n)1/d [20].

Enclosing Neighborhood

Enclosing k-Nearest Neighbor

Following the knn approach a convex hull is constructed around each point with
the smallest k such that those points that allow to completing the hull are included
[9]. Those points that are not included within the so-constructed convex hull are
left out of the neighborhood.

Natural Neighbors

Natural Neighbors are based on computing the Voronoi tessellation on the train-
ing points [27]. The natural neighbors of point i are those points whose cells are
adjacent to that of i including i. The computational load of Voronoi tessellation
is proportional to the number of points and the dimensionality. Clearly for very
high dimensional cases this is an expensive choice.

The four methods discussed above are good starting points but still have certain
shortcomings. knn and ε-neighborhood are simple definitions made in the input
space. But they are sensitive to local structure in the data especially affected even
by small noise in the neighborhood. As for the enclosing neighborhood strategies,
although they are geometrically balanced, the computational complexities in both
cases increase exponentially with both number of samples and the dimensionality
of the data set. The complexity involved in calculating the Voronoi tessellation is
O(nlog(n)) when d < 3 and O((n/2)d/2) when d ≥ 3.

Continuity as a measure for neighborhood selection

Once the final projections have been obtained in general it is essential to estimate
their quality compared to the original samples. Following our motivation we want
to measure the continuity between Z space and Y space. Continuity as introduced
in [35] is a measure of recall defined over a set of neighbors. Intuitively it can be
understood as the match between the ranking of points on both spaces. Any new
point intruding into a neighborhood in the projection will reduce the precision
of the projection. Any point moving away will decrease its recall. In order to
quantify how great the changes affect, it is important to know how far the points
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have traveled to intrude or extrude the neighborhoods. We have that information
in their pairwise distances in both spaces. Now simply ranking them for a range of
points, gives us a means of quantifying their trustworthiness and continuity. Now
let kr be the range of the neighborhood provided by the user and Vkr(i) be the
set of points that are within the neighborhood of point i in the Z space but not
in the Y space and let r(i, j) be the rank of point yj in the ordering based on its
distance from point yi. Now the continuity is measured as,

Mcont(kr) = 1− C(kr)
n∑

i=1

∑
j∈Vkr (i)

(r(i, j)− kr) (2.5)

where the scaling term C(kr) is defined as,

C(kr) =


2

nkr(2n− 3kr − 1)
, if kr <

n

2
2

n(n− kr)(n− kr − 1)
, if kr ≥

n

2

(2.6)

The error term reaches its maximum when the compared ranking is completely
reversed thereby making the continuity equal to 0. In all our experiments for re-
gression we use this measure as an indicator value for choosing the right value of
the parameter via cross-validation.

2.4 Synthetic examples

We now establish an experimental framework to illustrate the behavior of SDPP.
We have two synthetic examples, one for regression and one for classification. The
steps involved in handling the data set and the choices in parameter estimations
are discussed below. This same framework will be used for illustration in future
methods as well.

2.4.1 Data sets

”Parity” data

Lets us denote a set of 5 input variables by {X1, X2, ..X5} and a corresponding 1D
response variable as Y. First we generate a set of 4000 input data points normally
distributed in [0, 1]5. Then we use only the first and the second dimensions to
compute the response variable as given below using a simple function,
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Figure 2.2: Parity

Y = sin(2πX1) sin(2πX2) + ε

where ε is a noise term with ε ∼ N(0, 0.12). Figure 2.2 shows the 3 dimensional
(for clarity) depiction of the data. It is easy to see that much of the information
could be preserved by simply ‘flattening’ the data into 2 dimensions.

Taijitu symbol

In order to observe the performance of SDPP for classification, we generate a data
set resembling a symbol called ’Taijitu’ (Figure 2.3(a)). This is an ancient Chi-
nese symbol used often by Taoism representing opposite forces of harmony. The
symbol is formed by dividing a circle into two halves with an S-curve and small
dot-shaped areas of same class on opposite sides. To us this is interesting because
of the disconnected nature of points belonging to the same class. The input data
is generated by normally distributing a set of 4000 points with X1, X2 in [0, 1]2

and X3,X4,X5 as noise along ε ∼ N(0, 0.12). The labels of points falling within a
circle (based on X1,X2 alone) are assigned their class labels as y = 1 and y = 2
based on the region they occupy.

Experimental setup

As a preprocessing step, the data sets are first mean centered. Then they are
divided into two parts with 80% for learning (sample size (nl)) and the remaining
20% for testing (nt). For regression, we learn the transformation matrix W on
the training set and compute the continuity measure on the test projection from
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(a) Taijitu symbol
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Figure 2.3: Taijitu symbol data set

Z → Y space. We can denote this as MZ→Y
cont for use within the plots. In practice

the continuity is calculated for a set of neighborhood ranges kr = {kr1, kr2, ..kr5}
uptil one half of the test set i.e. kr5 ≤ nt

2
so that we can avoid the influence of

the scaling factor in the continuity definition. Thereby we get a vector with 5
continuity values Mcont = {Mcont1,Mcont2, ..Mcont5}. Then we take the mean of
these measured values to represent an estimate of the continuity of a method for
a particular value of the parameter. The use of taking the mean is to indicate
how consistent the parameter is in preserving local and a moderately wider neigh-
borhood. So if we have 10 candidate parameters, we then have 10*5 continuity
calculations, eventually reduced to 10*1 values which are also the ones plotted. For
the classification task we use the classic k nearest neighbor (knn) classifier with
k=1. Again the performance is calculated by learning a classifier on the projected
training set and evaluating on the projected test set. Whichever candidate param-
eter obtains the best prediction accuracy is chosen for the final projections. For
both regression and classification tasks, 2 dimensions is set as the desired reduced
dimensions because the nature of the data in our synthetic cases are known before-
hand. In reality, one could use cross-validation to find the best reduced dimensions.

There are very many different ways one could choose the candidate values for
cross-validation. Specific to our current task, the range of parameters (here neigh-
bors k) used for regression and classification are obtained by incrementing k in
powers of 2 uptil around one half of the learning set has been considered as neigh-
bors such as {2, 4, 8, 16, .. ≤ nl

2
}. In case the next value of k is just a little above

nl
2

, we also consider that k. Finally the parameter that obtains the best value of
continuity for regression and accuracy for classification respectively are considered
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for the final projection.

2.4.2 Regression: Parity data

Now we conduct a cross-validation on the parity data set to observe the perfor-
mance of SDPP for regression.
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Figure 2.4: SDPP for regression

From the cross-validation chart in figure 2.4(a), we are able to choose from eight
values of neighborhood sizes (k). Alternatively all values of neighborhoods within
that range would perform similarly. After dimensionality reduction figure 2.4(b)
shows that SDPP preserves the expected behavior by correctly finding the first two
dimensions to be the significant dimensions and thereby producing a pleasing visu-
alization. As SDPP tries to preserve its neighbors instructed by the neighborhood
matrix G, it is able to retain a similar structure on the reduced dimensions as well.

2.4.3 Classification: Taijitu symbol

SDPP naturally can be used for classification by simply encoding the class infor-
mation in a manner that allows all classes to be equally spaced apart from each
other. This ensures that the arbitrary nature of class labeling does not influence
the pairwise distances of points in the output space. One simple way to encode
class information is by setting class 1 as {0,1}, class 2 as {1,0} 1.

1Although in this case we only have two classes, so it suffices to leave them as they are.
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The cross-validation chart in figure 2.5(a) shows that SDPP consistently per-
forms well over a range of neighborhood sizes. The 2D projection as in figure
2.5(b) closely resembles the original symbol although with a slight skew.
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Figure 2.5: SDPP for classification



Chapter 3

Probabilistic Neighborhoods for SDPP

In this chapter we suggest the notion of probabilistic neighborhoods for SDPP
instead of binary valued memberships as illustrated using two simple examples.
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Figure 3.1: Impact of binary valued memberships with a fixed k for all points.

Imagine a space with a uniform distribution of data points as shown in figure
3.1 (X1,X2 are random variables). We see that for a fixed value of neighborhood

24
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size k = 5 some areas are heavily covered and some, weakly. By setting binary
valued memberships we are including all neighbors (inside the neighborhood) to
have equal influence on a point. This has a greater impact when some data points
are included in the cost more times than some other points simply due to a poor
choice of k rather than their positioning in that space. This is worrying since
the ground of dimensionality reduction is based on the assumption that closeby
covariates exist because their stimuli must have been similar. In order to mitigate
this problem we consider the influence of neighbors with relative strength. In other
words we choose to assign probabilistic memberships for each point as explained
below.

In our problem, we cast the points on to a distribution such as the Gaussian
wherein the conditional probability pj|i of a point j to be a neighbor of point i
varies depending on its distance from i as given by equation 3.1. Now nearby
points will receive a relatively higher pj|i and the farther points will receive rather
small membership values.

pj|i =
exp(−||xi − xj||2/2σ2

i )∑
k 6=i

exp(−||xi − xk||2/2σ2
i )

(3.1)

where ||xi − xj||2 is the pairwise (Euclidean) distances between points i and j
in the X space and σi is the variance of a Gaussian centered around point i. Be-
cause we are only interested in modeling the pairwise similarities we set pi|i = 0.
The probabilities are dependent on two variables: the pairwise distances and the
variance (σ) of the Gaussian. The pairwise distances are fixed once the data set is
compiled. But the σ is a free parameter which can be used to control the proba-
bilities assigned. A carefully chosen value of σ allows us to utilize the probabilities
to focus on the real neighbors and not waste them on farther points, meaning the
wider points are all considered equally wide beyond a limit.

But how do we set this value for σ? Would it suffice to fix a single value for all
points? It is not likely that every point has a similar density of points surrounding
them. Focusing on a proportion of neighbors instead of all is vital in some cases.
To illustrate this, let us consider another example as shown in figure 3.2 where
the neighbors (x-axis) are plotted against distance (y-axis) for a set of 300 points
normally distributed. It is easy to see that from a certain point i the distance
to reaching the nearest 150 points (half the size of samples) could vary anywhere
approximately between 0.18 to 0.62 units. This will have a greater impact when
the input distribution is skewed in practice thereby wasting some probabilities on
outliers; implying that not all points share the same value of variance. Therefore
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Figure 3.2: A plot illustrating the differences in variances while reaching half the
sample size from some point i.

we smoothen the reach of points so that all points get their neighborhood weighting
value as a function of their density controlled by the variance. In other words the
membership values of points around i ‘fade’ with a steep or a wide gaussian based
on the neighborhood density. For this reason it is essential to compute unique σi
for each point.

3.1 Entropy and Cross entropy for setting vari-

ance in neighborhoods

In order to obtain a fair value for σi for each point, we seek an information theo-
retic approach of using entropy as a measure of information [26]. In our probability
function, any value of σi induces a pi over all other points. This probability dis-
tribution has an entropy that is monotonic with the value of σi. Hence a binary
search can be performed for a value of σi that produces a pi with an entropy that
matches the perplexity provided by the user. The perplexity is now our proba-
bilistic equivalent of k. The perplexity is measured in bits and may be understood
as a smooth measure of effective number of neighbors which is computed as,

Perp(pi) = 2H(pi) (3.2)

where H(pi) is the Shannon entropy of pi calculated as
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H(pi) = −
∑
j

pj|i log2 pj|i (3.3)

Using this approach, we obtain a neighborhood matrix representing member-
ships of points according to the perplexity provided by the user. Unlike the neigh-
borhood matrix used in the previous chapter, this one aims to indicate the stochas-
tic relations between points allowing us to relatively focus more on some points
and less on some others.

While using entropy serves the purpose in most cases, we consider the use of
cross entropy as well. Cross entropy between two distributions measures the aver-
age number of bits required to encode a certain information if the encoding scheme
was based on an alternative distribution rather than the true distribution. This
implies that in our case we use the distribution of the response variable instead
to approximate that of the input variables. The idea behind this approach is that
during cases where the input samples are not very informative by themselves or are
corrupted by noise, the outputs (responses) might give the necessary supplemen-
tary information in the form of subtle supervision. On the other hand when the
data violates the surjective (one to many or vice versa relations) definition, this
could induce complexities by itself. Hence knowledge about the data beforehand is
helpful, although experimental verifications could assist in making final decisions.
The conditional probabilities in Y space are given by equation 3.4

qj|i =
exp(−||yi − yj||2/2σ2

i )∑
k 6=i

exp(−||yi − yk||2/2σ2
i )

(3.4)

The cross entropy is then expressed as,

H(pi,qi) = −
∑
j

pj|i log2 qj|i (3.5)

As given by the equation 3.5, the appropriate values of σi, common to both
spaces, that produce a cross entropy to match the perplexity given by the user are
calculated. SNE [12] and t-SNE [32] compute entropy within their implementa-
tions which we adopt with necessary modifications to also compute cross entropy
in our experiments.
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3.2 Student’s t-distribution for neighborhoods

Entropy and Cross entropy based neighborhoods are still parametric methods
where the value of σ indirectly needs to be found using cross-validation for per-
plexity. However by casting the data points on to some other non-parametric
distribution such as the t-distribution, we obtain another neighborhood func-
tion. The advantage here lies in avoiding cross-validation, though the downside
in this approach is that it cannot be fine-tuned for improving the performance.
The input conditional probabilities for t-distribution with one degree of freedom
is given by 3.6. For our experiments, we only consider the input space to compute
the neighborhood matrix since the output space alone could mislead us with no
consent of the inputs.

pj|i =
(1 + ||xi − xj||2)−1∑

k 6=i

(1 + ||xi − xk||2)−1
(3.6)

3.3 Synthetic examples

The experimental setup remains the same as before, but now the parameter cross-
validated for is perplexity (Perp) instead of the number of neighbors. We again
have 10 candidate parameter values for perplexity incremented in powers of 2 as
explained before. After all the perplexity is simply a probabilistic equivalent of
k. Further we would like to compare their performance for a similarly varying
parameter choices.

3.3.1 Regression: Parity data

While using the same formulation of SDPP and merely applying a new neighbor-
hood function using entropy and cross entropy, we see that the structure is not
only preserved (as in fig 3.3(b) and fig 3.3(c)) but also portrays consistent per-
formance over all the values of perplexity unlike standard SDPP. This reinstates
the fact that smooth memberships for neighbors are in cases better than discete
binary valued memberships. Another interesting observation shows that the cross
entropy based neighborhood is equally as good as entropy for this data set. The
student based neighborhood however does not preserve the structure (fig 3.3(d)).
This is partly because the points falling at the boundaries of the contour (green
or yellow) are around regions of uncertainty in addition to having more uncertain
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points near them. But the points lying in the peaks of the contours (red or blue)
are more likely to be of the same nature. Unfortunately the non-parametric nature
of student distribution does not let us limit the number of influencing neighbors,
thereby resulting in a less pleasing visualization. Although unfair that PCA being
an unsupervised method, it is interesting to compare the projection for a similar
reason as in student. It is easy to see that PCA mixes up points by virtue of
equivalence in their variances along the first two principal axes which is relative
to pairwise distances in our case.

3.3.2 Classification: Taijitu Symbol

Using the same Taijitu data set and experimental setup, we illustrate the per-
formance of probabilistic neighborhood selection for classification. Figures 3.4(b)
and 3.4(c) show that both entropy and cross entropy based neighborhoods can
maintain the structure of the symbol although with a similar skew like the stan-
dard SDPP. In this case, the student neighborhood also seems to provide a good
visualization by preserving the original structure(fig 3.4(d)). The fact that points
belonging to opposite classes are equally apart (thanks to the class labels), al-
lows student distribution to separate them without the confusion induced by the
tail of the distribution. Again for the same reason we look at PCA on the other
hand completely mixing points from both classes once again due to relatively equal
variances in both the principal axes.
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Figure 3.3: SDPP with probabilistic neighborhoods for regression
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Chapter 4

Supervised Probability Preserving
Projection (SPPP)

In this chapter we introduce a fully probabilistic supervised DR technique called
Supervised Probability Preserving Projection (SPPP). As the name suggests, here
we aim to preserve the probabilistic relations between points by finding a projec-
tion space where the probabilistic dissimilarities between the input covariates and
their responses are minimized. We note that in most cases DR techniques are
employed as preprocessing tools, meaning they are expected to retain the intrinsic
structure of the original data. Some other techniques are useful for producing
good visualizations. We show that SPPP could be useful in both cases, later with
experiments.

4.1 Motivation

In the previous chapter we noticed that using a probabilistic neighborhood func-
tion allowed us to utilize the probabilities in a controlled manner to improve the
performance. However still the original differences in the cost function of SDPP
operate on pairwise distances. Instead, by replacing them with probabilities, we
aim to worry less about wider points unlike distances, where how wide a point lies
is still added into the cost. With this as the motivation, we aim to define a fully
probabilistic method.

The Weierstrass definition of continuity used in SDPP is typically defined for
distances, hence they do not implicitly hold for probabilities. However the principle
of Weighted Individual Differences model provides a platform for us to formulate
a similar looking cost function as in SDPP, but only this time in a probabilistic

32
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setting.

The Weighted Individual Differences model tries to minimize the square of the
differences between two scalar metrics given their weight [28]. Although proba-
bilities are not typically metrics, they are still monotonic in nature, since they
are based on pairwise distances. The farther the points are, the lesser are their
probabilities of being neighbors. By defining an alternative function such as the
plain Linear function, which we will see later, we still obtain a monotonic varying
function that could be considered a metric. In the Linear function, the farther
points are more likely to not being neighbors than the nearby points. A simple
case of the Weighted individual differences model can be expressed as,

Diffij = Weightij(Eij − Fij)
2

where Weight is the weighting matrix and E and F are some arbitrary matri-
ces containing metric values whose differences are to be minimized. All the matri-
ces shown above are equi-dimensional where scalar Diffij represents the weighted
difference between the ith row and jth column elements of E and F. When all
Weightij = 1, it is called unweighted individual differences. Before defining the
cost function, it would be useful to illustrate the working principle of SPPP.

Illustration

Let us consider a given set of data points {x1,x2, ...xn} ∈ Rd with corresponding
responses {y1,y2, ...yn} ∈ Rm.

The aim here is to obtain a linear transformation matrix W that minimizes
the differences between the probabilistic similarities of the projected covariates
and their responses. A point x in the projection space is computed as z = WTx
where the transformation matrix is W ∈ Rd∗r, r being the reduced dimensions.
We believe that a completed optimization preserves the probabilistic arrangement
in the Z space that closely resembles that of the Y space.

SPPP can be illustrated using the figure 4.1. Let us consider the central point in
black to be of interest. The pairwise similarities between itself and all its neighbors
are indicated by the rainbow color scale with black color indicating 0.1 Starting

1The color scale represents the notion of memberships analogous to the wavelength of the
colors ranging from red with the highest and violet with the lowest. The color scale may be
reversed for the Linear function.
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at the X space, a linear subspace mapping is performed with W leading to the Z
space. Here we notice that the two orange points are moved slightly apart from
each other matching their pairwise similarities in the Y space. Similarly the points
in green (both light and dark) are only closer to one of the orange points unlike in
the input space. The point in blue also experiences a small perturbation with the
influence from other pairwise similarities. Notice that all these points are moved
only along their own orbit which is an indication of maintaining their consistent
pairwise similarities from the central point (black). Moreover the closer points
are actively moved along their orbit while the wider points are relatively coarsely
moved.

Figure 4.1: Probabilistic arrangement of neighbors illustrating the objective of
SPPP.

4.2 Cost function

Based on the above motivation and illustration, we formulate our cost function.
First we convert the pairwise distances into probabilities by assuming the data to
follow one of the common distributions such as the Gaussian, Heavy-tail or Linear.
Then we can solve for W as the matrix that minimizes the cost. The cost function
is quadratic allowing us to make use of the conjugate gradient optimization.

C(W) =
1

n

∑
ij

Gij(log Pij − log Qij)
2 (4.1)
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where P and Q are now the joint probability distributions in the projection
and response spaces repectively. Computing these matrices differ based on the
function chosen, hence we will discuss them separately in the next section. G is
a probabilistic neighborhood matrix that can be computed using one of the three
methods described in chapter 3. So we can defer this choice until the experiments.

Each one of the selected functions for computing P and Q involves deriving
a specific gradient of its own. Two recent methods SNE and t-SNE have pointed
out that using Gaussian and Heavy-tail distributions are useful for providing good
representations and mitigating the ‘crowding problem’ respectively in addition to
obtaining simple gradients.2 In addition to this we also consider the classic case of
a linear distribution where no assumption is made about the data and is allowed
to compute probabilistic similarities as defined by the nature of the data. Finally
we formulate the three cases below as a problem of finding the projection matrix
which will also allow us to accommodate out-of-sample points without having to
run the optimization again.

The next section discusses the three versions of SPPP individually. Following
that we present a brief set of differences and similarities between SPPP and two
other recent probabilistic embedding methods, SNE and t-SNE. Finally we show
the visualizations obtained on two synthetic examples, one in each of regression
and classification.

4.3 Gradients

In order to compute the probabilities, we require the pairwise distances of points
both in the projection space and in the response space. The pairwise distances are
computed as,

dz2ij = τ T
ijWWTτ ij , dy2ij = ||yi − yj||2

where τ ij = xi − xj for simplicity and the distances are typically Euclidean.

4.3.1 Gaussian

Now the conditional probability of a point j to be a neighbor of point i in the
projection space is given by,

2A heavy-tail distribution with infinite degrees of freedom tends to a Gaussian
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pj|i =
exp(−dz2ij/2σ2

i )∑
k 6=i

exp(−dz2ik/2σ2
i )

(4.2)

Similarly the conditional probability of a point j to be a neighbor of point i in
the response space is given by,

qj|i =
exp(−dy2ij/2σ2

i )∑
k 6=i

exp(−dy2ik/2σ2
i )

(4.3)

But we are only interested in the joint probabilities such that

Pij =
pj|i + pi|j

2n
, Qij =

qj|i + qi|j
2n

This is due to two reasons. Firstly it ensures that the probabilities are sym-
metric and monotonic and secondly it simplifies the derivation. Hence it is ensured
that both joint distributions individually sum up to 1 while self similarities are set
to 0 (such as Pii = 0 and Qii = 0). The information about the influence of neigh-
bors on individual points is provided by our common neighborhood (weighting)
function G. Hence it suffices to set the σis within both P and Q to a constant
1√
2

making the term 2σ2
i equal to 1. This means that all points spread a similar

Gaussian assigning memberships as appropriate within their spaces. Finally this
leaves us with the joint probabilities as in equation 4.4 with the denominators of
the right side of both expressions individually summing to 1.

Pij = exp(−dz2ij) , Qij = exp(−dy2ij) (4.4)

Now we can find the gradient of the cost with respect to W

C(W) =
1

n

∑
ij

Gij(log Pij − log Qij)
2 (4.5)

Since W resides within P, we can use the Chain rule of differentiation to obtain
the gradient. If we denote Dz2 as a matrix containing scalars dz2ij for clarity,

∂C

∂W
=

∂C

∂Dz2

∂Dz2

∂W
(4.6)

Starting with the second part of the chain rule,
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dz2ij = τ T
ijWWTτ ij

∂dz2ij
∂W

= τ ijτ
T
ijW (4.7)

Now handling the first part of the chain rule. Since any change in dz2
i only

changes dz2ij and dz2ji ∀j,

∂C

∂dz2
i

=
∑
j

(
∂C

∂dz2ij
+

∂C

∂dz2ji
) = 2

∂C

∂dz2ij
(4.8)

Recall that Pij = exp(−dz2ij). Consequently,

∂C

∂dz2
i

=
∂

∂dz2
i

{
1

n

∑
j

Gij(log(exp(−dz2ij))− log Qij)
2

}

=
2

n

∑
j

Gij(−dz2ij − log Qij)(−1) (4.9)

Now bringing together the three parts from equations 4.7, 4.8 and 4.9 , we
have,

∂C

∂W
=
∑
i

4

n

∑
j

Gij(log Pij − log Qij)τ ijτ
T
ijW

∇WC =
4

n

∑
ij

Gij(log Pij − log Qij)τ ijτ
T
ijW (4.10)

Interestingly this resembles the gradient of standard SDPP except for the prob-
abilities. Hence the gradient can be simplified with minor algebraic manipulations
into a more compact form. Denote M = G� (log P− log Q), R = M + MT and
S is a diagonal matrix with Sii =

∑
j

Rij as shown for SDPP.

∇WC =
4

n
XT (S−R)XW (4.11)
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4.3.2 Heavy-tail

We use a heavy-tail more specifically a Student’s t-distribution in this method.
The probability density function of a t-distribution is given by,

pdft = c(1 + x2

v
)−

v+1
2

where x2 are pairwise distances. Setting v as 1 (one degree of freedom), gives
us the following form (ignoring constant c)

pdft = (1 + x2)−1

Using the same notation from Gaussian, we obtain the conditional probabilities
in the projection space as,

pj|i =
(1 + dz2ij)

−1∑
k 6=i

(1 + dz2ik)−1
(4.12)

and the output conditional probabilities are given by,

qj|i =
(1 + dy2ij)

−1∑
k 6=i

(1 + dy2ik)−1
(4.13)

Then we compute the joint probabilities for same reasons mentioned earlier.
We ensure that the joint probability matrices individually sum to 1 and their self
probabilities are set to 0 (Pii = 0 and Qii = 0). Finally we get,

Pij = (1 + dz2ij)
−1 , Qij = (1 + dy2ij)

−1 (4.14)

The cost is again written below for convenience.

C(W) =
1

n

∑
ij

Gij(log Pij − log Qij)
2 (4.15)

Using the Chain rule from 4.6 to simplify the derivation.

dz2ij = τ T
ijWWTτ ij ;

∂dz2ij
∂W

= τ ijτ
T
ijW (4.16)

Under the same framework as before, we have

∂C

∂dz2
i

= 2
∂C

∂dz2ij
(4.17)
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since any change in dz2
i only changes dz2ij and dz2ji ∀j. However the second part

undergoes a minor change.

Recall that Pij = (1 + dz2ij)
−1,

∂C

∂dz2
i

=
2

n

∑
j

Gij(log(1 + dz2ij)
−1 − log Qij)(1 + dz2ij)(−1)(1 + dz2ij)

−2 (4.18)

Combining the three parts in 4.16, 4.17 and 4.18 we have,

∇WC =
4

n

∑
ij

Gij(log Pij − log Qij) (−1)(1 + dz2ij)
−1 τ ijτ

T
ijW (4.19)

Notice that −(1 + dz2ij)
−1 is now a scaling factor in that it only affects in how

sooner or later we arrive at the optimum. Besides that the gradient can still be
simplified with minor algebraic manipulations into a more compact form like be-
fore. Denote M = G� (log P− log Q), R = M + MT and S is a diagonal matrix
with Sii =

∑
j

Rij.

∇WC =
4

n
XT (S−R)XW (4.20)

4.3.3 Linear

In the case of a linear distribution, we normalize the pairwise distances in order to
get the probabilities. Note that this time the probabilities indicate the likelihood
of not being neighbors, while still being monotonic. The farther a point is, higher
the probability of it not being a neighbor. The closer it is, lesser the probability of
it not being a neighbor. Intuitively when all points try to push their corresponding
wider points by a certain amount, it results in a probabilistic arrangement because
a point that is closer to some point is always wider to some other point. Fortunately
we still have the supervision to indicate how much they match the arrangement in
the Y space. Again the conditional probability in the projection space for a point
j to not be a neighbor of point i is given by,

pj|i =
dz2ij∑

k 6=i

dz2ik
(4.21)

similarly the corresponding output conditional probabilities are,
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qj|i =
dy2ij∑

k 6=i

dy2ik
(4.22)

The joint probabilities are computed again such that they individually sum up
to 1 and the self probabilities are set to 0 ( Pii = 0 and Qii = 0). Finally we have,

Pij = dz2ij , Qij = dy2ij (4.23)

The cost is once again written below for convenience.

C(W) =
1

n

∑
ij

Gij(log Pij − log Qij)
2 (4.24)

By following the chain rule approach, we notice that the linear function has a
simpler gradient than heavy-tail, which can be written in a more condensed form
as shown in the previous cases.

∇WC =
4

n

∑
ij

Gij(log Pij − log Qij) (1/dz2ij) τ ijτ
T
ijW (4.25)

Consequently the gradient can be simplified with minor algebraic manipula-
tions into a more compact form. Denote M = G� (log P− log Q), R = M + MT

and S is a diagonal matrix with Sii =
∑
j

Rij.
3

∇WC =
4

n
XT (S−R)XW (4.26)

Differences and Similarities between SPPP and SNE/t-SNE

Although SPPP may appear similar to SNE and t-SNE in using probabilities, the
following points are useful in order to appreciate the method.

Differences between SPPP and SNE/t-SNE

• SPPP is a supervised technique while SNE and t-SNE are unsupervised.

• SPPP optimizes for a transformation matrix W for also projecting out-of-
sample points unlike the others that optimize only for a projection space.

• SPPP is aimed to operate as a DR technique, SNE/t-SNE are motivated for
visualization (dim=2,3).

3 (1/dz2ij) is again a scaling factor within M.
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• SPPP cost and gradients are slightly different from that of SNE and t-SNE.

• SPPP may also use cross entropy to compute the neighborhood matrix, the
other techniques use only entropy for their input space distributions (but do
not explicitly have a neighborhood matrix)

• SPPP minimizes the weighted individual differences while the other minimize
the KL divergence.

Similarities between SPPP and SNE/t-SNE

• All the three techniques use probabilities in their computations instead of
plain pairwise distances.

• SNE uses Gaussian distribution on both spaces and SPPP uses this as one
option.

• t-SNE uses t-distribution in the output and Gaussian in the input space
while SPPP uses t-distribution in both the output space and the projection
space (not the input space) as one option.

4.4 Synthetic examples

Once again we make use of the same two synthetic examples for regression (Parity)
and classification (Taijitu). The experimental setup follows as explained for stan-
dard SDPP and the parameter selection follows from the previous chapter. This
time we cross-validate for the correct value of perplexity used in computing the
neighborhood matrix G and not that within P and Q because we set those values
to be a constant 1√

2
(for Gaussian). The neighborhood matrix G can be computed

either using entropy or cross entropy. As a general heuristic, we chose entropy if
the PCA projections obtained good performance (measure depends on the task),
otherwise cross entropy. This is because PCA is unsupervised which only uses
the input samples while cross entropy uses the output samples as well. This same
heuristic is also used for the experiments on real data sets. Further in order to
appreciate the method, the non-parametric student based neighborhood was not
used, although theoretically one could use any useful neighborhood function.

4.4.1 Regression: Parity data

The best value of continuity from cross-validations indicate that their performance
is similar to standard SDPP and the other variants introduced in the previous chap-
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ter. As a note, the continuity measures are basically designed with distances and
not probabilities, however they may still be relatively indicative. Figures 4.2(b),
4.2(c) and 4.2(d) show the visualizations produced by the SPPP Gaussian, Heavy-
tail and Linear respectively. It can be easily seen that the methods have identified
the correct two principal variables that contribute to the responses. Of the three
methods the Linear is capable of retaining the same amount of skewness as in
the original data. Interestingly when the student distribution was used as a mere
neighborhood selection method (as in the previous chapter), it did not produce
a good visualization. This implies that probabilities produce better results when
used alone rather than in combination with pairwise distances, because the proba-
bilities in this case are already normalized by their density in the projection space
during optimization unlike the case in SDPP where the neighborhood matrix is
fixed once it is computed.
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Figure 4.2: SPPP for regression
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4.4.2 Classification: Taijitu Symbol
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Figure 4.3: SPPP for classification

The cross-validation chart is shown in figure 4.3(a) where one can see that the
best corresponding parameters of the three methods obtain almost similar accu-
racies. The visually pleasing projections are shown in figures 4.3(b), 4.3(c) and
4.3(d). Especially SPPP-Gaussian (SPPP-G) and SPPP-Linear (SPPP-L) seem
to retain the same amount of skewness and rotation as in the original data which
is essential to note in order to trust them when applying to data sets where the
true intrinsic dimensionality or the local geometry is not known beforehand.



Chapter 5

Experimental Verifications

In this chapter we provide experimental verifications of all the contributions of
this thesis namely 3 neighborhood functions for SDPP and SPPP (3 versions) itself
while comparing their performance against a few of the recent state-of-the-art tech-
niques such as PLS, KPLS, KDR, SDPP (supervised DR), PCA and KPCA (un-
supervised DR). The interested reader is referred to the appendix for an overview
of the compared supervised DR methods. First regression followed by classifica-
tion tasks are carried out on a few well known UCI repository data sets [2]. To
facilitate accommodating projections, for all the experiments 2 dimensions is fixed
to be the desired reduced space.

5.1 Experimental setup

Each of the techniques we use have their own special parameter that needs to
be found using cross-validation on each data set separately. For this reason we
perform a 5-fold cross-validation over a range of 10 candidate parameters for ev-
ery technique. The kernel methods (KDR,KPLS and KPCA) use RBF Gaussian
kernel whose spread (Kernel width) is found using cross-validation. A common
heuristic to set the spread of RBF kernels is along the median of the data set.
For this reason our candidates range has a maximum of twice the median reached
in 10 equally-spaced steps. KDR requires kernel widths on both input and the
response space which makes 102 combinations to be evaluated. The standard ver-
sion of SDPP requires the number of neighbors while the entropy, cross entropy
and all three versions of SPPP require their corresponding perplexity values. The
candidate parameters for SDPP and our perplexity-parameterized methods follow
naturally from the previous chapters. The choice of computing the neighborhood
matrix for SPPP versions, which is to use entropy or cross entropy was made as

44
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SDPP-Entropy SDPP-Cross Entropy SDPP-Student CV for perplexity
SPPP-Gaussian SPPP-Heavy-tail SPPP-Linear CV for perplexity
KDR KPLS KPCA CV for kernel width
SDPP-standard PLS PCA CV for neighbors

Table 5.1: Image matrix

explained in the previous chapter. The student distribution was not made use
of due to its non-parametric nature. Again the cross-validation in SPPP only
corresponds to the perplexity estimation within G since the variances in P and
Q (for Gaussian) were set to a constant as explained earlier. The compared non
parametric methods are SDPP-student, PCA and PLS.

Since we do not explicitly have a test set, we learn the transformation matrix
using the training partition and evaluate the performance on the projection ob-
tained on the test partition for each fold. For regression the measure is continuity
from the Z to Y space 1 and for classification it is 1-nearest neighbor (or simply
nn) accuracy. As a preprocessing step, all data sets were mean centered. The
procedure and presentation of results follow the same steps established in chapter
2, this time cumulative of all five folds.

The results are organized in a manner that allows showing the cross-validation
performance alongside their corresponding 2D projections. The figure placements
includes an image matrix format as shown in table 5.1. The first row contains
the probabilistic neighborhoods of SDPP including the non-parametric student
based neighborhood. The second row displays the fully probabilistic methods,
as in SPPP, followed by the third row of kernel methods. The last row shows
SDPP-standard and two other non parametric methods PLS and PCA. For the
reader’s convenience all measures on the y axis have been set between 0 and 1 in
all experiments.

5.2 Regression on UCI data

Table 5.22 shows the description of the data sets used for regression. We follow the
experimental setup and show the results for cross-validation and the projections
for each data set separately. Finally we comment on their performances for regres-

1Continuity measure are still based on pairwise distances and hence should not be taken too
seriously for the probabilistic methods, although, they can be fairly indicative.

2n- Sample size and d- Initial dimensions



CHAPTER 5. EXPERIMENTAL VERIFICATIONS 46

Data set n d
Yacht Hydrodynamics 308 6
Housing 506 13
Concrete compressive strength 1030 8
Airfoil self-noise 1503 5

Table 5.2: Regression data sets

sion. For Concrete compressive strength and Airfoil self-noise data sets KDR could
not be run due to high computational loads involving high dimensional matrices.
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Figure 5.1: Yacht Hydrodynamics
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Figure 5.3: Concrete compressive strength
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5.2.1 Discussions

For this discussion we have four data sets in a regression setting. On a general
level we can notice that almost all methods perform well given their own limita-
tions in design. However it is interesting to note the competitive nature of the en-
tropy and cross entropy based neighborhood functions of SDPP (precisely SDPP-E
and SDPP-CE). From the cross-validation charts one can easily see the relatively
consistent and smooth performance over a range of perplexity values unlike the
fluctuations as in the standard version of SDPP. This is indicative of the smooth
neighborhood sizes that penalizes the cost function gradually thereby allowing a
certain hit-or-miss range in the neighborhood selection. Both the weighting func-
tions also produce similar although not the same visualizations. This indicates
that the datasets obey the surjective definitions. Further the corresponding visu-
alizations by the student weighted function closely resembles that of the standard
SDPP which is obvious because it has only information about the pairwise dis-
tances in its definition. But the advantage however is that it is non-parametric
which is useful in cases where cross-validation is an expensive option.

The performance of the best value of perplexity found using cross-validation for
the three versions of SPPP show that they are equivalent or better in cases com-
pared to other methods. Each one of them have unique visualizations by virtue of
their chosen distribution. Although the continuity measure for probabilistic meth-
ods do not best quantify their performance, the visualizations indicate that they
are worth building regression models with. Additionally SPPP methods are rel-
atively smooth performing, following their probabilistic tendencies. This is quite
useful for sparse data sets indicating their relative robustness towards noise.

Now let us compare the results to the three kernel methods, KDR and KPLS
(supervised) and KPCA (unsupervised). The kernel methods are generally known
for their ability to allow nonlinear mapping in the projection space, but SDPP
variants and SPPP versions basically only compute a linear mapping. Despite
this limitation, the results seem to indicate promising competition, at least for the
data sets considered here. Of the 5 perplexity-parameterized methods introduced
in this thesis, it has to be said that SDPP-E and SDPP-CE are at times consis-
tently better performing than the three versions of SPPP. Their 2D projections
provide good basis for visual inspection and analysis. Amongst the methods cho-
sen for comparison, KPLS presents interesting visualizations.

In addition to producing pleasing visualizations and retaining good continu-
ity values, SPPP also preserves internal similarities faithfully that would allow us
to further build a model. Next we show the results of SPPP on classification tasks.
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Data set n d Classes
Wine 178 13 3
Glass Identification 214 10 6
Balance scale 625 4 3
Waveform Database Generator (Version 1) 5000 21 3

Table 5.3: Classification data sets

5.3 Classification on UCI data

While retaining the same formulation, SPPP can also be used for classification
tasks with a slight modification in encoding the class information as discussed ear-
lier. This is because in a regression setting, the responses are true measures, while
in the classification setting they are arbitrary values indicating class labels. The
data sets used for classification are described in the table 5.3 3.

Following the experimental procedure we show the results of cross-validation
with good classification accuracy as the target and their corresponding 2D pro-
jections. Except for the Waveform data set we were able to run KDR on all others.

3n- Sample size and d- Initial dimensions
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Figure 5.5: Wine
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Figure 5.6: Glass Identification
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Figure 5.7: Balance scale
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Figure 5.8: Waveform Database Generator (Version 1)
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5.3.1 Discussions

For this discussion we have classification tasks performed on four varied data sets.
From the cross-validation charts we can again see the relatively smooth perfor-
mance of the SDPP-E and SDPP-CE unlike the fluctuations as in the standard
SDPP. The reason remains the same thereby showing evidences of relaxed pe-
nalizations in using probabilities instead of binary valued neighborhoods. The
visualizations also indicate that all three weighting functions are better in some
cases than standard SDPP for the data sets considered.

The classification performance of the SPPP versions especially the Heavy-tail
and Linear, display highly competitive performance compared to all other meth-
ods. A measure so strict as 1nn accuracy would require maintaining the internal
structure so precisely since a slight perturbation in the arrangement could affect
the performance. Despite this SPPP have managed to reach good measures. One
can also observe that all the three methods consistently produce pleasing visual-
izations if not equivalent, especially SPPP-L for Glass identification data set.

Despite the Waveform data set having a large sample size, SDPP-E and SDPP-
CE have shown remarkable consistency through a range of parameter choices even
topping the kernel methods. It is difficult to state at least from this comparison as
to which one is better of the two. Additionally for all the experiments considered
here, SDPP-student has produced similar 2D projections as the standard SDPP,
but with the advantage of being completely non-parametric. Once again amongst
the compared methods, KPLS visualizations are interesting.

Although all the three versions of SPPP have performed quite well on most
data sets in both regression and classification tasks, the Heavy-tail function is
more promising. Firstly because it has consistently produced competitive perfor-
mance for the data sets considered here. Secondly as also pointed out in [32] it
allows obtaining nice visualizations. This is understandable because the Heavy-tail
is a steep function with a long tail thereby allowing to assign more weightage to
closeby points and smaller values to the wider ones. Unlike SPPP-H the SPPP-L
is influenced more by the pairwise distances instead of assuming a specific distri-
bution to follow. This makes it a classic combination of both distance based and
probability based methods.
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Conclusions

The aim of this thesis was to develop a supervised DR technique that maintains
relations between points in a stochastic manner. Precisely SPPP learns a linear
transformation matrix leading to a projection space where the differences between
the probabilistic similarities of the input covariates and their responses are mini-
mized.

We began by suggesting three probabilistic neighborhood functions based on
entropy, cross entropy and student’s t-distribution as neighborhood selection strate-
gies for a recently proposed method called SDPP. The results on synthetic exper-
iments led to the motivation of formulating a stand alone probabilistic method
called SPPP. The three flavors of SPPP introduced in this thesis are namely
Gaussian, Heavy-tail and Linear. The common motivation and formulation were
presented in addition to their separate gradients. We showed using experiments
on both synthetic and real world data sets that SPPP is competitive in its perfor-
mance for both regression and classification tasks alike. The comparisons included
recent state-of-the-art methods such as PLS, KPLS, KDR and SDPP itself (su-
pervised DR) and PCA, KPCA (unsupervised DR).

The benefits of using SPPP are that it maintains probabilistic relations with
a smooth number of neighbors unlike that of SDPP which is limited by discrete
binary values. This notion gives the edge to SPPP in handling sparse data sets.
For regression tasks, SPPP methods often provide good reduced representations
as we observed from their visualizations. Consequently one could build simple
regression models out of these representations. Similarly for classification as well
they show promising separations of classes even to human eyes.

Amongst the contributions of this thesis, the SDPP-E and SDPP-CE are quite
competitive, sometimes even better than SPPP. Moreover we noticed that of the
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three methods of SPPP the Linear is a classic combination of both distance based
and probability based methods since it does not assume a distribution in its own
sense and follows the data. Of the three versions, however SPPP-H provides both
nice visualizations and performance.

Possible improvements and research directions:

• While using the simple weighted individual differences model proves worthy,
it would be interesting to see how the divergence measures assist in the
process such as KL, Itakura-Saito divergence or other Bregman divergences.

• We used only Euclidean distances in our method, but this does not include
the manifold information. One could consider using graphs constructed along
manifolds. This might give an appearance of a ‘kernel’ version of the same
method.

• We used entropy and cross entropy in our experiments. But there may be
cases where some data set might violate the surjective definition. It would
be interesting to understand and device methods to overcome this difficulty
or experiment with the use of conditional entropy instead of cross entropy.
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Appendix

7.1 A brief overview of PLS, KPLS and KDR

Partial Least Squares (PLS)

Partial Least Squares is a method for finding the linear relationship between a set
of input covariates and their responses [38]. PLS uses a set of linear equations,

X = ZAT + E
Y = TBT + F

where X and Y are input covariates and their responses respectively and A
and B are loading matrices. Zn∗r and Tn∗r are the score matrices while E and F
are residuals. The objective of PLS is to find projection matrices W = [w1, ...wr]
and U = [u1, ...ur] that maximizes the covariances between the projected inputs
and the responses.

max
wi,ui

[Cov(zi, ti)]
2 = max

wi,ui

[Cov(Xwi,Yui)]
2 (7.1)

where the Cov(zi, ti) = zT
i ti/n denotes the sample covariance between the score

vectors z and t. To this end, PLS uses an iterative approach that deflates X and Y
after extracting z and t until no more deflating is possible or convergence reached.
The NIPALS algorithm [38] is an example of this approach.

1. w = XT t/tT t, w = w/||w||
2. z = Xw
3. u = YTz/(zTz), u = u/||u||
4. t = Yu
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5. X← X− zzTX and Y← Y− ttTY

Consequently another approach allows to obtain the latent variables using a
single eigenvalue decomposition.

XTYYTXw = λw

Z and T are computed as, Z = XW and T = YU. Interestingly both the
above approaches lead to the same solution [14].

Kernel PLS (KPLS)

The limitation of PLS in handling nonlinear data is overcome by the kernel version
called Kernel PLS (KPLS) [22]. The nonlinear data is mapped to a high dimen-
sional space F corresponding to a reproducing kernel Hilbert Space such that x
→ φ(x).

The kernel trick reduces the problem once again to a set of linear algebraic
equations as in PLS. Thanks to the fact that a value of the dot product between
two vectors in F allows them to be evaluated by the kernel function.

k(x,y) = φxTφy, ∀ x,y ∈ X

The gram matrix K is defined as the cross dot product of all the mapped
input data points, Kij = k(xi,xj) = 〈φ(xi,xj)〉 =⇒ K = φTφ where φ =
[φ(x1).....φ(xn)]. The modified algorithm now deflates K and Y unlike X and Y
in PLS. This is performed in steps as shown below.

1. randomly initialize t
2. z = Ku, z = z/||z||.
3. t = YYTz, t = t/||t||
4. repeat steps 2-3 until convergence.
5. Deflate K← (φ− zzTφ)T (φ− zzTφ) and Y← Y− ttTY

This is performed until the rank of K is reached as mentioned in the modified
NIPALS algorithm [22].
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Kernel Dimensionality Reduction (KDR)

KDR [8] is a supervised DR approach for sufficient dimensionality reduction (SDR).
KDR tries to find an orthogonal transformation W such that Y ⊥⊥ X |WTX 1

The different SDR algorithms are aimed at solving the inverse regression prob-
lem which is to find the expectation E(X |Y) based on the fact that if the condi-
tional distribution P(Y |X) varies along a subspace X then the inverse regression
E(X | Y) also should lie along X . Examples of SDR include Sliced Invariance
Regression (SIR), principal Hessian Direction (pHd), sliced average variance esti-
mation (SAVE) and contour regression. However all these algorithms are limited
by their assumption about the marginal distribution PX(x), such as the distribu-
tion is elliptical. This imposes serious limitations when not being the case.

KDR was proposed as a method that overcomes such assumptions and instead
converts the problem of imposing conditional independence to minimizing the con-
ditional covariance operator in the Reproducing Kernel Hilbert Space (RKHS),
HX and HY. By assigning a Lebesque measure of probability spaces over which
X and Y are defined (such that f1, f2 ∈ HX, 〈f1, f2〉 =

∫
f1(x)f2(x)dP(X) ), a

cross covariance operator can be defined as,

〈g,ΣYXf〉 = EXY[(f(X)− EX[f(X)])(g(Y)− EY[g(Y)])]

A conditional covariance operator is then defined as ΣYY |X ≡ ΣYY−ΣYXΣ−1XXΣXY.
Let us introduce an orthonormal transformation operator WWT that spans the
subspace corresponding to the input covariates. The kernels of RKHS’s HX and
HY are denoted by KX and KY respectively (such that KW(x1,x2) ≡ K(WTx1,W

Tx2)).
In this setting subject to some weak condition on HX , HY and the probability
measures, it can be shown that ΣW

YY |X ≥ ΣYY |X ⇔ Y ⊥⊥ X |WTX. 2 [8]. The
objective function of KDR thus simplifies to finding W as the component that
minimizes the trace as,

Tr[GY(GW
X + mεmIm)−1]

s.t WTW = 1

where GY and GW
X are the centered gram matrices, m is the sample size and ε

is a regularization parameter. W is found using gradient descent. Unfortunately
the computational load of KDR is high because of the need to compute the inverse
of the kernel matrix at each iterative step.

1We use an abuse notation of WTX as the projected subspace.
2inequality arises due to ordering that can be defined for self-adjoint operators
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