
Aalto University
School of Science
Degree Programme of Engineering Physics and Mathematics

Mika Juuti

Stochastic Discriminant Analysis

Master’s Thesis
Espoo, March 17, 2015

Supervisor: Professor Juha Karhunen
Advisor: Francesco Corona D.Sc. (Tech.)

Aalto University
School of Science
Degree Programme of Engineering Physics and Mathematics

ABSTRACT OF
MASTER’S THESIS

Author: Mika Juuti
Title:
Stochastic Discriminant Analysis
Date: March 17, 2015 Pages: 85
Major: T-120 Computer Science Code: Mat-2
Supervisor: Professor Juha Karhunen
Advisor: Francesco Corona D.Sc. (Tech.)
The processing powers of computers have increased constantly during the last
decades. Ordinary personal computers are now able to perform intricate calcula-
tions with datasets. Large datasets, such as images, create unique challenges as
they often contain more variables than used in ordinary statistical analysis.
In dimension reduction we are decreasing the amount of variables by combining
them. The locations of the data points in a low-dimensional space are often
optimized with respect to some predefined criteria. If we use a response variable
to guide the search of the subspace, the method is called a supervised method.
When the objective of the dimension reduction is to reduce the size of the space
to two or three dimensions, the procedure is often called visualization. This thesis
is mostly focused on supervised visualization.
This thesis first discusses a supervised dimension reduction tool developed at
the Aalto University: Supervised Distance Preserving Projections (SDPP). The
method matches response space distances with linearly transformed input space
distances using the Euclidean divergence. Second, this thesis introduces a new
method for dimension reduction based on the SDPP: Stochastic Discriminant
Analysis (SDA). The method matches point-to-point neighbor probabilities in
the linearly transformed input space with target probabilities from the response
space, using the relative entropy (Kullback-Leibler divergence). Finally, the per-
formance of this method is analyzed against some selected supervised state-of-
the-art dimension reduction methods on contemporary datasets.

Keywords: visualization, linear projections, supervised learning, dimen-
sion reduction, Kullback-Leibler divergence

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Teknillisen fysiikan ja matematiikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Mika Juuti
Työn nimi:
Stokastinen diskriminanttianalyysi
Päiväys: 17. maaliskuuta 2015 Sivumäärä: 85
Pääaine: T-120 Tietojenkäsittelytiede Koodi: Mat-2
Valvoja: Professori Juha Karhunen
Ohjaaja: Tohtori Francesco Corona
Viimeisten vuosikymmenten aikana tietokoneiden prosessointikyky on jatkuvasti
kasvanut. Suurten datajoukkojen tutkiminen on tärkeää muun muassa sosiaali-
sen median alalla. Samalla tavalliset tietokoneet ovat kehittyneet tehokkaiksi pro-
sessointiyksiköiksi, mahdollistaen monimutkaisenkin datan käsittelyn. Toisaalta
datajoukot sisältävät usein liian paljon muuttujia havaintojen lukumäärään ver-
rattuna, luoden niin kutsutun dimensionaalisuuden kirouksen.
Uloitteisuuden pienentämisessä pyritään pienentämään muuttujien määrää yh-
distelemällä muuttujia. Näissä menetelmissä datapisteiden olinpaikkaa aliavaruu-
dessa optimoidaan usein jonkin kriteerin suhteen. Uloitteisuuden pienentämisessä
voidaan käyttää hyväksi havantoihin liittyvää vastetta, jolloin pienentämistä kut-
sutaan ohjatuksi menetelmäksi. Kun tarkoituksena on pienentää avaruuden ko-
koa kaksi- tai kolmiuloitteiseksi silmämääräistä tarkastelua varten, pienentämistä
kutsutaan visualisoinniksi. Tässä työssä keskitytään ohjattuihin visualisointime-
netelmiin.
Tässä diplomityössä tarkastellaan aluksi erästä Aalto Yliopistolla kehitettyä oh-
jattua uloitteisuuden pienentämismenetelmää: Supervised Distance Preserving
Projections (SDPP:tä). Menetelmä sovittaa havaintopisteiden väliset etäisyydet
vastepisteiden välisiin etäisyyksiin naapurustossa Euklidista divergenssiä käyt-
täen. Tämän jälkeen kehitetään SDPP:n pohjalta uloitteisuuden pienentämisme-
netelmä (Stokastinen Diskriminanttianalyysi, SDA) ja menetelmän käytännölli-
syyttä tutkitaan. Menetelmä sovittaa epälineaarisesti muunnetut aliavaruuden
etäisyydet havaintopisteiden välillä vastepisteiden välisiin vastikkeisiin relatiivis-
ta entropiaa (Kullback-Leibler divergenssiä) käyttäen. Työn lopuksi verrataan
menetelmän toimivuutta toisia vastaavia menetelmiä vastaan nykyaikaisilla da-
tajoukoilla.
Asiasanat: visualisointi, projektio, ohjattu oppiminen, uloitteisuuden pie-

nentäminen, Kullback-Leibler divergenssi
Kieli: Englanti

3

Aalto-universitetet
Högskolan för teknikvetenskaper
Utbildningsprogrammet i teknisk fysik och matematik

SAMMANDRAG AV
DIPLOMARBETET

Utfört av: Mika Juuti
Arbetets namn:
Stokastisk diskriminantanalys
Datum: Den 17 Mars 2015 Sidantal: 85
Huvudämne: T-120 Datavetenskap Kod: Mat-2
Övervakare: Professor Juha Karhunen
Handledare: Doktor Francesco Corona
Under de senaste decennierna har moderna bordsdatorer utvecklats avsevärt. Mo-
dern processeringsförmåga möjliggör komplicerad databehandling. I analysering
av stora datamängder, behöver man dock i praktiken förhandsbehandla datan för
att minska minnesanvändningen och processeringstiden.
I dimensionsförminskning strävar man efter att minska antalet variabler i datan.
Ifall responsvariabler som associeras med observationerna används till nytta kallar
man förminskningsmetoderna handledda. Dimensionsförminskning kallas också
visualisering då man förminskar datan till två eller tre dimensioner med avsikt
att betrakta datan ögonmässigt. I detta diplomarbete fokuserar jag på handledda
visualiseringsmetoder.
Först undersöks handledda dimensionsförminskningsmetoden Supervised Distan-
ce Preserving Projections (SDPP). Metoden passar ihop avstånd mellan data-
punkter i en lågdimensionell projektion av indatan med motsvarande avstånd
i utdatan genom att använda Euklidiska divergensen. Sedan utvecklas en mot-
svarande metod baserad på sannolikhetskalkyl och metodens lämplighet till di-
mensionsförminskning undersöks. Metoden passar ihop icke-linjärt projiserade
avstånd i indatan med motsvarande avstånd i utdatan genom att utnyttja re-
lativa entropin (Kullback-Leibler divergens) mellan de sannolikhetsfördelningar
som dessa avstånd ger upphov till. I slutet av diplomarbetet jämförs metodens
nyttighet med andra motsvarande metoder.
Nyckelord: visualisering, projektion, handledd inlärning, dimensionsför-

minskning, Kullback-Leibler divergens
Språk: Engelska

4

Acknowledgements

I wish to thank my adviser Francesco Corona for his help in my thesis. The discussions
with Francesco were an immense help in navigating through the research work and arriving
at this thesis. His constant positive attitude and helpful remarks were ever so important. I
also want to thank professor Juha Karhunen for the possibility to work in the Information
and Computer Science department on the Master’s thesis and for extending my work
period until March 2015. I am very grateful for the opportunity to work as a summer
intern at the Information and Computer Science department. Thank you, and keep up
the good work!

Finally, I wish to thank my family and my lovely girlfriend for their support.

Espoo, March 17, 2015

Mika Juuti

5

Contents

1 Introduction 8
1.1 Data . 8
1.2 Data Analysis . 8
1.3 Dimension Reduction . 9
1.4 Contributions of this thesis . 10

2 Background 11
2.1 The curse of dimensionality . 11
2.2 Dimension reduction methods . 13

2.2.1 Principal Component Analysis . 13
2.2.2 Singular Value Decomposition . 14
2.2.3 Random projections . 14
2.2.4 Fisher’s Linear Discriminant Analysis 16
2.2.5 Laplacian Eigenmaps . 17
2.2.6 Locality Preserving Projections . 18
2.2.7 Stochastic Neighborhood Embedding 18
2.2.8 t-distributed SNE . 19
2.2.9 Other supervised methods . 19

2.3 Machine Learning Concepts . 20
2.3.1 Bias-variance trade-off . 20
2.3.2 Regularization . 21
2.3.3 k-NN classification . 22
2.3.4 Kernel Trick . 22

2.4 Mathematical Optimization . 22
2.4.1 Optimality . 22
2.4.2 Gradient Descent methods . 23
2.4.3 The Newton methods . 23
2.4.4 The method of Conjugated Gradients 24
2.4.5 Nonlinear Conjugated Gradients . 25
2.4.6 Quasi-Newton methods: BFGS . 26
2.4.7 Memoryless Quasi-Newton methods: LBFGS 27
2.4.8 Linear and semidefinite programming 28

2.5 Information Theoretical Concepts . 29
2.5.1 Entropy . 29
2.5.2 Cross-entropy . 30
2.5.3 Kullback-Leibler divergence . 30

6

3 Supervised Distance Preserving Projections 31
3.1 Introduction . 31
3.2 Cost Function . 31

3.2.1 SDPP for classification data sets . 32
3.2.2 The neighborhood matrix G . 32

3.3 Optimization . 34
3.3.1 SQLP formulation . 34
3.3.2 Nonlinear Conjugate Gradient descent 35

3.4 Evaluation of classification solutions with SDPP 36
3.5 Personal work related to the SDPP . 37
3.6 Conclusions on SDPP . 38

4 Stochastic Discriminant Analysis 43
4.1 Stochastic Discriminant Analysis . 43
4.2 Gradient . 46
4.3 Hessian . 49
4.4 A theoretical connection between the cost function in SDPP and SDA . . . 50
4.5 Embedding with the Iris dataset . 51

5 Datasets 53

6 Evaluation 57
6.1 Computational environment . 57
6.2 The Olivetti faces dataset . 58

6.2.1 Two-dimensional embeddings . 58
6.2.2 Regularization parameter search . 60
6.2.3 Comparative performance over a range of dimensions 62
6.2.4 Prototype Faces . 63

6.3 The USPS dataset . 67
6.4 COIL-20 Object Images . 70
6.5 Computational complexity and runtime comparison 72
6.6 Comparisons on more datasets . 74

6.6.1 UCI datasets . 74
6.6.2 Large datasets . 74
6.6.3 High-dimensional datasets . 75

7 Conclusions 79

7

Chapter 1

Introduction

1.1 Data
The last decades have marked an explosive growth in the amount of data all over the
globe. Hyperspectral imagery, computational finance, social network analysis and biolog-
ical micro-array analysis amongst others contain a very large amount of recorded variables
[19, 20, 36]. Ideally, we would want to make use of the full amount of data available. But
in practice, the full use of these kinds of datasets is and will be both too much for the
memory and too slow to process. The processing speed is frequently linked to the size of
the data matrices representing the data.

Dimension reduction is related to this fundamental setting. Which portion of the data
is useful and which can be discarded? Often the answer to the question is related to how
we want to use the data. If we do dimension reduction utilizing some response variable
we are interested in, then we are doing supervised dimension reduction. We often try to
squeeze out as much information in as a small space as we can.

1.2 Data Analysis
Conventional statistical methods are designed to analyze a few well selected variables
with a large amount of observations. Data analysis [19] methods usually deal with the
opposite phenomena: there is an abundance of variables and the amount of observations
varies dramatically.

In the data analysis setting, data matrices are frequently thought to represent points
in a high-dimensional space. To give a concrete example, let us think that we have data
of different countries in the EU. Each country has a corresponding high-dimensional point
or data vector. Each dimension represents a variable associated with that country, e.g.
the average income or the highest score ever reached in the Eurovision song contest.
Frequently, the data dimensionality far exceeds three dimensions, and it is therefore often
difficult to imagine what the data looks like geometrically.

Three of the most common data analysis tasks are classification, regression and clus-
tering [4]. Quite often one of the values in the data matrix will be estimated from other
variables yi in the matrix. In the case that the estimated variable yi is a categorial variable
(yes/no, male/female, car/boat/train,...) the task of estimating this variable is called a
classification task. In the case that the variable yi takes real values the task is called

8

CHAPTER 1. INTRODUCTION 9

regression [45]. For instance, in linear regression the response variable y is modeled as if
it has been generated by the model y = wTx + ε, where w ∈ RD×1 denotes the weight
vector for the variables x ∈ RD×1 and ε is (additive) noise [45]. Regression problems can
be written in the form y = f(w,x) + ε, where f can be a nonlinear function. Cluster
analysis, or clustering, is the task of grouping the elements in the data set in such a way
that similar objects are close to each other [19].

1.3 Dimension Reduction
Dimension reduction is a crucial preprocessing step in machine learning, after which clas-
sification, regression or cluster analysis is often done. Historically, dimension reduction
began with the development of principal component analysis (PCA) [4, 33, 37, 59] in the
early 20th century. PCA was discovered by Pearson in 1901 and was later independently
studied by Hotelling in 1933. However, multivariate analysis only really became popular
after the development of the electronic computers in the latter half of the 20th century.
Today, dimension reduction (DR) tools are included in virtually every statistical software
package available online, in the form of PCA and related methods.

In machine learning literature, many subfields have developed their own terms for
the same phenomena. In pattern recognition literature the term feature is preferred
over variable [29]. Sometimes a distinction is made such that processed variables are
called features, but often these two terms are used interchangeably. Dimension reduction
is usually separated into feature extraction and feature selection [4]. Feature selection
concerns the selection of a subset of variables. Methods in feature selection include forward
selection and backward selection. Feature extraction concerns transforming variables into
new features either non-linearly or linearly (by matrix multiplication). For example, PCA
is a linear feature extraction method. To clarify, in this thesis, we are referring to feature
extraction, whenever we talk about dimension reduction.

In data analysis applications, the purpose is often to create a predictor model, which
can predict the class label or regression value of a new observation [27]. Dimension
reduction reduces the amount of variables that are processed, making the model simpler.
A simpler model is more robust on small data sets because it contains less variance,
making it less dependent on the particulars in the data set, including noise and outliers
[4]. If the data can be represented without loss of information in a few dimensions we can
visualize the dataset (embedding it to two or three dimensions) to see its structure and
eventual outliers [4].

Dimension reduction has two purposes: we can either search for a good low-dimensional
linear projection or try to find a low-dimensional geometrical shape embedded in a high-
dimensional space. The former case includes PCA, Locality Preserving Projection (LPP)
[31] and Supervised Distance Preserving Projections (SDPP) [66]. The latter case is of-
ten called manifold learning. Some famous manifold learning algorithms are Isomap [4],
Locally Linear Embedding (LLE) [4], Laplacian Eigenmaps [12] and recently, Stochastic
Neighbor Embedding (SNE) [32] and its varieties.

One way to further differentiate between dimension reduction methods is whether
output information is used. Linear Discriminant Analysis (LDA) [4] is one of the best
known supervised dimension reduction methods based on class information. Methods such
as SDPP work for both regression and classification settings. In recent years Stochastic

CHAPTER 1. INTRODUCTION 10

Neighbor Embedding has risen to one of the top exploratory dimension reduction tools
available. Motivated by the success of t-distributed SNE (t-SNE) [61] at visualizing
various data sets, we search for methods of how to combine the knowledge of t-SNE with
SDPP.

1.4 Contributions of this thesis
This thesis interprets the SDPP and shows how the SDPP works. Then a new method
called Stochastic Discriminant Analysis is presented. It preserves local neighborhoods in
the output space by minimizing an information theoretical quantity, the Kullback-Leibler
divergence. The new method is especially suited to project multiclass data into a low
dimensional embedding. This internship also included other work related to the SDPP,
which is summarized in Section 3.5.

Chapter 2 introduces the necessary background knowledge for understanding this the-
sis. Section 2.1 introduces dimension reduction and the curse of dimensionality. Sec-
tion 2.2 introduces different dimension reduction methods, including the PCA and LDA.
Section 2.3 introduces machine learning concepts, including the bias-variance trade-off
and regularization. Section 2.4 introduces some ideas used in nonlinear mathematical
optimization and introduces contemporary methods for solving nonlinear optimization
problems. Section 2.5 introduces information theoretical concepts used in this thesis,
mainly entropy and the Kullback-Leibler divergence. Chapter 3 introduces the dimension
reduction tool SDPP and shows how to calculate the projection matrix of it.

Chapter 4 introduces the new dimension reduction tool SDA and discusses how to find
the projection matrix efficiently. Section 4.1 analyzes the cost function and shows a regular
geometrical structure that is searched. The derivation of the gradient of the objective
function is discussed and the computational complexity of the method is determined in
Section 4.2. Section 4.3 discusses the Hessian of the objective function.

Chapter 5 introduces the datasets used in the experimental evaluation section, with
some examples of images in the image datasets. Chapter 6 evaluates the dimension reduc-
tion technique SDA experimentally. Section 6.1 discusses the optimization environment
used (Matlab) and the third-party optimization packages used. Sections 6.2, 6.3 and 6.4
contain an in-depth analysis of three contemporary datasets (Olivetti, USPS and COIL-
20). The 1-NN classification accuracy calculated from the data different contemporary
dimension reduction methods on a range of target dimensions is calculated and their
two-dimensional embeddings are shown. The runtime of SDA was analyzed and efficient
choices for optimization algorithms were found in Section 6.5. Section 6.6 evaluates two-
dimensional projections of the dataset in terms of classification accuracy of out-of-sample
projection of test points, evaluated on six additional datasets. Chapter 7 summarizes the
contributions of this thesis.

Chapter 2

Background

In this chapter, the relevant background knowledge for understanding this thesis is pre-
sented. The concepts of dimension reduction and the curse of dimensionality [19] are
discussed. An important topic in machine learning; the bias-variance trade-off, is intro-
duced, as well as some dimension reduction methods with examples. Then, the necessary
optimization background is discussed. This is mainly related to the concept of optimality
and the various ways of minimizing a function using gradient information. Finally, some
relevant information theoretical concepts are discussed with examples, mainly the entropy
and the Kullback-Leibler divergence.

2.1 The curse of dimensionality
The curse of dimensionality [19] is often the motivation for doing dimension reduction.
The curse of dimensionality refers to the many phenomena that are associated with high-
dimensional data, but are concealed when dealing with low-dimensional data. The term
originates from Bellman [19], from his analysis of dynamic systems. In this thesis, high-
dimensional data refers to mathematical vector spaces with dimensions much higher than
three. The vectors can be manipulated like any other mathematical vector: multiplica-
tions by scalars, vectors and matrices can be done and distances between vectors can be
calculated just as in the low-dimensional variants. The values of the vector can also be
thought to represent a point in the high-dimensional space in the same manner that two-
dimensional vectors represent points on a plane and three-dimensional vectors represent
points in space. Planes in higher than two dimensions are often called hyperplanes and
spheres in higher dimensions are called hyperspheres. Some surprising differences between
low-dimensional space and high-dimensional sample space are highlighted next.

High-dimensional data is sparse

The volume of the empty space between data points rises exponentially for each added
dimension, while the volume of the occupied space rises linearly for each added sample.
Let us think of uniformly distributed data in the unit hypercube [0, 1]10. Let us assume
that we have 100 points in 10 dimensions. We draw a hypercube around each point,
with the side lengths 0.1, 10% of the side length in the unit hypercube. We can assume
for simplicity that the small cubes do not overlap. In that case, the boxes around the

11

CHAPTER 2. BACKGROUND 12

points occupy a volume of 100 · 0.110 = 10−8, compared to the total space volume 1. To
occupy the full volume of the 10D space, 1010 boxes would be needed. In a 20D space,
the proportion would be 10−18. To occupy the full 20D volume of the space, 1020 boxes
would be needed. What seemed like a lot of points in a low-dimensional space actually
only occupies a tiny fraction of the high-dimensional space. A high-dimensional space is
inherently sparse. This makes it often possible to find meaningful linear subspaces in the
data.

Distances between points lose meaning

When working with real and integer data, small differences in an individual variable’s
value can result in unseemly large distances between data points. This phenomena occurs
frequently with so called bag-of-words datasets, where each word in a defined dictionary
(for example the whole Finnish dictionary or a subset of it) is a (variable) dimension.
Take for example data points (vectors) x1 and x2 and assume that they represent the
same document, however a word is added to x2, which is not occurring in x1. This causes
the attribute x1i = 0 to change to value x2i = 1. The distance between these two data sets
changes from |x1−x2| = 0 to |x1−x2| =

√
1 = 1. In the case that two words are different,

the distance becomes |x1−x2| =
√

2 and so on. If one document contains two occurences
of a word not occurring in the other document, the distance becomes |x1 − x2| = 2. As
such, the distances between points become quantized. The distance value does not reflect
our idea of how similar these documents are! Even so, nearest neighbors calculated from
distances are still useful.

Irrelevant variables

The problem of irrelevant variables is related to the previous problem. Imagine that we
have gathered a large data set with different attributes. Each of these variables would
constitute a dimension of its own. If we want to predict a specific phenomena from the
data (e.g. how far a subject is able to jump), certain variables might only add to the
confusion of how far the subject jumps. For example, the skill in Finnish language or the
price of the subject’s shirt should hardly affect the performance, although they might end
up correlating on some datasets. These variables do, however, affect the perception of
adjacency in the point space. Irrelevant variables contain irrelevant noise to the data set.
Distances between samples get additive noise, which makes it difficult to draw conclusion
based on distances between points. Often it is precisely these distances between points
that are used to cluster data points.

Redundant variables

Similarly, we can imagine situations where there are near duplicate variables in the
dataset. Often it is better to discard one of the highly correlating variables or to combine
them, as they often would convey the same underlying information about the data.

CHAPTER 2. BACKGROUND 13

2.2 Dimension reduction methods
The previous section presented problems that high-dimensional data creates for data
analysis. Shlens calls dimension reduction the process of finding important axes in a data
set and dropping off uninteresting axes [59]. This section introduces different dimension
reduction ideas. History of dimension reduction is described and some recent advances
are discussed.

2.2.1 Principal Component Analysis
The invention of the earliest dimension reduction method is often accredited to Pearson,
for the discovery of Principal Component Analysis in 1901. In his paper "On lines and
planes of closest fit to systems of points in space" [49], Pearson was searching for best
fitting lines or planes through three or higher dimensional spaces. He minimized the sum
of the squared distances between the data points and the closest point on a line, see
Figure 2.1. Among other things, Pearson concluded that "the best fit for a line of any
order goes through the centroid of the system", i.e. the center of mass for all points.
In 1933, Hotelling independently improved on the method in the paper "Analysis of a
complex of statistical variables into principal components" [33]. Hotelling was examining
scores in mental tests and wanted to find a new set of factors, or as he preferred to call
it components, of the scores that were orthogonal and contained the maximum amount
of variability of the data. Orthogonality means that the inner product of the vectors is
zero and consequently that they are uncorrelated. The new variables were ordered in
such a way that the first principal components of variance retain most of the variation
among all the original variables. Additionally, the components with a small contribution
to the total variance were discarded. Hotelling explained that geometrically, the method
corresponded to rotating the coordinate axes to ellipsoids of uniform density, see the
simplistic example in Figure 2.2. Today, dimension reduction with PCA is probably the
first dimension reduction method to test on any given data set due to its simplicity and
ease of interpretation.

Generally, the principal components for a data matrix X ∈ Rn×D with n data vectors
and D variables are found by its covariance matrix Σ = XTX = WΛWT , where Σ ∈
RD×D is the covariance matrix of the data matrix X ∈ Rn×D. It is assumed that the data
has zero mean. If the mean is not zero, it can be subtracted from the data vectors making
them mean zero. W = [W1W2 . . .Wd] ∈ RD×D are the d projection vectors and Λii are
the eigenvalues λi (i = 1, . . . , d) of the covariance matrix Σ arranged on the diagonal in
descending order. In general, a subset of the principal components are selected so that
enough of the variance is explained, i.e. (∑k

i λk)/(
∑d
i λi) ≥ α, where α is some fractional

threshold (e.g. 0.9).
The projection matrix Ŵ = [W1 . . .Wk] is formed using the eigenvectors associated

with these eigenvalues. The low dimensional projection is then Z = XŴ ∈ Rn×k. PCA
can be derived from many optimization criteria, such as the maximization of variance
or the minimization of mean-square error. PCA can also be derived from a probabilis-
tic model, where the variables are assumed to be Gaussianly distributed. PCA extacts
optimal variables for Gaussianly distributed data [16, 45].

CHAPTER 2. BACKGROUND 14

c

d e
f

g

Figure 2.1: A schematic of the intuition behind PCA. The line that minimizes the sum
of the squared distances between the blue line and the points {c, d, e, f, g} is called the
first principal component. Note that the principal component goes through the unlabeled
center of mass, the centroid, of the points.

2.2.2 Singular Value Decomposition
Principal Component Analysis is related to the Singular Value Decomposition (SVD)
[6, 43, 59]. In general, any m× n matrix A is decomposed as

A = USVT , (2.1)

where S ∈ Rm×n is a diagonal matrix containing the singular values. U ∈ Rm×m is a
matrix containing the left-singular vectors and VT ∈ Rn×n contains the right-singular
vectors. The left-singular vectors and right-singular vectors are orthonormal. SVD can
be used to calculate the principal components by writing XTX = (USVT)T (USVT) =
VS2VT . Here UTU = I (orthonormality) and we can see that the diagonal matrix
containing the eigenvalues in PCA is Λ = S2 and the PCA transformation matrix is
W = V. The singular values are the non-negative square roots of the eigenvalues. For
square matrices A, the singular vectors are the eigenvectors, where the left-singular vectors
are the same as the right-singular vectors: U = V. PCA is in fact SVD applied to the
covariance matrix Σ = XTX. SVD is a generalization of PCA for non-square matrices
[30]. SVD can be calculated from the matrix AAT or matrix ATA. It is computationally
efficient to choose the matrix with a smaller dimensionality.

When the input matrix has far more rows m than columns n the matrix is called thin.
In this case, a computationally efficient version of SVD can be calculated [45]. Instead
of calculating the full SVD, only the n first columns of matrix U are calculated and only
the n first rows of the diagonal matrix S are calculated: A = ÛŜV. The motivation is
that the last rows in matrix S are zeros and as such any vector in U that is multiplied by
these rows have no influence. Their calculation is skipped. The SVD obtained this way
is called the thin SVD or the economy sized SVD [45]. The calculations can be similarly
speeded up when there are more columns than rows [45].

2.2.3 Random projections
The motivation for random projection [15] stems from the Johnsson-Lindenstrauss lemma,
namely that distances are approximately preserved if the embedding dimension is high
enough. The weights for the elements in the projection matrix are generated from any

CHAPTER 2. BACKGROUND 15

σ
signal

σ
noise

Figure 2.2: PCA projects the data in the directions containing most of the variability
in the data. Most of the data variation can be found along σsignal in this picture. The
second principal component σnoise is orthogonal to the first.

CHAPTER 2. BACKGROUND 16

probability distribution with the expected value zero. Random projections are used in
Extreme Learning Machines [34, 44].

2.2.4 Fisher’s Linear Discriminant Analysis
A method for supervised dimension reduction was published a few years after PCA. In
1936, R.A. Fisher investigated the nowadays famous Iris dataset [21], that contains 150
flowers from three very similar species, each with measurements of the petal width, petal
length, sepal width and sepal length. The method that Fisher developed is nowadays
called the Fisher Discriminant Analysis. It finds a subspace, where different classes are
separated from each other in an optimal way according to a criterion. Although Fisher
originally was investigating only two different classes at one time, the method was ex-
tended to multiple classes by Rao in 1948 [35, 51]. Fisher’s Linear Discriminant Analysis
(FDA or LDA) is still today used extensively as it is a simple method that has reasonable
performance in many cases.

The idea in the FDA is that we want to maximize the distance between classes while
minimizing the distances within classes. This is approached by maximizing the FDA
criterion in Equation (2.2) [4]

max
W

J(W) = WTSBW
WTSWW

(2.2)

where SB refers to the scatter matrix between classes and SW to the scatter matrix within
classes. The between class scatter matrix is calculated as SB = ∑K

i=1 ni(mi−m)T (mi−m),
where mi ∈ R1×D is the mean of the ith class, K is the number of classes in the dataset,
m = ∑K

i=1 mi/K and ni is the number of observations in class i. The scatter within
classes is calculated as SW = ∑K

k=1
∑
i,Ki=k(xi −mk)T (xi −mk). For a demonstration of

FDA on a toy problem, see Figure (2.3).
A downside of FDA is that in practice, feature selection has to be done before the

usage of FDA. The inversion of the matrix in Equation (2.2) is particularly prohibitive in
the analysis of high-dimensional data. FDA is often performed after PCA projection, to
increase relevant feature extraction [64].

Eigen- and fisherfaces
The so called eigenfaces and fisherfaces [11] are well-known in face recognition tasks.
Eigenfaces are obtained with a PCA projection of the original space. Fisherfaces are
obtained by projecting the input space with the subspace obtained with Fisher’s Linear
Discriminant. Usually, the projection is obtained by first projecting the data with PCA
and applying FDA after this preprocessing step to avoid singular values in the matrix
inversion. In both methods, it is thought that the faces are separable in some subspace
of the original high-dimensional pixel space. Eigenfaces are optimal in the manner that
they preserve maximum variance between datapoints, making it easier to differentiate
points. But eigenfaces are typically susceptible to lighting conditions and face rotations,
thus ending up smearing different classes together [11]. Fisherfaces are more robust to
these changes. However, fisherfaces usually requires ν-1 dimensions to differentiate classes,
where ν is the number of classes in the data set. The methods are called faces because the

CHAPTER 2. BACKGROUND 17

Figure 2.3: In Fisher Discriminant Analysis, the distance between class means are max-
imized, while the within-class distance to the mean is minimized. The right-side image
shows the optimal 1D subspace obtained with the FDA criterion.

subspace directions that they create can be reprojected into the original high-dimensional
space (images) and reshaped to faces. The reprojected vectors represent information
about either maximum variance in the images (eigenfaces) or strong discrimination ability
(fisherfaces). In order for pixel-intensity-based face recognition to work, the images need
to be cropped to the same size and centered around the same area, typically the nose and
eyes lying on the same position. The eigenfaces and fisherfaces give an intuitive feeling
of what pixel values the subspaces weight. For example, if there are d eigenfaces (a d-
dimensional problem), a person’s face could be composed of (20% eigenface 1) + (53%
eigenface 2) + ... + (−3% eigenface d).

2.2.5 Laplacian Eigenmaps
Belkin and Niyogi presented in 2001 a nonlinear manifold learning technique for project-
ing high-dimensional data into a low-dimensional space in such a way that local points
in the high dimensional space are kept close in the projection [12]. The motivation is the
assumption that high dimensional data points have an intrinsic low dimensional represen-
tation. This low dimensional representation is found by examining the local geometry of
the data points. The basic algorithm has two steps:

1. Find the k nearest neighbors for the n D-dimensional data points and assume their
matrix form G ∈ Rn×n, with n being the number of samples. The matrix G contains
indicator variables: Gij = 1 implies that j is one of the k nearest data points to i.

2. Solve a generalized eigenvalue problem LZ = λDZ, where L = D−G is the graph
Laplacian of G and D ∈ Rn×n is the degree matrix of G and Z ∈ Rn×D is the
low-dimensional embedding. The degree matrix D is a diagonal matrix containing
the row-sums of G.

CHAPTER 2. BACKGROUND 18

Laplacian eigenmaps are able to find structure in high dimensional data, but they
depend entirely on the specification of a graph matrix G. The embedded data points
Z ∈ Rn×d depend on the original data points through some function, which can be ap-
proximated by doing a Nyström approximation of the eigenfunction [13]. The method
of computing the Laplacian Eigenmaps by solving the generalized eigenvalue problem is
straightforward and the method enjoys some popularity. The Spectral Clustering algo-
rithm embeds the data points into a low-dimensional space and then clusters the data
points. The low-dimensional space is obtained with Laplacian Eigenmaps.

2.2.6 Locality Preserving Projections
In 2003, He and Niyogi presented a linear variant of Laplacian Eigenmaps that projected
the data points using a linear transformation of the input points [31]. The benefits of using
a linear transformation matrix is that the projection is not only defined for the training
data points, but in the whole ambient space. This is because a transformation matrix,
rather than point-wise mapping, is learned. The basic Locality Preserving Projection
(LPP) algorithm is defined similarly as:

1. Find the k nearest neighbors for the data points and assume its matrix form G.

2. Solve a generalized eigenvalue problem XLXTW = λXDXTW, where L is the
graph Laplacian of G, D is the degree matrix of G and W is the transformation
matrix from X space to Z = WTX space.

Projections found with Locality Preserving Projections mimic the ones found with
Laplacian Eigenmaps. The projection could also be found by first-order optimization
methods using the gradient XLXTW, however He and Niyogi prefer to use a generalized
eigenvalue formulation [31].

2.2.7 Stochastic Neighborhood Embedding
In 2002, Hinton and Roweis published the Stochastic Neighborhood Embedding (SNE)
algorithm that minimizes the Kullback-Leibler divergence, a dissimilarity measure be-
tween two probability distributions [32]. The method is a nonlinear mapping (manifold
learner) of points in a high dimensional space to a low dimensional space. Distances in
the input space are modeled as probabilities by transforming them by a Gaussian kernel
in the input space:

pj|i =
exp(−||xi − xj||

2

2σ2
i

)

∑n
k=1 exp(−||xi − xk||

2

2σ2
i

)
. (2.3)

The Gaussian kernel is computed similarly in the output space:

qj|i = exp(−||xi − xj||2)∑n
k=1 exp(−||xi − xk||2) .

The Kullback-Leibler divergence of approximating p with q needs to be minimized:

CHAPTER 2. BACKGROUND 19

CSNE =
∑
i

KL(Pi||Qi) =
n∑
i=1

n∑
j=1

pj|i log(pj|i
qj|i

)

SNE can find good low dimensional representations of the input space, however it
requires the specification of the variance of each data point in the Gaussian kernels in
Equation (2.3). Modern implementations of SNE are fairly fast. The mapping function
from the input space to the output space is unknown and the learned representation is not
generalized to new data points. The problem contains numerous local minima, meaning
that different initializations can yield significantly different visualizations.

2.2.8 t-distributed SNE
The t-SNE was proposed by van der Maaten and Hinton in 2007 [61]. It contains two
modification compared to SNE: normalization is calculated by dividing with all elements
and the distribution of the embedding space is changed to a distribution with a heavier
tail. The authors chose Student’s t-distribution with one degree of freedom:

qi,j =

1
1 + ||xi − xj||2∑n

k=1
∑n
j=1

1
1 + ||xk − xl||2

The probabilities calculated from the high-dimensional space are symmetrized versions
of the probabilities calculated in SNE Equation (2.3):

pi,j = pj|i + pi|j
2N (2.4)

The cost function in t-SNE is the Kullback-Leibler divergence is

Ct−SNE = KL(P ||Q) =
n∑
i=1

n∑
j=1

pi,j log(pi,j
qi,j

)

t-SNE is tailored for information retrieval from high-dimensional space and it has
been optimized to work for tens of thousands of data elements. Yet the mapping of data
points in t-SNE is not obtained in the process and new data points are difficult to place
into the projection space. Yang et. al. [65], used Locality-Constrained Linear Coding to
interpolate new data points into the mapping. t-SNE is tailored for information retrieval
from high-dimensional space.

2.2.9 Other supervised methods
There are some popular linear supervised dimension reduction tools too. The methods
used in this thesis are briefly introduced here. Partial Least Squares (PLS) regression is a
supervised linear dimension reduction technique that tries to find subspaces in the input
matrix that explain the largest amount of variance in the response matrix. When used
with categorial response variables it is referred to as PLS-DA [50]. Kernel Dimension
Reduction (KDR) [25] is a sufficient dimension reduction method [3] for classification and
regression data. A sufficient dimension reduction contains all the regression information

CHAPTER 2. BACKGROUND 20

that the original space contained about the response variable. KDR tries to find the
central subspace [3] for the input data, which is the intersection of all dimension reduction
subspaces. The method is demanding in terms of computation and memory consumption.
A gradient version of KDR has been developed for faster computation, called gKDR [26].
Supervised PCA by Barshan et al. [9] is a regression technique that finds the principal
components with maximum dependence on the given response variable. SPCA tries to
find variables that are orthogonal in a kernel space of the response variable. A dual-space
and kernel variant of SPCA (KSPCA) [25] has also been developed, extending the usage
scenarios of the method.

2.3 Machine Learning Concepts
In this subsection, the concepts of overfitting and generalization ability will be presented.
Strategies of improving the generalization ability of machine learning methods are also
discussed.

2.3.1 Bias-variance trade-off
Machine learning methods are methods for learning patterns from supplied data. Machine
learning has been applied to variety of areas, amongst others currency trading. Currency
trading algorithms can make future predictions based on past history. While the algo-
rithms are remarkable at extracting patterns from the data, it is not possible to learn
cause-and-effect relations that are not present in the data. One example of this would
be a financial meltdown. Phenomena that do not appear in the training data cannot be
predicted. This is called the zero counting or sparse data problem [45]. This is analogous
to a philosophical problem called the black swan paradox. It is based on the ancient belief
in Europe that all swans are white, and therefore black swans could not exist. Settlers
in Australia did however discover black swans, creating the paradox [45]. This kind of
overconfidence in the structure of the data is related to overfitting, which will be discussed
in the next few paragraphs.

The regression problem of estimating the response variable y with the model y =
f(w, x) + ε is used often to clarify the difference between the terms bias and variance.
When minimizing the mean square loss in the regression model, a bias-variance decom-
position of the error term ε can be made. The error term ε of the model can be written in
the form ε = E

[(
f(ŵ, x)− f(w̄, x)

)2
]

+
(
f(w̄, x)− f(w∗, x)

)2
= Var(ŵ) +Bias(ŵ)2. Here

E denotes the expectation, w∗ the true value of the variable, ŵ the estimated value of
the variable and w̄ the mean value [45]. Bias refers to part of the error of estimating the
true mean, whereas variance refers to part of the error stemming from the spread around
estimated mean [29]. The bias-variance trade-off means that it might be beneficial to use
a biased estimate, if we can decrease the variance by doing so [45].

Going back to the previous example: using a too simple model increases the currency
trading model’s bias, while increasing the complexity of a model might decreases its bias
but increases the variance. A model which has too much variance might be overfitting
the data, while a model which has too much bias might be underfitting the data, see
Figure (2.4). The curve goes through each black learning point, meaning that the residual

CHAPTER 2. BACKGROUND 21

(fitting error) ε = y− ŷ = 0, but the predicting performance of the method is bad. Large
variable coefficients in linear methods typically characterize overfitting. The predicted
values for the orange square points are fairly far from the actual values. A line has bigger
residuals in the training set, but the predictive performance of the method is much better
on the orange data points. The ability to predict new values outside of the training set
is called generalization ability. Amongst others, the Akaike information criterion and the
Bayesian information criterion [45] are used to choose less complex models in the case
that multiple models fit the data.

Figure 2.4: An example of overfitting. Applying a very complicated model to a data
set reduces the fitting error but increases the validation set error. A very simple model
generalizes better to new out-of-sample data. A straight horizontal line (the average
value) would be underfitting the structure apparent in the data.

The bias-variance trade-off can be made for classification settings with 0-1 loss too,
but error is no longer expressible as a summation of a variance term and a bias term.
Instead, the terms are associated multiplicatively [45]. Murphy [45] suggests that instead
of focusing of the bias-variance trade-off in classification settings, it is better to focus
on the expected loss. The approximation of expected loss, the empirical loss, can be
measured with cross-validation.

Computational models often involve some free parameters that must be chosen. The
choice of the free parameters can be done by validating the generalization performance of
the algorithm over a separate validation set. To evaluate the performance of the algorithm,
the algorithm is run one more time and the performance is evaluated over a separate test
set. At this final point the learning set and validation set is usually merged. The straight-
forward way to do this is to split the data in separate parts, e.g. 60% of the data in the
learning set, 20% in the validation set and 20% in the test set. This is called hold-out
validation. In this thesis, the free parameter is often related to the size of the local
neighborhood k.

2.3.2 Regularization
A fairly popular way to decrease a model’s variance is to employ the Tikhonov regular-
ization (L2 -regularization or weight decay). The original cost function J(w), w ∈ Rν×1,
(ν being the number of variables) is supplemented with a bias-term ||Γ(w−w0)||22, where
w0 is the initial guess (often zeros) and Γ ∈ Rν×ν is some appropriate matrix.

CHAPTER 2. BACKGROUND 22

Jreg(w) = J(w) + ||Γ(w−w0)||22. (2.5)
Most often Γ is chosen to be λI, with an appropriately chosen scalar value λ. In its

simplest form the regularization can be expressed as λwTw. By penalizing the parameters
w, we can assure that the model is simple [45]. Tikhonov regularization is C1 differentiable
and does not require specialized optimization methods, much unlike the other popular
form of regularization, i.e. L1-regularization (LASSO-regularization).

2.3.3 k-NN classification
The generalization performance in classification settings is often evaluated by classifying
data points from a separate test set. The method of the k-nearest neighbors is simple, but
nonetheless it is a quite powerful classifier. In it, the k nearest points inside a training set
are searched for a test point and majority vote on the class labels is done based on those
points. The proportion of points that are correctly classified is the k-NN classification
accuracy. The 1-NN classifier is the simplest form of k-NN classification. Here, the
first nearest data point for each test point is searched from the training set. The class
labels between the test point and the training set point are compared. The procedure is
repeated for each test point.

2.3.4 Kernel Trick
The kernel trick is computational procedure that makes it possible to incorporate non-
linear pattern recognition to many linear methods. The problem is first transformed into
dual space, in which the data is no longer computationally dependent on the primary
space, but on the number of samples. Then, the inner product of two data points can
be replaced by a suitable nonlinear variant, for example a Gaussian kernel or polynomial
kernel, to give nonlinearity to the method. Any kernel satisfying Mercer’s theorem [38]
can be used in place of the inner product.

2.4 Mathematical Optimization
In this section, relevant mathematical optimization methods are discussed. Drawbacks
and strengths of various optimization methods will be presented.

2.4.1 Optimality
When minimizing an objective function J(x), a solution x∗ ∈ Rn×1 is said to be optimal
if the objective function for the solution J(x∗) is smaller than the objective function
evaluated with any other parameter x ∈ Rn×1: J(x∗) ≤ J(x). The solution is said to
be a local optimum if the J(x∗) is smaller than any other solution x inside some region
around x∗. If J(x∗) is smaller than or equal to any other J(x) inside the whole feasible
region, x∗ is called a global optimum.

When the function J(x) is (at least) differentiable, minimas of functions are usually
found by differencing the function and obtaining its gradient ∇xJ(x). Finding a location
where the gradient equals zero is then the goal.

CHAPTER 2. BACKGROUND 23

x

J(x)

x∗
xl

Figure 2.5: An example of a non-convex objective function with multiple local minimas.
xl and x∗ are both local minimas. x∗ is additionally the global minimum.

2.4.2 Gradient Descent methods
The basic gradient descent (GD), or steepest descent, optimization method is an iterative
optimization method [14]. At each iteration, the steepest ascent direction (the gradient
∇xJ(x)) is calculated. After that, a predefined step length α in the exactly opposite
direction to the gradient is taken to decrease the value of the function. The update is
described in Equation (2.6)

x(i+1) = x(i) − α(i)d(i) = x(i) − α(i)∇xJ(x), (2.6)

where x(i) ∈ Rn×1 is the vector containing the variable values at iteration i, d(i) ∈ Rn×1

is the descent direction at iteration i (the gradient direction) and α(i) is a positive scalar.
The step length α(i) can be fixed or varied. A small step length gives an accurate solution,
but requires more iterations, while a large step size might be too coarse and might even
diverge. Varying the step size appropriately significantly decreases the required number
of iterations. Line-search methods [14] are ways to evaluate α that should be used in
Equation (2.6). The Armijo and Wolfe conditions for line-search [14] are common. The
conditions state that the step length should give a sufficient decrease and curvature to
be accepted for line search. If the conditions are not met, the step length is increased.
The gradient descent method is well-known for often ending up zig-zagging towards the
direction of the steepest descent, taking a long time to converge [14]. The gradient descent
method continuously moves in the direction of the calculated negative gradient, stopping
once no more improvement can be made in that direction. At these locations the new
descent direction becomes orthogonal to the previous direction, which can result in the
zig-zagging behaviour [14, 41]. There are numerous modifications to the standard gradient
method. To name a few, Barzilai [10] considered a strategy of using only the previous
step information to calculate the new direction. Preconditioning [58] can change the
optimization problem to an easier problem.

2.4.3 The Newton methods
Newton’s (Newton-Raphson) method [14] replaces step size α with the inverse of the Hes-
sian matrix H−1(x) = ∇2

xJ(x), analogous to the inverse of the second derivative in one-
dimensional space.

CHAPTER 2. BACKGROUND 24

x(i+1) = x(i) −H−1(x(i))∇xJ(x). (2.7)

The Equation (2.7) is called the pure form of Newton’s method. Newton’s method
converges superlinearly near local minima. Far from local minima, the Hessian matrix
can be negative definite, resulting in ascent directions rather than descent directions. The
pure form then needs modifications to converge globally [14]. Newton’s method requires
few iterations, but has an overhead in memory consumption and computational cost due
to the calculation of the inverse of the Hessian.

2.4.4 The method of Conjugated Gradients
The conjugate gradient method [14, 41] solves the zig-zagging problem by introducing
conjugate (A-orthogonal) search directions d(i). The search direction are orthogonal with
regard to the positive definite matrix A:

dT(i)Ad(j) = 0

The search directions are linearly independent of each other. These A-conjugate
search directions can be generated with the Gram-Schmidt search procedure [14]. The
linear conjugate gradient is efficient at solving equations of the type

Ax = b, (2.8)

where A is a positive definite matrix. These kind of equations occur naturally in quadratic
forms, where the function subject to the minimization has the form

J(x) = 1/2xTAx− bTx + c. (2.9)

The derivative of this function is precisely Ax−b and by setting it to zero we obtain
Equation (2.8). The conjugate gradient descent is therefore said to converge in exactly n
iterations for quadratic forms. The steps in the conjugate gradient method for quadratic
forms is described in Algorithm 1.

CHAPTER 2. BACKGROUND 25

Algorithm 1: Conjugate gradient method for quadratic forms
Input: Positive Semidefinite matrix A ∈ Rn×n, vector b ∈ Rn×1 and initial
solution vector x(0) ∈ Rn×1

Output: Solution vector x(n)
1. Calculate initial descent direction d(0) = g(0) = b−Ax(0).
for i = 0→ (n− 1) do

2. Calculate step length α(i) =
gT(i)g(i)

dT(i)Ad(i)
.

3. Update solution x(i+1) = x(i) + α(i)d(i).
4. Update negative gradient g(i+1) = g(i) − α(i)Ad(i).

5. Update β(i+1) =
gT(i+1)g(i+1)

gT(i)g(i)
.

6. Update descent direction d(i+1) = g(i+1) + β(i+1)d(i).
end for,

here g(i) is the negative gradient at iteration i.
Conjugate gradient methods speed up the convergence without requiring the storage of

the Hessian matrix. It is commonly used as an iterative procedure, terminating in less than
n steps, because an adequate accuracy level has been reached [14]. The conjugate gradient
method is perhaps the most prominent iterative method that solves sparse systems of
linear equations.

2.4.5 Nonlinear Conjugated Gradients
The nonlinear conjugate gradient method [14, 41] is a direct generalization of the conju-
gate gradient method for functions J(x) of which the gradient ∇xJ(x) can be calculated.
The convergence of the nonlinear conjugate gradient is related to how well the function
J(x) approximates the quadratic form. [58]. The nonlinear conjugate gradient method is
described in Algorithm 2.

Algorithm 2: Nonlinear conjugate gradient method
Input: Function J(x), its gradient ∇xJ(x) and initial solution vector x(0) ∈ Rn×1

Output: Solution vector x(T)
1. Calculate initial descent direction d(0) = g(0) = −∇xJ(x(0)).
for i = 0→ T do

2. Find α∗(i) ≥ 0 s.t. J(x(i) + α(i)d(i)) is minimized (line search).
3. Update solution x(i+1) = x(i) + α∗(i)d(i).
4. Update negative gradient g(i+1) = −∇xJ(x(i+1)).
5. Update β(i+1).
6. Update descent direction d(i+1) = g(i+1) + β(i+1)d(i).

end for,

CHAPTER 2. BACKGROUND 26

here g(i) is the negative gradient at iteration i.
There are some common update methods for the parameter β: the Fletcher-Reeves

[41], the Polak-Ribière method [41] and the Hestenes-Stiefel method [14]:

βFR(i+1) =
gT(i+1)g(i+1)

gT(i)g(i)
, βPR(i+1) =

gT(i+1)(g(i+1) − g(i))
gT(i)g(i)

, βHS(i+1) = −
gT(i+1)(g(i+1) − g(i))
dT(i)(g(i+1) − g(i))

,

The Polak-Ribière method converges much faster than the Fletcher-Reeves method,
however it can end up cycling infinitely without converging. Convergence is guaranteed
in the Polak-Ribière method, if βPR(i+1) is selected such that the β = max{βPR, 0}. When
β < 0, the method is restarted, i.e. the gradient is calculated anew [58]. Because of non-
quadratic terms in the cost function, the search directions progressively lose conjugacy
and the search needs to be restarted periodically. The original update form, i.e. the
Hestenes-Stiefel update, is still sometimes used. The conjugate gradient method has been
found to have similarities with the Quasi-Newton BFGS method [47], discussed next.

2.4.6 Quasi-Newton methods: BFGS
Quasi-Newton methods [41] are used when the computation of the inverse Hessian matrix
is impossible or is computationally too expensive. The Quasi-Newton methods have the
update formula in Equation (2.10).

x(i+1) = x(i) − α(i)S(i)(x(i))∇xJ(x) (2.10)

The way that S(i) is chosen makes the difference. If it is the identity matrix S(i) = I,
the method is called the gradient descent method. If it is the inverse Hessian, S(i) =
H−1

(i) the method is called Newton’s method. If the Hessian of the objective function is
not positive definite, the Hessian can be modified into a positive definite form and the
resulting matrix can be used. This is sometimes called the modified Newton method.
The efficiency depends on how accurate the estimate of the Hessian is. In neighbor
embedding algorithms, such as t-SNE, a special form of the modified Newton method is
efficiently used. The method is called the Spectral directions optimization [63], because it
uses the positive definite matrix that is used in Laplacian Eigenmaps dimension reduction.
Properties relating to eigenvalues are often referred to as spectral properties. The spectral
direction optimization is efficiently coupled with Wolfe line-search methods [63].

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [41] is one of the most fa-
mous nonlinear optimization methods. The update rules are stated in Algorithm 3. The
method requires an initial guess x(0). The initial Hessian estimate S(0) can be any positive
definite matrix.

CHAPTER 2. BACKGROUND 27

Algorithm 3: BFGS algorithm for nonlinear optimization
Input: Function J(x), its gradient ∇xJ(x) and an initial solution vector
x(0) ∈ Rn×1

Output: Solution vector x(T)
1. Assign initial inverse Hessian estimate S(0) = I
2. Calculate initial negative gradient g(0) = −∇xJ(x(0)).
for i = 0→ T do

3. Calculate descent direction d(i) = S(i)g(i).
4. Find α∗(i) ≥ 0 s.t. J(x(i) + α(i)d(i)) is minimized (line search).
5. Calculate change in solution p(i) = α∗(i)d(i).
6. Update solution x(i+1) = x(i) + p(i).
7. Update negative gradient g(i+1) = −∇xJ(x(i+1)).
8. Calculate change in gradient q(i) = −(g(i+1) − g(i)).
9. Update inverse Hessian estimate

SBFGS(i+1) = S(i) +
(1 + qT(i)S(i)q(i)

qT(i)q(i)

)p(i)pT(i)
pT(i)q(i)

−
(p(i)qT(i)S(i) + S(i)q(i)qT(i)

qT(i)p(i)

)
.

end for

The Hessian estimate that the BFGS method produces is of rank two and it is sym-
metric. The search directions d(i) can always be guaranteed to be descent directions by
arranging that S(i) is positive definite throughout the search process [41].

2.4.7 Memoryless Quasi-Newton methods: LBFGS
The Limited-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [41] is a fast
algorithm, especially suited for optimization with a high number of variables. The LBFGS
search procedure is presented in Algorithm 4. The algorithm does not store previous values
of the inverse Hessian estimates, but sets them to the identity matrix S(i) = I in step 9,
and is therefore called memoryless. The method is reset every n iterations. The steps 3
and 9 can be combined, yielding the descent direction update rule in Equation (2.11)

d(i+1) = −g(i+1) +
q(i)pT(i)g(i+1) + p(i)qT(i)g(i+1)

pT(i)q(i)
−
(
1 +

qT(i)q(i)

pT(i)q(i)

)p(i)pT(i)g(i+1)

pT(i)q(i)
(2.11)

CHAPTER 2. BACKGROUND 28

Algorithm 4: LBFGS algorithm for nonlinear optimization
Input: Function J(x), its gradient ∇xJ(x) and an initial solution vector
x(0) ∈ Rn×1

Output: Solution vector x(T)
1. Assign initial inverse Hessian estimate S(0) = I
2. Calculate initial negative gradient g(0) = −∇xJ(x(0)).
for i = 0→ T do

3. Calculate descent direction d(i) = S(i)g(i).
4. Find α∗(i) ≥ 0 s.t. J(x(i) + α(i)d(i)) is minimized (line search).
5. Calculate change in solution p(i) = α∗(i)d(i).
6. Update solution x(i+1) = x(i) + p(i).
7. Update negative gradient g(i+1) = −∇xJ(x(i+1)).
8. Calculate change in gradient q(i) = −(g(i+1) − g(i)).
9. Update inverse Hessian estimate

SLBFGS(i+1) = I−
q(i)pT(i) + p(i)qT(i)

pT(i)q(i)
+
(
1 +

qT(i)q(i)

pT(i)q(i)

)p(i)pT(i)
pT(i)q(i)

.

end for

If the line search in step 4 is exact, the update rule in Equation (2.11) reduces to a
very similar form as in the Polak-Ribière conjugate gradient search. Experimentally, the
inexact line search has been shown to be more efficient [41]. In practice, nonlinear CG
and LBFGS are two competing algorithms in nonlinear optimization with a large number
of variables. LFBGS usually requires fewer iterations than CG, and is especially useful
when the function evaluations are expensive to calculate.

2.4.8 Linear and semidefinite programming
The previous optimization techniques were targeted to unconstrained optimization prob-
lems. Linear programming solves mathematical problems with linear constraints (linear
programs) [41]. There are many ways of formulating a linear program. One way to
formulate it is by using inequations [62]:

min cTx
s.t Ax + b ≥ 0

(2.12)

here the inequation is a component-wise inequation. Linear programs occur widely in
many fields. For example, finding a separating hyperplane in support vector machines,
as well as manufacturing and warehouse optimization problems are linear programs [41].
The simplex and interior-point methods are famous solvers for linear programs.

Semidefinite programs contain linear objective function and can be written in the form
[62]:

min cTx
s.t F (x) ≥ 0

(2.13)

CHAPTER 2. BACKGROUND 29

here F (x) ≥ 0 is a semidefinite inequation. Linear programs are special cases of semidefi-
nite programs, where the semidefinite inequation F (x) ≥ 0 is a linear inequation Ax+b =
0. Many nonlinear optimization problems can be stated as semidefinite programming
problems. Semidefinite programs can be solved very efficiently, both theoretically and
in practice [62]. Interior-point methods are commonly used in solving semidefinite pro-
grams.

2.5 Information Theoretical Concepts
This section elaborates key information theoretical concepts [18] that will be used in the
analysis to follow. Namely, the information entropy and the Kullback-Leibler divergence
are discussed with example.

2.5.1 Entropy
Information theoretical entropy is a measure of how much uncertainty a probability dis-
tribution contains. The more similar a probability distribution p(x) is to the uniform
distribution u(x), the higher the entropy for discrete variables. This is because the uni-
form distribution u(x) contains the least prior information about which state a variable
x is in. [8] The entropy can be calculated for discrete variables x as

H(x) = −
N∑
i=1

p(x)log(p(x)) (2.14)

The entropy is a measure of average uncertainty in a random variable. If the logarithm
used is 2, the entropy is the average number of bits required to describe a random variable.
If it is described using the natural logarithm, it is the average amount of nats required
to describe the random variable. Nats can be changed to bits by multiplication with an
appropriate factor and vice versa. The following example is a modified version supplied in
the book "Elements of Information Theory" [18], which illustrates the concept of entropy
particularly well.

Example (1). There are 8 banks in a large city, where break-ins occur with probabil-
ities [12 ,

1
4 ,

1
8 ,

1
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16]. A distress signal used to identify the bank would have

the length 3 bits, as there are 23 = 8 different alternatives. However, given the fact of
the break-in probability distribution we can write it to be more efficient in average. One
such encoding could be 1, 01, 001, 000100, 000110, 000101, 000111, which has the average
length 2 bits. The entropy of the probability distribution is:

H(X) = −1
2 log 1

2 −
1
4 log 1

4 −
1
8 log 1

8 − 4 1
16 log 1

16 = 2 bits. (2.15)

which is 2 bits as well. We can say that the information is more structured than it
would be if the break-ins were to occur with uniform probability.

For continuous variables, the Gaussian distribution has the largest entropy among
all distributions that have the same covariance matrix. In this sense, it is the most
random distribution containing the least amount of structured information. Entropy for

CHAPTER 2. BACKGROUND 30

continuous variables is defined as in Equation (2.14), but the sum is replaced by an integral
over x.

2.5.2 Cross-entropy
The cross-entropy [45]H(p, q) = −∑n

i=1 p(x)log(q(x)) is the average number of bits needed
to encode a signal coming from a distribution p(x), when using another codebook q(x)
to encode it. Continuing the previous sample, the cross-entropy of encoding the bank
distress signals with a uniform distribution u(x) would have been

H(p, u) = −1
2 log 1

8 −
1
4 log 1

8 −
1
8 log 1

8 −
4
16 log 1

8 = −1 log 1
8 = 3 bits. (2.16)

2.5.3 Kullback-Leibler divergence
Information divergence is a way to measure the distance between two probability distribu-
tions. The divergence can be calculated for both discrete distributions and for continuous
distributions. The most commonly used information divergence is the Kullback-Leibler
divergence (the relative entropy). Divergences are in general not symmetric, i.e. the error
in approximating a distribution Q with another distribution P is often different than vice
versa [8].

The relative entropy is always non-negative and zero only in the case that Q = P .
However, the relative entropy is not a real distance because it does not fulfill the triangle
inequality and it is not symmetric. The Kullback-Leibler divergence for two discrete
probability mass functions P and Q is

DKL(P ||Q) =
n∑
i

pi log(pi/qi). (2.17)

The Kullback-Leibler divergence can be written in terms of the entropy H(P) and the
cross-entropy H(P,Q): DKL(P ||Q) = H(P,Q) − H(P). It is just the average number of
extra bits needed to encode a signal from a probability distribution P with a codebook
using probability distributionQ. In the previous example, the Kullback-Leibler divergence
would have been 1. The Kullback-Leibler divergence is often used as an optimization
criterion to make a model distribution Q similar to a target distribution P . This KL
divergence DKL(P ||Q) is sometimes called M-projection (moment projection) [45]. The
M-projection is infinite if qi is zero, therefore situations where qi would be very small are
avoided. The M-projection is called zero-avoiding [45].

If the probability distribution P is difficult to evaluate, the reverse Kullback-Leibler
divergence DKL(Q||P) = ∑n

i qi log(qi/pi) can be used to measure the distance between
the distributions. The KL divergence is not symmetric in its arguments and revers-
ing the order of the arguments causes a different cost. The reverse KL divergence∑n
i=1

∑n
i=1 qi log(qi/pi) is called I-projection (information projection). The I-projection

is infinite if pi is zero, which means that small values in pi need to be compensated with
small values in qi. The I-projection is called zero-forcing [45].

Chapter 3

Supervised Distance Preserving Pro-
jections

This chapter introduces the dimension reduction method called Supervised Distance Pre-
serving Projections [66]. While SDPP is primarily a dimension reduction method for
regression datasets, it can also be formulated for classification problems. Here, the focus
is put on the more traditional classification setting. The discussion serves as an intro-
duction to the proposed method. In Section 4.1, some of these problems are solved by
changing the cost function to match probabilities rather than squared Euclidean distances.

3.1 Introduction
The SDPP is a supervised dimensionality reduction technique, especially designed for
regression tasks. It is motivated by the Weierstrass definition of continuity for functions.
The definition states that if two points are close in the co-variate space then they should
be close in the response space too. The assumption used is that the data points are
sampled frequently enough that such a continuity can be observed. The Weierstrass
definition for continuity is often called the (ε, δ)-definition for continuity. Formally, given
a continuous mapping of X → f, there exist positive real numbers ε and δ, such that
|x − x′| < ε =⇒ |f(x) − f(x′)| < δ, where x,x′ are close points. Both ε and δ should
be relatively small numbers. In SDPP a linear subspace that preserves this relationship
is pursued.

3.2 Cost Function

The SDPP optimizes a transformation matrix W ∈ RD×D, given an input matrix X ∈
RD×n and its response matrix Y ∈ Rdy×n. Here, n is the number of observations, D is the
number of variables and dy is the number of response variables. Typically n � D > dy,
because we assume that the data is sampled frequent enough. The optimization is done
so that the distances between data points in the subspace Z = WTX ∈ RD×n mimic the
distances between data points in the response space Y. The response matrix is of the
form Y = [y1y2...yn] ∈ Rdy×n if the problem is a regression problem and of the form

31

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 32

Y = [y1y2...yn] ∈ Idy×n if the problem is a classification problem, where Idy×n is the set
of indicator variables. The optimization criterion of SDPP is the following:

J(W) = 1
n

n∑
i=1

∑
xj∈N (xi)

(d2
ij(W)− δ2

ij)2 (3.1)

where the projected input space distances are dij(W) = ||zi− zj||2 = ||WTxi−WTxj||2,
the response space distances are δij = ||yi − yj||2 and N (xi) is a set of closely lying
points to xi. In practice, the close points are evaluated by performing a nearest-neighbor
search in the input space. The squared Euclidean distance is measuring how far apart
the squared distances between data points on the Z-side and Y-side are from each other.
The optimization criterion can be written with a neighbor graph as

J(W) = 1
n

n∑
i=1

n∑
j=1

Gij(D2
ij(W)−∆2

ij)2 (3.2)

where G ∈ Rn×n is matrix containing n2 indicator variables telling if a data point j is a
neighbor of data point i, D ∈ Rn×n are the distances in the projected input space and
∆ ∈ Rn×n are the distances in the response space. The cost function in SDPP is similar
to the one in linear regression with the exception that there are n2 variables that are fitted
to each other. SDPP also has a kernel extension [66].

3.2.1 SDPP for classification data sets
In classification data sets, the response matrix Y contains categorical information. A
common approach is to gather all data points of the same class close and to keep other
data points further away by assigning the ideal distances as in Equation (3.3).

δij =

0, if yi = yj
1, if yi 6= yj

(3.3)

where the response variables yi are sequences of dy binary numbers, specifying the class
labels. This way of encoding distances creates regular structure, a simplex. Ideally, all
data points of the same cluster are placed on top of each other (zero distance) and the
distance between these points to all other points of different classes is set to 1. A simplex
created by imposing these conditions is shown in Figure 3.1. The length of each edge is
exactly 1. Figure (3.2) shows three classes embedded with SDPP using this principle.

3.2.2 The neighborhood matrix G
A neighborhood matrix appears in the cost function of SDPP. The neighborhood matrix
restricts which pairwise distances are allowed to enter the cost and which are left outside.
The choice of the neighborhood matrix affects the resulting projection matrix. There are
different ways of calculating the neighborhood matrices. The most common type is of
the k-nearest neighborhood matrix. For each data point xi, the k nearest data points xj
are calculated. The distances are usually calculated as Euclidean distances (L2-distance).
The index values Ii that belong to the k-nearest neighbors of xi get values Gij = 1,∀j ∈ Ii
and all other elements get the value zero. The k-NN graph is not symmetric. It can

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 33

(1/
√

2, 0, 0) (0, 1/
√

2, 0)

(0, 0, 1/
√

2)

Figure 3.1: Imposing equidistance between clusters of data creates a simplex structure.
Each point represents a superposition of all data points of the same class. The distance
between all clusters is ideally the same.

0.6

A SDPP embedding of 421 handwritten characters.

0.4

0.2

0

-0.2

-0.4-0.5

0

0

-0.4

-0.2

0.4

0.2

0.5

Figure 3.2: A SDPP embedding of 3 classes in a 3-dimensional space.

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 34

be made symmetric by calculating the symmetric nearest neighbors Ĝij = (Gij + GT
ij)/2

or the mutual nearest neighbors: Ḡij = min(Gij,GT
ij). A k mutual nearest neighbor

connection Ḡij needs to be within the k nearest neighbors of both xi → xj and xj → xi.
There are other ways of calculating neighbors, too. The natural neighbors (NN) and

enclosing k-nearest neighbors (ekNN) are generally difficult to compute as they scale
badly with higher-dimensional data. Both methods require the calculation of the convex
hull in the high-dimensional space [23, 24]. The time complexity of the calculation of
the convex hull scales exponentially with both the number of samples and the number of
dimensions, making it computationally too demanding in high-dimensional spaces. The
geometry of a high-dimensional space makes the number of neighbors obtained with NN
and ekNN to a data point increase dramatically with each added dimension, overesti-
mating the size of the neighborhood in high-dimensional space.

3.3 Optimization
The SDPP can be optimized with two different strategies: by the nonlinear conjugate
gradient descent method (CG) or by solving a semidefinite (mathematical) program
(SDP/SQLP) [60, 62]. In practice, optimization by SQLP is very fast, but creating of the
constraints is time consuming. The SQLP solver does not need an initial solution, which
makes it preferable in some sense. In practice, the CG and SQLP solutions produce quite
similar results as long as the initialization in CG does not contain zeros.

3.3.1 SQLP formulation
The SDPP can be solved by quadratic semi-definite programming [60, 62]. The squared
distances in the transformed input space are written as dij(W) = ||WTxi −WTxj||2 =
(WT (xi − xj))TWT (xi − xj) = (xi − xj)WWT (xi − xj), where P = WWT is positive
semidefinite (psd). The distances can be stated as a vector inner product by vectorizing
the matrix lij = vec(τ ijτ Tij) and p = vec(P), with τ ij = (xi − xj): dij(W) = lTijp. Then
the problem can be stated as a quadratic form in Equation (3.4):

J(p) = pTAp + bTp + c, (3.4)

with A = (∑n
ij GijlijlTij)/n, b = −2(∑n

ij Gijδ
2
ijlij)/n and c = (∑n

ij Gijδ
4
ij)/n. In the

expression, c is a constant that can be ignored in the optimization. The matrix A is
positive definite if G is symmetric. The number of variables optimized is D2. Being a
quadratic form, the optimization can be performed in exactly D2 steps with the linear
conjugate gradient algorithm or in one step with Newton’s algorithm. But for Newton’s
algorithm to work the Hessian H(p) = A ∈ RD2×D2 would need to be inverted, which
is difficult if the input dimensionality is large. The problem is actually a semidefinite
program because P is positive semidefinite. This makes it possible to transform the
problem into a SDP optimization problem with a convex cone constraint, yielding a faster
optimization routine (SQLP) [60]. The SQLP formulation of the optimization problem is
presented in Equation (3.5):

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 35

min
p,u

(e1 − e2)Tu + bTp

s.t. (e1 + e2)Tu = 1,
Bp−Cu = 0,

u ∈ Kq+2,

P is psd

(3.5)

Here q is the rank of matrix A. The size of the matrix B is D2 × D2, where D is the
original dimensionality of the data matrix, that is D in X ∈ RD×n. In problems where the
dimensionality is high (D > 100), the memory requirements of temporary storage of the
matrix A become inhibitively large. The nonlinear conjugate gradient descent method is
recommended in these occasions [66]. The optimization workflow for SQLP is described
in Algorithm 5 [66].

Algorithm 5: SQLP optimization for SDPP
Input: Input matrix X, response matrix Y and neighborhood matrix G
Output: Projection matrix W
1. Form vector τ ij = (xi − xj)
2. Vectorize lij = vec(τ ijτ Tij)
3. Form matrix A = 1/n(∑n

ij GijlijlTij)
4. Form vector b = −2/n(∑n

ij Gijδ
2
ijlij)

5. Form matrix B by Cholesky factorizing A = BTB.
6. Form matrix C = [0q×2, Iq×q].
7. Solve the SQLP problem stated in Equation (3.5).
8. Reshape vector p into matrix P
9. Singular Value Decompose P = USV
10. Return projection matrix W = US.

3.3.2 Nonlinear Conjugate Gradient descent
The gradient of the cost function in Equation (3.2) is

∇WJ = 4
n

∑
ij

Gij(Dij −∆ij)τ ijτ TijW (3.6)

It can be written with the graph Laplacian in the form

∇WJ = 4
n

XTLXW, (3.7)

where L = D−R+ ∈ Rn×n with

R = G� (D−∆)
R+ = R + RT

D =
∑
i

R+
ij

(3.8)

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 36

Here � denotes the Hadamard product (element-wise multiplication) and R+ is a
symmetrized matrix of R ∈ Rn×n, and D ∈ Rn×n is a diagonal matrix containing the row
sum of R+. The solution W is iteratively optimized by the conjugate gradient method.
Algorithm 6 is the updated version of the nonlinear conjugate gradient descent appearing
in the paper Supervised Distance Preserving Projections [66] by Corona et al.

Algorithm 6: Conjugate gradient optimization for SDPP
Input: Input matrix X and response matrix Y, neighborhood matrix G and
initial projection matrix W0
Output: Projection matrix W
1. Compute gradient ∇WJ with Equation (3.7)
2. Vectorize projection matrix, w0 = vec(W0)
3. Vectorize gradient, g0 = vec(∇WJ)
4. Initialize the conjugate direction as ν0 = −g0
for t = 1→ T do

5. Calculate βt by Polak-Ribière’s rule, βt = gTt (gt − gt−1)
gTt gt−1

6. Update the conjugate direction, νt = −gt + βtνt−1
7. Perform line search, ηt = argminηJ(w + ηνt)
8. Update wt+1 = w + ηtνt

end for
9. Reshape the vector wT+1 into matrix W
10. Decompose with thin SVD P = ÛŜV
11. Return projection matrix W = ÛŜ.

3.4 Evaluation of classification solutions with SDPP
In SDPP the objective function tries to match squared distances in the input space with
squared distances in the output space. The squared distances give a very steeply rising
cost function. The cost function is similar to a barrier function used in constrained
optimization. Interpreted in this way, the cost function defines that the data points of
the same class must be lying on top of each other and the data points of different classes
must be on a predefined distance from each other (for those points that the optimization
problem sees in the neighbor graph).

The Iris dataset [5] contains three Iris subspecies in four dimensions. Each subspecies
constitutes a class. There are 50 data points in each class. The dataset is sorted, so that
class 1 occupies indices 1 to 50, class 2 occupies indices 51 to 100 and class 3 the indices
101 to 150. The Iris dataset is a simple dataset that is often used to demonstrate the
suitability of dimension reduction methods. One of the flower species is linearly separable
from the other two, while two of the flower species are partially occupying the same areas
in the space.

Figure 3.3 shows a SDPP embedding using the Iris dataset. The neighborhood graph
is calculated using 15 nearest neighbors of each data point. Looking at Figure 3.3 it can
be seen that the cost function only sees some of all the within-class distances for each
class and also some between-class distances between class 2 and 3. Black points in the
neighborhood matrix signal that the distances between the points enter the cost function.

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 37

The graph is not symmetric. The neighborhood connections shows symmetric within-class
links as dark blue and one-sided links as light blue. The between class links are red. The
red class has no connections to other classes, which means that the distances between
green and red or blue and red are not part of the optimization problem.

The neighbor graph defines the geometry that is pursued in the optimization problem.
The optimal geometry can be seen in Figure 3.4. Simply put, classes 2 and 3 (blue and
green) should be separated, while class 1 (red) is unconstrained. Obviously, because class
3 is unconstrained, it could end up lying on top of classes 2 or 3 in the worst case. Having
a small amount of neighbors is risky in high-dimensional classification settings. It turns
out that the classes are fairly well separated in the original space and there is no problem
with overlapping classes.

Figure 3.5 shows another embedding provided by SDPP on the Iris dataset. The
neighborhood graph is calculated with the 50 mutual nearest neighbors and is symmetric.
The green and blue classes are heavily connected in the neighborhood matrix and a few
data points in the red class are connected to only one data point in the green class. Because
of the steeply rising penalty in the cost function, the absolute amount of connections
between the different classes are less important. Rather, the question is which classes
have connections as defined in the neighbor graph. The scale of the coordinate axes also
changes as a result of the optimal geometry. Scaled equally, the projection would actually
be a line: all data points are in the range [−1, 3] in the first dimension and in the range
[0.04, 0.14] in the second dimension. The simplified geometry is seen in Figure 3.6. The
geometry defined with this kind of neighbor graph makes it possible to embed the Iris
dataset into one dimension (a line).

Let us inspect what a geometry that accepts connections from all three classes looks
like. The neighbor graph is the modified graph in embedding 2, with an added connection
between the closest data points in class 1 and class 2 (required to be mutual). The resulting
embedding is shown in Figure 3.7 and the optimal structure is shown in Figure 3.8. Adding
the extra connections pulls the third class closer to the first class, making the third class
encroach upon the area of the second class, blurring the class boundary between classes
2 and 3. Unfortunately, the optimal structure is not achieved in this embedding.

3.5 Personal work related to the SDPP
During the summer 2014, I had the opportunity to work as a summer student in the
Information and Computer Science department at Aalto University. This included other
work that is not included in this thesis. Some of the work is summarized here. The
existing SDPP code was reformatted into a toolbox, available at the ICS webpage [40].
The calculation of the sequential quadratic program version of SDPP was speeded up by
rewriting calculations of the constraints more efficiently. The constraints were calculated
only for the elements with non-zero neighbor connections. The calculations were scaled
to different sized machines by analyzing the elements in the large matrices and automat-
ically splitting the additive elements into separate operations (allowing parallelisation).
A considerable speedup was achieved without the need to approximate the solution. The
nonlinear conjugate gradient method was speeded up with the same idea. The squared
distances calculation was speeded up by only calculating the parts constituting the non-
zero elements in the neighborhood graph. This part constitutes the most expensive part in

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 38

the iterative method. The cost function of SDPP was also updated to accurately account
for non-binary neighborhood values.

The SDPP toolbox includes many different ways of calculating the neighborhood ma-
trix: the k-nearest neighbors, the k-nearest mutual neighbors, natural neighbors and an
experimental nearest correlation neighborhood. In the last method, the idea is to find
neighboring points that approximate a straight line in the data [22].

I worked a couple of weeks on an online version of SDPP. The method used stochastic
gradient descent for optimization. Each point-to-point distance was added to the cost
function sequantially after which the optimization was done for this distance. The se-
quence approached the right range of the optimal solution, but it did not converge to
the minimum. A mini-batch version of the problem did not converge either. Stochastic
gradient descent has asymptotic convergence on convex problems. The reason that it did
not converge is likely due to the fact that SDPP has two global optimal solutions: W∗

and −W∗, making it non-convex when W∗ 6= 0. The optimization process was very slow
compared to the conjugate gradient version and the work was discontinued.

The SDPP was extended to work with another type of distance, the Fisher-Rao dis-
tance [17] between two probability distributions. The distributions were calculated with
the perplexity search described by van der Maaten [61]. Fisher-Rao distances between
data points then were a function of both the distance between points and the density
of the point cloud region of the two points. The distance was directly applied to the
SDPP function. The embedding results were more accurate than plain SDPP solutions
in regression test problems, but the calculation of the embedding was slower. The SDPP
with Fisher-Rao distance worked poorly on classification problem and work on it was
discontinued.

There was work conducted on including a Gaussian distributed neighborhood matrix,
such as the one included in SNE. The neighbor graph then had all positive values, with
the value shrinking exponentially fast the farther away distances were. This clashed with
the curse of dimensionality [19], namely in that the distances between points became
increasingly similar in high-dimensional space, see Figure 3.9. The neighborhoods are
much larger than the perplexity value would indicate and incurred very similar projections
in SDPP. The calculation with different values of perplexity became dubious in SDPP, as
the perplexity value did not correspond to the intuitive idea of the efficient number of
neighbors, presented in [61].

3.6 Conclusions on SDPP
The SDPP is an attractive supervised dimensionality reduction technique for moderately
high-dimensional problems. SDPP can be used for both regression and classification
problems. SDPP relies heavily on the geometry described in the neighbor graph. The
neighbor graph is affected by the curse of dimensionality, since it is calculated in the
original high-dimensional space and is not updated. The sense of proximity becomes
increasingly likely to be affected by the noisy variables, making the use of neighbor graphs
risky. In SDPP the fact that certain distances enter the cost can change the visualization
to a great extent (compare figures 3.5 and 3.7). Stochastic Discriminant Analysis discussed
in the next chapter tries to avoid problems faced when using multiclass data in high-
dimensional settings by matching probabilities instead of distances.

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 39

Z
1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Z
2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SDPP: Iris embedding 1

Neighborhood matrix

column index

50 100 150

ro
w

 i
n
d
e
x

50

100

150

Z
1

Z
2

Neighbor connections

Figure 3.3: A projection of the Iris data set onto 2D.

32

1

Figure 3.4: Optimal structure as seen in Iris embedding 1.

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 40

Z
1

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Z
2

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

SDPP: Iris embedding 2

Neighborhood matrix

column index

50 100 150

ro
w

 i
n
d
e
x 50

100

150

Z
1

Z
2

Neighbor connections

Figure 3.5: Another projection of the Iris data set onto 2D.
321

Figure 3.6: Optimal structure as seen in Iris embedding 2.

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 41

Z
1

-2.5 -2 -1.5 -1 -0.5 0 0.5

Z
2

-0.05

0

0.05

0.1

0.15

0.2

0.25

SDPP: Iris embedding 3

Neighborhood matrix

column index

50 100 150

ro
w

 i
n
d
e
x 50

100

150

Z
1

Z
2

Neighbor connections

Figure 3.7: Yet another projection of the Iris data set onto 2D.

32

1

Figure 3.8: Optimal structure as seen in Iris embedding 3.

CHAPTER 3. SUPERVISED DISTANCE PRESERVING PROJECTIONS 42

Figure 3.9: Perplexity values in relation to the histogram of the distances to point x6 in
a random selection of 7000 points from the MNIST hand-written character data set.

Chapter 4

Stochastic Discriminant Analysis

In this chapter, the new supervised dimension reduction technique for classification datasets,
Stochastic Discriminant Analysis, will be introduced. Some comparisons with existing
methods will be conducted.

4.1 Stochastic Discriminant Analysis
Formally, we are reducing the size of a data matrix containing n observations each with D
variables (dimensions): X ∈ Rn×D. The data vectors xi ∈ R1×D are rows in X. We reduce
the amount of variables in X by finding a subspace of it by a linear projection: Z = XW,
where Z is a Rn×d matrix, W ∈ RD×d, and d� D. We are using class information from
the response matrix Y = [y1; y2; ...; yn]T ∈ In×dy to find this projection. The response
variables yi are sequences of dy binary numbers, specifying the class labels. The linear
subspace is searched by matching point adjacencies (probability mass functions) in the
embedding space with point adjacencies in the response space. The probabilities between
points i and j in the Z-space are:

qij(W) = (1 + ||zi − zj||22)−1∑n
k=1

∑n
l=1,l 6=k(1 + ||zk − zl||22)−1

, (4.1)

where zi = xiW is the low-dimensional embedding coordinate. The elements qij are
called t-distributed, because of the similarity with the probability density function of the
t-distribution with one degree of freedom. The probabilities of the response space are
pij = p̄ij/σ, where the normalization term σ = ∑

ij p̄ij and

p̄ij =

1, if yi = yj
ε, otherwise

, (4.2)

where ε > 0 is any small number. The target probabilities define ideal distances. By
setting ε → 0 we essentially have a stochastic version of the LDA principle: minimize
within-class (yi = yj) and maximize between-class (yi 6= yj) distances.

Figure 4.1 shows the t-distribution with one degree of freedom (before normalization).
A target probability (red cross) as well as two hypothetical realized probabilities (blue
dots) with their associated distances are shown. Both realized probabilities are at the
same distance from the target distance, but they are invoking different offsets in the

43

CHAPTER 4. STOCHASTIC DISCRIMINANT ANALYSIS 44

probability (blue vertical line). As such, embedding different class coordinates too close
to each other invokes a heavier penalty than embedding them too far away from each
other. By encoding distances between points in the low-dimensional embedding space as
t-distributed probabilities, we can discourage the embedding of class clusters too close to
each other. We can write the cost function as:

J(W) =
n∑
i=1

n∑
j=1

pij log pij
qij(W) + λ

D∑
i=1

d∑
j=1

W2
ij. (4.3)

Distance ||z
i
-z

j
||

2

0 1 2 3 4 5

A
s
s
o

c
ia

te
d

 a
d

ja
c
e

n
c
y
 v

a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Profile of t-distributed adjacencies

Figure 4.1: The t-distributed adjacency value is associated with a distance in the em-
bedding coordinate ||zi − zj||2. The adjacency value is transformed to a probability by
normalizing it. The normalization is done by dividing it with the sum of all other ele-
ments in the matrix Q, Equation (4.1). The difference in the target probability and the
realized probability is symbolized by the blue line between the realized adjacency values
(blue dots) and the target (red cross).

We are searching for the thin linear projection matrix W that minimizes the Kullback-
Leibler divergence of approximating probability distribution P with Q. The inefficiency of
encoding ideal distances in the response space using realized distances in the embedding
space is measured. The t-distribution causes asymmetric distance penalties: the cost
function is more sensitive to deviations in within-class distances than it is to between-
class distances. In visualization applications the target dimension is most often two-
dimensional, in which case many methods simply extract the first 2 or 3 dimensions of
the projection matrix. This is suboptimal in the presence of multiple classes. The simplex
corners represent the edges of the high-dimensional shapes. Projecting the data onto a
lower dimension than ν-1 means that the features are truncated to value zero, which
means that these dimensions would typically be projected between the remaining simplex
edges that are not truncated.

CHAPTER 4. STOCHASTIC DISCRIMINANT ANALYSIS 45

Figure 4.2: Projecting to a lower dimension directly from the optimal simplex structure
is typically done by truncating the last dimensions.

Figure 4.3: An ideal embedding of 6 classes into 2D. Same-class data points are drawn
together while being separated from other class data points.

The first projections from the optimal space are illustrated in Figure 4.2. Rather than
extracting the first few columns of the projection matrix optimized for a higher target
dimension ν-1, the projection matrix should be optimized with respect to embedding
dimensionality to maximize class discrimination. SDA optimizes the projection matrix
based on the target dimensionality. Matching distances creates a regular simplex structure
if the target dimension is high enough. This optimal structure is found already in (ν-1)-
dimensional space, where ν is the number of classes in the dataset. If not achievable,
the points are placed so as to maximize the space between classes. The KL divergence
is not symmetric in its arguments and reversing the order of the arguments causes a
different cost. The version of KL divergence introduced here (∑n

i=1
∑n
i=1 pij log(pij/qij)

is also called M-projection [45]. The M-projection is infinite if qij is zero, therefore it is
called zero-avoiding. Thus, the absolute distances between cluster centers become softly
bounded. This creates tension between the class clouds: classes need to be separated, but
they cannot be infinitely far away because of the zero-avoiding effect. The expected effect
is shown in Figure 4.3. In practice, the optimization criterion converges slowly with small
values of ε. Therefore, we choose ε = 1/ν in general. We can also use an additive Tikhonov
regularization term [57]. If the value of the regularization term λ is searched by cross-
validation, we refer to the method as Regularized SDA, denoted as RSDA. Normally λ is
set to zero. Tikhonov regularization is often applied to ill-posed [1] problems. In SDA, we
have local solutions where the solution depends on the initialization. The initial solution
in SDA is obtained with PCA, giving orthogonal vectors with maximum variance. In high-
dimensional cases, regularization can help in moving past the initialization. Additionally,
the optimization process can also be made smoother by constraining the elements of W.

CHAPTER 4. STOCHASTIC DISCRIMINANT ANALYSIS 46

4.2 Gradient
Equation (4.3) presented the cost function. The minimum of that cost function is obtained
from the zeros of its gradient. In this problem, the analytic solution is intractable, so we
move in the direction of the negative gradient to find the minimum iteratively (gradient
descent). The iterative procedure is cut off at some tolerance, typically 10−5, i.e. the
decrease in the cost function value between two iterations needs to be less than 10−5 to
stop the optimization procedure. A great deal of research has been conducted to obtain
efficient methods of using the gradient descent for optimization of nonlinear problems.
Some of the most important algorithms were discussed in Section 2.4.

The essential steps in obtaining the gradient are written here. We use the shorthand
notation qij = qij(W). We also write the distance in the embedding space as Dij =
Dij(W) = ||zi(W)− zj(W)||22 = τ ijWWTτ Tij = (xi−xj)WWT (xi−xj)T . The matrices
P,Q, Q̄ and D are Rn×n matrices. pij, qij, q̄ij and Dij denote their elements.

dKL(P||Q(W))
dW

=
n∑
i=1

n∑
j=1

pij
1
qij

(−1) dqij
dW

=
n∑
i=1

n∑
j=1

pij(−1)
[n∑
k=1

n∑
l=1

qklq̄kl
dDkl

dW
− q̄ij

dDij

dW
]

=
n∑
i=1

n∑
j=1

pij q̄ij
dDij

dW
−

n∑
k=1

n∑
l=1

qklq̄kl
dDkl

dW

=
n∑
i=1

n∑
j=1

(pij − qij)q̄ij
dDij

dW

=
n∑
i=1

n∑
j=1

(pij − qij)q̄ijτ Tijτ ijW,

(4.4)

since ∑n
i=1

∑n
j=1 pijk = (∑n

i=1
∑n
j=1 pij)k = k, where k is an arbitrary constant. Here

(1 + Dij)−1 = q̄ij denotes the unnormalized probability. Adding the regularization term
we get

dJ

dW
=

n∑
i=1

n∑
j=1

(pij − qij)q̄ijτ Tijτ ijW + 2λW. (4.5)

In matrix form the expression becomes

∇WJ = 2XTLXW + 2λW, (4.6)

where L is calculated as:

G = (P−Q)� Q̄
G+ = G + GT

Λ =
n∑
j=1

G+
ij

L = G+ −Λ

(4.7)

CHAPTER 4. STOCHASTIC DISCRIMINANT ANALYSIS 47

Here � denotes the Hadamard product (element-wise multiplication) and G+ is a
symmetrized matrix of G ∈ Rn×n and Λ ∈ Rn×n is a diagonal matrix containing the row
sum of G+. The matrix L is the difference between two Laplacian matrices L = LP−LQ,
where LP is calculated from the adjacency matrices GP = P � Q̄ and GQ = Q � Q̄.
A Laplacian matrix is a symmetric diagonally dominant matrix and therefore positive
definite, however L need not be positive semi-definite.

Algorithm 7 shows pseudo-code for obtaining a projection matrix W with SDA. The
projection matrix W and its gradient need to be vectorized before passing them to the
optimization algorithm. The vectorized projection matrix w and its vectorized gradient
g can be plugged to any gradient-based optimization method discussed in Section 2.4.
The optimization methods determine the descent direction and a line search method
determines the step length. The optimization and line search methods might require
additional function evaluations. At the end, the search directions are orthogonalized with
SVD. The usage of thin SVD saves computational time.

Note that the target probabilities pij are determined based on the labeling of the
elements in the beginnning of the algorithm, but the model probabilities qij depend on
the low-dimensional coordinates and need to be recalculated at each iteration.

Algorithm 7: Gradient-based minimization for SDA
Input: Input matrix X ∈ Rn×D and response matrix Y ∈ In×dy , initial projection
matrix W0 ∈ RD×d, regularization term λ and optimality tolerance δ
Output: Projection matrix W
1. Calculate target probabilities P ∈ Rn×n with Equation (4.2)
2. Assign W = W0
3. Calculate model probabilities Q with Equation (4.1)
4. Calculate cost C0 = ∑n

i=1
∑n
j=1 Pij log(Pij/Qij) + λ

∑D
i=1

∑d
i=1 Wij

5. Assign t = 0, δC =∞
while δC > δ do

6. Compute gradient ∇WJ0 = XTLXW + λW
7. Vectorize projection matrix, wt = vec(W)
8. Vectorize gradient, gt = vec(∇WJ)
9. Determine descent direction dt
10. Determine step length ηt
11. Update solution vector wt = wt−1 + ηtdt
12. Reshape the vector wt into matrix Wt

13. t = t+ 1
14. Update model probabilities Q with Equation (4.1)
15. Calculate new cost Ct with Equation (4.3)
16. Update change in cost δC = Ct − Ct−1

end while
17. Orthogonalize Wt with thin SVD: ÛŜV = Wt

18. Return W = ÛŜ

The evaluation of the gradient is the most time-consuming part of the optimization.
The gradient in matrix form is 2XTLXW, but it can be calculated in two ways: multiply-
ing the matrices from the left side or from the right side. The computation environment

CHAPTER 4. STOCHASTIC DISCRIMINANT ANALYSIS 48

Matlab will automatically calculate the matrices from the left side. The computational
cost of multiplying a n × p matrix with a p × m matrix is O(npm). We can compare
the computational complexity of multiplying from either side. The size of each matrix is
shown below in Table 4.1.

Table 4.1: The size of each matrix in the gradient expression.

Matrix Size
XT D × n
L n× n
X n×D
W D × d

Table 4.2: Computational costs associated with evaluating the gradient when doing the
matrix multiplication from the left side.

Left side multiplication Size Operations
XTL D × n× n× n O(Dn2)

(XTL)X D × n× n×D O(D2n)
(XTLX)W D ×D ×D × d O(D2d)

Table 4.3: Computational costs associated with evaluating the gradient when doing the
matrix multiplication from the right side.

Right side multiplication Size Operations
XW n×D ×D × d O(Dnd)

L(XW) n× n× n× d O(n2d)
XT (LXW) D × n× n× d O(Dnd)

The costs for the individual operations in multiplying from left is summarized in
Table 4.2 and from the right in Table 4.3. In total, the cost for evaluating the matrix
multiplication multiplying from the left is O(Dn2 + D2n + D2d). Multiplying from the
right side we get O(nDd + n2d), since the constant can be ignored. In our case d � D,
since our application is specifically dimension reduction. Multiplying from the right side
would be faster in most cases.

Both versions were run on the learning sets of Olivetti (n = 266, D = 4096), Phoneme
(n = 3005, D = 256), USPS (n = 6198, D = 256) and COIL-20 (n = 1224, D = 16384)
data sets, and the dimensionality was reduced to 2D. The LBFGS algorithm was used in all
cases. The required convergence times are summarized in Table 4.4. The speed-up in the
very high-dimensional Olivetti and COIL-20 data set was considerable, approximately 82%
and 96%. The computation time reduction in the two large data sets were approximately
10%.

CHAPTER 4. STOCHASTIC DISCRIMINANT ANALYSIS 49

Table 4.4: Total computation time of computing the transformation matrix in SDA using
the LFBGS algorithm on different data sets. Only the direction of the matrix multiplica-
tion was changed between the optimization runs.

Matrix Left-multiplication Right-multiplication
Olivetti 47.17s 8.35s
Phoneme 48.10s 44.30s
USPS 1116s 1006s

COIL-20 2608.88s 106.98s

4.3 Hessian

The Hessian can be directly obtained from the gradient as H = 2XTLX, however a closer
inspection of the Hessian is in order. This matrix L was calculated in Equation (4.7).
The matrix is the difference between two Laplacian matrices L = LP − LQ, where LP
is calculated from the adjacency matrix GP = P � Q̄ and LQ from GQ = Q � Q̄. A
Laplacian matrix is a diagonally dominant matrix and therefore always positive definite.
L is not guaranteed to be positive semi-definite because it is the difference between two
psd matrices. The use of matrix H+ = 2XTLPX in place of the real Hessian is called
Spectral Direction optimization. Using the partial Hessian H+ instead of the true Hessian
H, we can guarantee that we always proceed in a descent direction. Algorithm 7 can be
extended to use Hessian information with a small modification. The modified algorithm
is shown as Algorithm 8.

If the Hessian information is used, the computational load per iteration is larger. The
evaluation of the Hessian has the computational complexity O(D2n+Dn2). The inverse
Hessian can be calculated by Cholesky factorizing the Hessian O(D3) and then doing
two backsolves O(D2) [2]. Thus, the computational complexity for evaluating a direction
using the Hessian is O(Dn2 + n3). The use of the partial Hessian might reduce the total
amount of function evaluations required because of the more informed calculation of the
direction. The individual contributions to the time complexity are shown in Table 4.5.
The total time complexity for one iteration, including the right-side calculation of the
gradient is O(nDd+ n2d+Dn2 +D2n+D3). The time complexity scales with the third
power of the input dimension, making it unattractive in very high-dimensional problems.

CHAPTER 4. STOCHASTIC DISCRIMINANT ANALYSIS 50

Algorithm 8: Spectral gradient minimization for SDA
Input: Input matrix X ∈ Rn×D and response matrix Y ∈ In×dy , initial projection
matrix W0 ∈ RD×d, regularization term λ and optimality tolerance δ
Output: Projection matrix W
1. Calculate target probabilities P ∈ Rn×n with Equation (4.2)
2. Assign W = W0
3. Calculate model probabilities Q with Equation (4.1)
4. Calculate cost C0 = ∑n

i=1
∑n
j=1 Pij log(Pij/Qij) + λ

∑D
i=1

∑d
i=1 Wij

5. Assign t = 0, δC =∞
while δC > δ do

6. Compute gradient ΓWt = XTLXW + λW
7. Compute partial Hessian H+ = 2XTL+X + 2λI
8. Cholesky-decompose RTR = H+

9. Do two backsolves to get νt: RT (Rνt) = ΓWt

10. Vectorize projection matrix, wt = vec(W)
11. Vectorize descent direction, dt = vec(ν)
12. Find step length ηt that satisfies the Wolfe conditions
13. Update solution vector wt = wt−1 + ηtdt
14. Reshape the vector wt into matrix Wt

15. t = t+ 1
16. Update model probabilities Q with Equation (4.1)
17. Calculate new cost Ct with Equation (4.3)
18. Update change in cost δC = Ct − Ct−1

end while
19. Orthogonalize Wt with thin SVD: ÛŜV = Wt

20. Return W = ÛŜ

4.4 A theoretical connection between the cost func-
tion in SDPP and SDA

We can think of the cost functions in SDPP and SDA in a slightly different way. In SDPP
we were considering squared Euclidean distances (SED) as the random variables that we
were trying to predict. The loss function was also the squared Euclidean distance. Here,
we will instead consider probabilities calculated from squared distances as the random
variables and use the Kullback-Leibler divergence (KLD) as the cost function. In essence,
we are changing from a scenario of matching squared distances to a scenario of matching
probability distributions.

Both SED and KLD are part of a broader concept, the Bregman divergences [7, 54].
These divergences are defined by having a strictly convex function φ(xi) that defines the
associated loss function as:

Dφ(xi, yi) = φ(xi)− φ(yi)− 〈xi − yi,∇φ(yi)〉,

where 〈·, ·〉 refers to the dot product. By setting di → xi, where di is the vectorized
squared distance in the low-dimensional space, N = n2, setting yi to be the vectorized

CHAPTER 4. STOCHASTIC DISCRIMINANT ANALYSIS 51

Table 4.5: Computational costs associated with evaluating the partial Hessian direction.
a is a temporary vector.

Left side multiplication Operation Computational complexity
XTL Matrix multiplication O(Dn2)

(XTL)X Matrix multiplication O(D2n)
RRT = (XTLX) Cholesky factorization O(D3)

a = −RT/g Backsolve O(D2)
d = −R/a Backsolve O(D2)

squared distances in the response space and φ(xi) = ||xi||2 (L2-norm of the point-to-point
distances in low-dimensional space), we get the SDPP cost function. By setting the data
points xi to be the vectorized probability values q(di), yi to be the vectorized target
probabilities pi and by setting φ(xi) = xi log xi (Shannon entropy of the distribution
of the distances in the low-dimensional space), the loss function is the Kullback-Leibler
divergence, as used in Stochastic Discriminant Analysis.

Table 4.6: Comparison of squared Euclidean and Kullback-Leibler divergences. xi is the
random variable that we are in general trying to predict and yi is its estimate.

Divergence Squared Euclidean Kullback-Leibler
Domain of the random variable xi ∈ RN xi ∈ N-simplex
Related strictly convex function φ(x) ∑N

i=1 ||xi||2
∑N
i=1 xi log xi

Divergence Dφ(x, y) ∑N
i=1 ||xi − yi||2

∑N
i=1 xi log(xi/yi)

Differences between SED and KLD are summarized in Table 4.6. The N-simplex
refers to the geometrical concept of the non-negative probability simplex spanned by∑N
i=1 xi = 1.

4.5 Embedding with the Iris dataset
The SDA embedding of the Iris dataset can be seen in Figure 4.4. The target proba-
bilities P and the realized model probabilities Q are also shown. The target and model
probabilities are in the same range. The optimal embedding in Figure 4.5 is not achieved.
The Iris dataset contains too little variability in the input variables to achieve the simplex
structure. We can see that the third and second class are encoded too close to each other
by comparing the target probabilities and the model probabilities. The second class is a
bit too close to the first class (shade too dark) and the third class is a bit too far away
from the first class (shade too light). The classes are separated quite well.

CHAPTER 4. STOCHASTIC DISCRIMINANT ANALYSIS 52

Z
1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Z
2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

SDA: Iris embedding

Figure 4.4: The SDA projection of the Iris data set onto 2D.

32

1

Figure 4.5: The optimal structure for a 2D embedding of the Iris dataset.

Chapter 5

Datasets

In this chapter all the datasets used in the experiments in this thesis are introduced. They
are shown in Table 5.1. These datasets are widely used to test dimensionality reduction
methods. The datasets are mostly multiclass datasets, and half of the datasets contain
at least ten classes.

Table 5.1: Data sets used in this paper.

Data set Samples Variables Classes
Iris 150 4 3
Wisconsin Breast Cancer 683 9 2
Wine 178 13 3
USPS 9298 256 10
MNIST5k 5000 784 10
Phoneme 4509 256 5
Olivetti faces 400 4096 40
COIL-20 1440 16384 20
COIL-100 7200 16384 100

First in the list are the oldest datasets. The Iris dataset, the Wisconsin Breast Cancer
dataset and the Wine dataset were gathered during the last century and they contain few
classes, few variables and few data points. In the Iris dataset, morphological varieties of
the Iris flower are identified by quantitative measurements of flowers. In the Wine dataset,
wine species are identified based on chemical test results. In the Wisconsin Breast Cancer
dataset, tumors are classified as benign or malignant based on physical measurements.
The datasets contain too many dimensions for visual inspection (only two or three vari-
ables can be viewed simultanously), but the dynamics become easy to understand after
dimension reduction. As such, these datasets are often used to demonstrate that a par-
ticular dimension reduction technique works. The datasets are retrieved from the UCI
machine learning database [5].

The three following datasets contain more elements. The USPS and MNIST datasets
contain phographed or scanned hand-written grey-scale digits. The analysis of these
datasets lead to the automatic number recognition at post offices. The k-nearest neighbors
classification of digits is despite its simplicity still among the favored algorithms for digits
classification. The 1-NN error rate is about 3.8% on the USPS dataset, compared to
the human error rate of about 2.5% in the USPS dataset [42]. Deep learning algorithms

53

CHAPTER 5. DATASETS 54

Figure 5.1: Examples of digits from the USPS dataset. The images are the first digits for
each class.

have achieved error rates of about 1% in the MNIST dataset [39]. Figure 5.1 shows
some example digits from the USPS dataset. The digits often occupy the same area of
the pixel space. The phoneme dataset contains five different sounds [28]: three vowel
pronunciations ’aa’ (the a in dark, IPA: A), ’ao’ (the a in water, IPA: 5) and ’iy’ (the ’e’
in she: IPA: i) as well as two consonants ’dcl’ (d in dark) and ’sh’ (sh in she). The ’aa’
and ’ao’ sounds are very similar and difficult to separate linearly.

The last three datasets are high-dimensional datasets. The Olivetti faces dataset
(sometimes called ORL / AT&T) [55] contains 40 persons photographed in 10 pictures
each. Each sample is a 64-by-64 pixel image, giving 4096 variables. Faces in general
contain similar objects (faces). Subjects in different classes look similar: their eyes, noses
etc. are typically centered to the same position. The dataset is challenging for pixel-
intensity based recognition because the faces are irregularly varying: the camera angle
might be different or the subject might have different facial expressions in the images.
Figure 5.2 shows some example pictures from the data set.

The Columbia Object Image Library (COIL-20) contains rotating images of 20 ob-
jects, photographed at 5 degree intervals [48]. The images are 128-by-128 pixel grey-scale
images. Images include objects such as rubber ducks, toy cars and jars. In total, there
are 1440 samples in 16384 dimensions. The objects are mostly dissimilar and occupy
different positions in the pixel space, which makes it easy to recognize objects based on
pixel-intensity. Figure 5.3 shows a representative image for each class from the COIL-20
dataset. To give an example, there are three classes of different cars. COIL-100 [46] is
a larger dataset of COIL-20, containing 100 objects in RGB colors. COIL-100 is more
difficult because it contains several images of the same type, for example nine classes of
different cars. In this thesis the COIL-100 dataset is transformed to grayscale, giving
16384 dimensions. The variables in all datasets are normalized to have zero mean and
unit variance.

CHAPTER 5. DATASETS 55

Figure 5.2: Examples of faces from the Olivetti data set. The rows shows four randomly
picked standardized images of the 5 different persons.

CHAPTER 5. DATASETS 56

Figure 5.3: Examples objects from the COIL-20 dataset. The images are the first pictures
of each class.

Chapter 6

Evaluation

In this chapter the proposed method Stochastic Discriminant Analysis is evaluated exper-
imentally. The computational environment is described in Section 6.1. The experimental
evaluation is divided into two parts. First, three case studies on different datasets are
conducted in Sections 6.2, 6.3 and 6.4. The three datasets are multiclass high-dimensional
image datasets: Olivetti faces, USPS and COIL-20, introduced in Chapter 5. The Olivetti
faces dataset (6.2) contains photographies of people. The input dimensionality is very
high. The USPS dataset (6.3) contains a large number of hand-written digits in ten
classes with a smaller input dimension. COIL-20 (6.4) features 20 very high-dimensional
images of rotating objects photographed at fixed angle intervals. In these case studies, the
classification accuracies for a range of target dimensionalities are calculated and compared
with other methods. The two-dimensional projections with learning points and out-of-
sample points are shown. A regularization parameter search scheme for SDA is described
in Section 6.2 and the runtime with different optimization algorithms on these datasets is
determined in Section 6.5. In Section 6.6, a comparison of the out-of-sample classification
accuracies on two-dimensional projections with state-of-the-art methods is conducted over
a range of datasets. The utilized datasets have been summarized in Table 5.1 in Chapter 5.

6.1 Computational environment
In this section I will discuss the environment used in the calculations. The MATLAB
computer software is used for scientific computation in this thesis. The computations are
mainly performed on Ubuntu Linux 14.04 with a 4-core Intel i5-4570 @ 3.2 GHz processor
and 16GB RAM. Some experiments were calculated in the Triton environment, running
Scientific Linux with either Intel Xeon X5650 @ 2.67GHz processors or AMD Opteron
2435 @ 2.6GHz processors, with a variable amount of memory. The memory requirements
for running these experiments were roughly in the range 2GB to 16GB. The time required
to find an embedding ranged from seconds (Olivetti dataset) to hours (COIL-100 dataset).

This thesis involves nonlinear unconstrained optimization problems. The default
solvers in MATLAB are outdated, but there are some high-performance third-party op-
timization packages available. One of them is the nonlinear conjugate gradient function
minimize.m by C.E. Rasmussen [52, 53]. The functions in the minfunc-package by M.
Schmidt are equally good or faster [56]. The conjugate gradient algorithm in minimize.m
uses Polak-Ribière’s updating rule and a line search using quadratic and cubic polynomial

57

CHAPTER 6. EVALUATION 58

approximations. It uses the Wolfe-Powell stopping criteria and other checks to ensure that
exploration is being done and that the exploration is not unboundedly large. The minfunc
routines utilize functions written in C through the use of mex-files. The default algorithm
in the minfunc conjugate gradient algorithm uses the Hestenes-Stiefel update formula,
but there are many other options too.

We will define the hyperparameters used in various methods here. Our proposed
method SDA is initialized with the PCA projection as its initial solution is all tests. In
SPCA, we chose the delta kernel [9] for the response space. In the kernel version of SPCA,
we selected the delta kernel for response space and a Gaussian kernel for the input space,
setting the width of the Gaussian to the median value of the squared interpoint distances.
gKDR was run in the partitioning mode (v) to reduce its memory requirements.

6.2 The Olivetti faces dataset
In our tests, two thirds of the data vectors were randomly selected as training vectors and
one third as test vectors. The random selection was repeated ten times to average the
performance and acquire error bars.

6.2.1 Two-dimensional embeddings
The Olivetti dataset was projected to two dimensions in Figure 6.1. Each data point is
represented by the corresponding image of the person. Learning points do not have boxes
around the images, while test points have blue or red boxes. The color depends of whether
the classification based on the nearest neighbor from the learning set was correct or not.
We can see that there appears to be comparatively few learning points compared to the
number of test points. This is because the learning points have actually collapsed on top
of each other, at zero distance. Out-of-sample data points are embedded only roughly
in the right area. The data is sparse, which typically can cause overutilization of certain
pixels. We can restrict the utilization of any particular pixels, putting more focus on
groups of pixels. This can be achieved by regularizing SDA (RSDA). The regularization
scheme is described in subsection 6.2.2.

A two-dimensional RSDA embedding of the Olivetti faces is shown Figure 6.2. The
correct classifications and misclassifications have been highlighted in the figure. The
learning and testing subsets are the same as in the unregularized version. The learning
points are no longer projected right on top of each other: the Tikhonov regularization
makes such an embedding costly. The test data points are spread less around the learning
points, increasing the classification accuracy. Some of the test data points were projected
too close to another class because of new facial expressions. We can see for example that
the face projected at coordinates (3, 6) should in fact have been projected at coordinates
(0.5, 4.5). The person did not have a similar facial expression as in the learning data set:
we can see that the eyes were facing upwards.

The same SDA and RSDA embeddings are compared against embeddings obtained
with other methods in Figure 6.3. All the figures show the 267 learning points and 133
test points for the same permutation. The embeddings are very different. In SDA, all
data points belonging to the same class have collapsed on top of each other. The data
clusters are roughly evenly spread over a circular area. The test points are often, but not

CHAPTER 6. EVALUATION 59

Z
1

-8 -6 -4 -2 0 2 4 6 8

Z
2

-8

-6

-4

-2

0

2

4

6

8

10

Embedded faces with test points. Accuracy= 0.47

Figure 6.1: An SDA linear embedding of the Olivetti faces dataset. Colored
borders denote projected test points. Red borders denote a misclassification, while blue
borders denote a correct classification.

always, close to their own cluster centers. RSDA constrains the hypothesis made by SDA
with Tikhonov regularization, making it more difficult to collapse the same class elements
on each other. The test points are clearly projected closer to their own groups. LDA and
SDPP were applied on a 100-dimensional PCA projection. LDA separates a few groups
nicely, but many classes are inseparably mixed near origin. For the rest of the methods,
the task is too demanding. The assumptions that the data is sampled frequently enough
are violated in SDPP. The data dimensionality is large and LPP performs poorly. Many
of the methods work extremely well on higher projection dimensions, but the methods
often have problems in projecting out-of-sample test points close to their own classes in

CHAPTER 6. EVALUATION 60

Z
1

-6 -4 -2 0 2 4 6

Z
2

-6

-4

-2

0

2

4

6

Embedded faces with test points. Accuracy= 0.60

Figure 6.2: A representative RSDA linear embedding of the Olivetti faces
dataset. Colored borders denote projected test points. Red borders denote a misclassi-
fication, while blue borders denote a correct classification.

extremely low dimensional projections.

6.2.2 Regularization parameter search
In the Olivetti dataset, Tikhonov regularization was used to guide the optimization pro-
cess. The appropriate amount of regularization was searched by cross-validation. A
random selection of 80% of the learning subset (213 points) was used for training and
20% were used for cross-validation (54 points). The best value for the regularization term
is searched by trying six logarithmically intervalled values of λ from 102 to 10−8. Then

CHAPTER 6. EVALUATION 61

Z
1

0

Z
2

0

RSDA, accuracy=0.60

Z
1

0

Z
2

0

SDA, accuracy=0.47

Z
1

0

Z
2

0

SPCA, accuracy=0.35

Z
1

0

Z
2

0

PCA+LDA, accuracy=0.44

Z
1

0

Z
2

0

PLS-DA, accuracy=0.35

Z
1

0

Z
2 0

gKDR-v, accuracy=0.21

Z
1

0

Z
2 0

PCA, accuracy=0.25

Z
1

0

Z
2 0

PCA+SDPP, accuracy=0.13

Z
1

0

Z
2

0

LPP, accuracy=0.07

Figure 6.3: Linear embeddings of the Olivetti faces dataset. Dots denote projected
learning points. Stars denote projected test points. The 1-NN classification accuracy
resulting from this embedding is added to the title.

two magnification rounds were performed. To give an example, let us say that λ1 was the
regularization value that gave the smallest 1-NN classification error among the six tested
values of regularization. The search is then magnified in the area around λ1 by includ-
ing values 10λ1 and 0.1λ1. The same criteria is used to evaluate these two new values.
The smallest λ2 giving the smallest classification error is then the subject of a magnified
search with values 100.5λ2 and 10−0.5λ2. In total, ten regularization values are explored in
the cross-validation search. Among these values, the one that gives the smallest 1-NN
classification error is called λ∗, which is the regularization value used for training the data.

Figure 6.4 shows one regularization search procedure. The classification error is plotted
against the logarithm of the regularization term. The dimension reduction in the figure
is to two dimensions. We can observe that the search is magnified twice in the region
λ = 100. Finally, the 1-NN classification error on the cross-validation dataset was found
to be the smallest when λ = 10−0.5 ≈ 0.32. This search was conducted until no progress

CHAPTER 6. EVALUATION 62

Figure 6.4: Tikhonov regularization parameter search. The two-dimensional em-
bedding of the learning points are displayed for selected values of λ. The transitions
between test points are quantized because of the low number of test points in the cross-
validation set (54).

could be made, evaluated at a tolerance 10−4. The image shows typically a U-shape that
is typical in bias-variance trade-offs: too little bias (too small values of regularization)
increase the variance, while too much bias (too much regularization) is not good either.
The search procedure was fast, requiring less than ten seconds per value explored (typically
about 3-4 seconds)1. The tolerance for optimality in the main algorithm was set at 10−5.
The SDA projection found this way is called RSDA.

6.2.3 Comparative performance over a range of dimensions
Figure 6.5 shows the classification accuracies for many dimension reduction methods for
a range of target dimensions. The error bars report the mean and standard errors. The
regularized algorithm shows the best performance here. The mean accuracy is highest
among the methods and the error bars are among the narrowest. The method stabilizes
at 98.0% 1-NN classification accuracy at 10D, above the 90.1% accuracy for using the
whole input space. The mean classification accuracies are shown in Table 6.1 too. RSDA

1Run on 4-core Intel i5-4570 CPU @ 3.20GHz

CHAPTER 6. EVALUATION 63

Table 6.1: Mean classification accuracies with an 1-NN classifier a range of reduced
spaces acquired with different DR methods. The tests were repeated ten times. The best
results are bold-faced.

Dim. SDA RSDA PCA PLS-DA SPCA gKDR-v LDA
2D 39 56 29 33 32 22 45
3D 59 80 46 51 54 38 64
4D 70 89 62 65 66 49 76
5D 78 94 70 72 73 61 83
6D 85 97 76 77 78 70 86
8D 91 97 81 85 84 83 91

10D 94 98 84 89 86 90 94
14D 95 98 86 93 89 94 95
18D 96 98 88 94 90 96 96
22D 96 98 89 94 91 96 96
26D 96 98 89 95 91 96 96
30D 96 98 89 94 91 95 97

and SDA find some of the most meaningful linear subspaces in the data.

6.2.4 Prototype Faces
In the Background Section 2.2, fisherfaces and eigenfaces were discussed. Naturally, these
kind of faces can be processed using RSDA projections too. These faces will be referred
to as prototype faces in this thesis. The five first orthogonal prototype faces are shown in
Figure 6.6. Using the five faces alone to classify out-of-sample elements resulted in a 94%
classification accuracy on its test test. In the prototype faces, black pixels indicate neg-
ative values and white pixels indicate positive values. Red pixels are almost zeros. Both
negative and positive values of the prototype faces are used in obtaining low-dimensional
embeddings of samples. The fisher- and eigenfaces (LDA and PCA) are shown in Fig-
ures 6.7 and (6.8). All faces are obtained by reprojecting the projection matrix into the
original space, using the same seletion of learning samples.

The eigenfaces are undoubtedly the easiest to interpret. We can interpret a linear
scale in the darkness of the face in eigenface 1, a left-right orientation scale on eigenface
2 (telling if the head turned in either direction) and eye shades in eigenface 5. Eigenface
1 has also caught the background lighting of the image. The first fisherface has dark
eyes and a white chin, apparently a combination important for discriminating people.
Negative values of the first fisherface would create different shades of dark chins, typical
for bearded persons. Many of the RSDA faces feature eyes. The eye shapes appear
important in discerning people. The face area is in general more red than in fisherfaces,
containing more almost-zero values. We can for example see that the fifth prototype face
has a "white beard" and the second face contains dark eyebrows.

We can take a look at what the most important prototype faces describe for a chosen
subject. Figure 6.9 shows five pictures of subject 10 from the Olivetti dataset. Table 6.2
shows the contributions of each prototype face to the embedding location of the subject.
Projection vector refers to the prototype faces. The subject has dark eye-circles and

CHAPTER 6. EVALUATION 64

Target dimension
2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

1
-N

N
 c

la
ss

if
ic

at
io

n
 a

cc
u
ra

cy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Olivetti: Classification accuracies

SDA

RSDA

PCA

PCA+LDA

baseline: none

Target dimension
2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

1
-N

N
 c

la
ss

if
ic

at
io

n
 a

cc
u
ra

cy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Olivetti: Classification accuracies (2)

SDA

gKDR-v

SPCA

PLS-DA

baseline: none

Figure 6.5: Olivetti dataset. Classification accuracies with a 1-NN classifier after
projection with different dimension reduction methods. The baseline is the classification
accuracy in the original high-dimensional dataset.

CHAPTER 6. EVALUATION 65

Prototype face 1 Prototype face 2 Prototype face 3 Prototype face 4 Prototype face 5

Figure 6.6: The five first orthogonal directions in a RSDA embedding of the Olivetti faces.
White areas denote positive pixel weights, and black values denote negative pixel weights.
Red values are neutral values.

Fisherface 1 Fisherface 2 Fisherface 3 Fisherface 4 Fisherface 5

Figure 6.7: The five first orthogonal directions in a LDA embedding of the Olivetti faces.
White areas denote positive pixel weights, and black values denote negative pixel weights.
Red values are neutral values.

Eigenface 1 Eigenface 2 Eigenface 3 Eigenface 4 Eigenface 5

Figure 6.8: The five first orthogonal directions in a PCA embedding of the Olivetti faces.
White areas denote positive pixel weights, and black values denote negative pixel weights.
Red values are neutral values.

eyebrows. The RSDA embeddings put much weight on prototype faces 2, 3 and 4. The
eyebrows, the nose and the eyes are important contributing factors in determining the
projection location.

In general, the reprojected subjects in prototype or fisherfaces look similar, even if the
subject is rotating his/her head or grimacing. In these supervised methods, the projections
focus on some particular detail of the image that remains similar in all images. PCA does
not contain any learning information and the reconstructed images can end up fairly far
away from each other. This contributes to the larger standard error in Table 6.2.

CHAPTER 6. EVALUATION 66

RSDA: Sample 1 RSDA: Sample 2 RSDA: Sample 3 RSDA: Sample 4 RSDA: Sample 5

LDA: Sample 1 LDA: Sample 2 LDA: Sample 3 LDA: Sample 4 LDA: Sample 5

PCA: Sample 1 PCA: Sample 2 PCA: Sample 3 PCA: Sample 4 PCA: Sample 5

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Figure 6.9: A comparison of a persons image and different reconstructions of the image.

Table 6.2: Proportions of prototype faces used to construct the low-dimensional embed-
ding in Figure 6.9. Mean plus standard error.

Vector RSDA LDA PCA
v1 −13.81%± 1.21% 34.48%± 4.58% 6.28%± 23.22%
v2 34.44%± 0.92% 7.89%± 2.29% 25.19%± 12.77%
v3 −24.82%± 1.33% 2.81%± 6.82% 16.96%± 8.37%
v4 −21.23%± 2.09% 29.98%± 2.74% −20.78%± 3.27%
v5 5.70%± 1.86% −21.88%± 3.72% −19.39%± 16.32%

CHAPTER 6. EVALUATION 67

Table 6.3: Mean classification accuracies on the USPS dataset with an 1-NN classifier
a range of reduced spaces acquired with different DR methods. The best results are
bold-faced.

Dim. SDA PCA PLS-DA SPCA gKDR-v LDA
2D 67 46 49 49 42 55
4D 85 69 77 76 57 78
6D 90 81 87 88 73 89
8D 92 87 92 92 83 92

10D 92 92 93 92 88 92
14D 92 94 94 92 93 82
18D 92 95 95 92 95 92
22D 93 96 95 92 96 92
26D 93 96 95 92 96 92
30D 93 96 95 92 96 92

6.3 The USPS dataset
The US Postal Service [55] dataset contains 9298 hand-written images of digits. Each
digit is represented by 16-by-16 pixel grey-scale images. The data was divided randomly
so that two thirds was used for training and one third was used for testing. The random
selection was repeated ten times to obtain error bars.

The 1-NN classification accuracy of out-of-sample test points projected with some
dimension reduction tools are shown in Figure 6.10. SDA has the highest accuracies
in small dimension reduction tasks. We can observe a saturation in the classification
accuracies of LDA, SPCA and SDA. The performance of these methods is similar to
that of applying a linear SVM on the dataset, which had 11.3% error rate in the USPS
dataset [42]. The discretization of the hand-written images is low-resolution, which makes
it difficult to find meaningful low-dimensional projections of the data. The saturation is
related to the fact that the defined optimal simplex structure of the data is reached already
at 9 dimensions. PCA, PLS-DA and gKDR-v approach or exceed the initial classification
accuracy 96.3% when using 30 dimensions or so. The mean classification accuracies are
shown in Table 6.3 too.

Linear two-dimensional embeddings of the data points are compared in Figure 6.11.
We can see that many methods resemble multidimensional simplexes projected onto a sub-
space with too many classes crowding near the origin. Such projections are not ideal in
the presence of multiple classes. On the contrary, SDA manages to fill a two-dimensional
circle, ultimately resulting in a higher class discrimination ability. We can see that the
second vector in KSPCA is poorly scaled, resulting in poorer discrimination ability than
SPCA. The SDPP structure is similar to the SDA structure. The data is sampled fre-
quently, giving a better SDPP projection than in the Olivetti dataset.

CHAPTER 6. EVALUATION 68

Target dimension
2 4 6 8 10 14 18 22 26 30

1
-N

N
 c

la
ss

if
ic

at
io

n
 a

cc
u
ra

cy

0.4

0.5

0.6

0.7

0.8

0.9

1
USPS: Classification accuracies

SDA

PCA

LDA

baseline: none

Target dimension
2 4 6 8 10 14 18 22 26 30

1
-N

N
 c

la
ss

if
ic

at
io

n
 a

cc
u
ra

cy

0.4

0.5

0.6

0.7

0.8

0.9

1
USPS: Classification accuracies (2)

SDA

gKDR-v

SPCA

PLS-DA

baseline: none

Figure 6.10: USPS dataset. Classification accuracies for different DR methods. The
baseline is the classification accuracy in the original high-dimensional dataset.

CHAPTER 6. EVALUATION 69

Figure 6.11: Linear embeddings of the USPS dataset. Dots denote projected learn-
ing points and stars denote projected test points. The 1-NN classification accuracy
resulting from this embedding is added to the title.

CHAPTER 6. EVALUATION 70

Figure 6.12: Linear embeddings of the COIL-20 dataset. Dots denote projected
learning points and stars denote projected test points. The 1-NN classification accuracy
resulting from this embedding is added to the title.

6.4 COIL-20 Object Images
The Columbia Object Image Library contains rotating images of 20 objects, photographed
at 5 degree intervals [48]. The dataset was summarized in Chapter 5. Nine two-dimensional
embeddings of the COIL-20 dataset are shown in Figure 6.12.

Figure 6.13 shows classification accuracies for the previous techniques calculated over
the dimensions two to five. The means and standard errors were calculated by leaving
three elements out of each class at each round and repeating the runs 24 times, thus going
through the whole data. The tolerance for the SDA algorithms was set at 10−5. SDA
and RSDA can in average identify over 90% of the classes in with two variables. At five
dimensions, most algorithms perform similarly. The mean classification accuracies are
shown in Table 6.4.

CHAPTER 6. EVALUATION 71

Target dimension
2 3 4 5

1
-N

N
 c

la
ss

if
ic

at
io

n
 a

cc
u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
COIL-20: Classification accuracies

SDA

RSDA

PCA

PCA+LDA

baseline: none

Target dimension
2 3 4 5

1
-N

N
 c

la
ss

if
ic

at
io

n
 a

cc
u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
COIL-20: Classification accuracies (2)

SDA

PCA+gKDR-v

SPCA (dual)

PLS-DA

baseline: none

Figure 6.13: COIL-20 dataset. Classification accuracies for different DR methods. The
baseline is the classification accuracy with no DR at all.

CHAPTER 6. EVALUATION 72

Table 6.4: Mean classification accuracies on the COIL-20 dataset with an 1-NN classifier
a range of reduced spaces acquired with different DR methods.

Dim. SDA RSDA PCA PLS-DA SPCA gKDR-v LDA
1D 62 57 25 27 25 20 26
2D 90 95 67 57 63 59 67
3D 94 98 89 83 79 85 87
4D 96 98 93 95 88 96 93
5D 96 99 97 97 94 99 98

6.5 Computational complexity and runtime compar-
ison

The computational complexity of SDA in gradient based methods is largely determined
by the number of times the gradient in Equation (4.6) is evaluated. The matrix expression
has the time complexity O(dn2+dDn), whereD is the dimensionality of the input space, d
is dimensionality of target space and n is the number of samples. As such, optimizers that
require as few function evaluations as possible would be efficient choices. If the Hessian
information is used as well, the complexity is O(D3 +D2n+Dn2 +n2d+nDd), including
the gradient evaluation, the partial Hessian evaluation, the Cholesky factorization and
the backsolves. The use of the partial Hessian might be efficient if the input dimension is
not very high.

The processing time of the algorithms in Table 6.5 is compared on the three featured
datasets in Figure 6.14. The fastest algorithm differs depending on the characteristics of
the dataset. The spectral direction method converges faster and at a lower cost than the
other algorithms in the USPS dataset. Convergence is reached in about two minutes. The
number of variables is still small enough so that the partial Hessian information can be
utilized cost-efficiently. The Olivetti and COIL-20 datasets contain a much larger number
of variables. In COIL-20, the partial Hessian is re-evaluate only every 20 iterations to
increase the performance. The LBFGS algorithm and different forms of the nonlinear
conjugate gradient method are faster choices when performing dimension reduction for
very high-dimensional spaces. The use of the spectral direction algorithm seems justified
when the number of input dimensions is small enough. In general, we can see that the
LBFGS is among the top algorithms in all datasets, making it a good default algorithm.

Table 6.5: Different compared optimization algorithms.

Acronym Method
GD: Gradient descent [56]
BB: GD with Barzilai and Borwein step length [56]
CG: Conjugate gradient (Hestenes-Stiefel update) [56]
PCG: Preconditioned CG (LBFGS preconditioning)[56]
RCG: Conjugate gradient (Polak-Ribiere update) [52]
LBFGS: Limited-memory BFGS [56]
SD: Spectral direction (Modified Newton’s method) [56]

CHAPTER 6. EVALUATION 73

Time (s)

0 5 10 15 20 25 30

C
o

st
 F

u
n

c
ti

o
n

 V
a
lu

e

0.5

1

1.5

2
Olivetti: runtime of different algorithms

GD

BB

CG

PCG

RCG

LBFGS

SD

(a)

Time (s)

0 50 100 150 200 250 300 350 400

L
o

g
(C

o
st

 F
u

n
ct

io
n

 V
al

u
e)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

USPS: runtime of different algorithms

GD
BB
CG
PCG
RCG
LBFGS
SD

(b)

Time (s)

0 50 100 150 200 250 300 350 400 450 500

L
o

g
(C

o
st

 F
u

n
ct

io
n

 V
al

u
e)

-2

-1.5

-1

-0.5

0

0.5
COIL-20: runtime of different algorithms

GD
BB
CG
PCG
RCG
LBFGS
SD

(c)

Figure 6.14: Runtimes with different optimization algorithms. The fastest methods
differ depending on the characteristics of the datasets.

CHAPTER 6. EVALUATION 74

6.6 Comparisons on more datasets
In this subsection we compare the proposed method with state-of-the-art linear embed-
dings especially for visualization settings in two dimensions. The algorithms were run
over three standard UCI datasets [5], three large datasets (more than 4000 data points)
and three very high-dimensional datasets (more than 4000 input dimensions). In general,
the algorithms were run for different selections of training and test points 10 times to
obtain the confidence intervals. The COIL-20 and COIL-100 datasets were evaluated in
the principle of leave-three-out, as discussed in subsection 6.4. In the tables that follow,
a distinction is made between different dimension reduction types: none, supervised and
unsupervised. The different types are separated by horizontal lines.

6.6.1 UCI datasets
The UCI datasets Iris, Wine and Wisconsin Breast Cancer displayed next are all standard
datasets with rather few input dimensions. The resulting of two-dimensional projections
are shown in Table 6.6. For these UCI datasets, all methods perform quite similarly. The
tests were repeated 20 times to obtain the error bars.

Table 6.6: Three UCI datasets: 1-NN generalization accuracy (“mean ± std”) on test
set. The datasets were reduced to two dimensions, except for None, in which no dimension
reduction was done.

Method Iris Wine W. Breast Cancer
None 0.941± 0.026 0.949± 0.026 0.957± 0.014
SDA 0.948± 0.030 0.983± 0.017 0.956± 0.009
SDPP 0.920± 0.037 0.959± 0.035 0.940± 0.019
LDA 0.962± 0.025 0.981± 0.016 0.961± 0.009
PLS-DA 0.879± 0.040 0.974± 0.021 0.957± 0.008
gKDR 0.960± 0.021 0.959± 0.030 0.956± 0.013
SPCA 0.892± 0.026 0.974± 0.018 0.961± 0.011
KSPCA 0.893± 0.047 0.971± 0.019 0.893± 0.087
PCA 0.860± 0.034 0.938± 0.024 0.961± 0.011
LPP 0.889± 0.041 0.923± 0.017 0.953± 0.013

6.6.2 Large datasets
Three large datasets were compared. Two datasets were optical number recognition tasks
(MNIST, USPS) and one was a phoneme recognition dataset. In SDA, the optimality
tolerances for the large datasets were set at 10−5 and the tests were repeated 10 times
each. The results can be seen in Table 6.7. SDA performs the best in all tests. For
comparison, RSDA was also calculated. The performance only increased 0.2 percent
units in average in the phoneme dataset.

IIIDimension reduction done in a PCA reduced space, with the size 100.

CHAPTER 6. EVALUATION 75

Table 6.7: Three large high-dimensional datasets, 1-NN generalization accuracy (“mean
± std”) on test set. The datasets were reduced to two dimensions, except for None, in
which no dimension reduction was done.

Method Phoneme MNIST5k USPS
None 0.889± 0.010 0.936± 0.002 0.962± 0.002
SDA 0.875± 0.009 0.557± 0.006 0.668± 0.009
RSDA 0.877± 0.009 0.550± 0.005 0.665± 0.008
LDA 0.664± 0.010 0.461± 0.011III 0.554± 0.008
PLS-DA 0.779± 0.014 0.301± 0.006 0.490± 0.008
gKDR-v 0.809± 0.015 0.323± 0.024 0.453± 0.009
SPCA 0.780± 0.008 0.401± 0.008 0.490± 0.008
KSPCA 0.781± 0.009 0.401± 0.009 0.354± 0.010
PCA 0.765± 0.007 0.383± 0.006 0.460± 0.010

6.6.3 High-dimensional datasets
A face recognition dataset (Olivetti faces) and two object recognition datasets (COIL-
20 and COIL-100) were compared. The regularized version of SDA was also calculated.
The 1-NN out-of-sample classification accuracies are shown in Table 6.8. The proposed
regularized algorithm RSDA has the highest accuracy among the tested algorithms on
all datasets. The tests were repeated 10 times to obtain the error bars. The tolerance
for optimality was set at 10−5 in Olivetti and COIL-20 and at 10−4 in COIL-100. The
tolerances for the regularization search were set at one magnitude higher than the final
algorithm, at 10−4 resp. 10−3. Optimizing with RSDA, including the λ search procedure,
was in average faster than using no regularization (λ = 0) in COIL-100, with the median
time 88 min vs. 215 minIV.

The COIL-100 dataset is visualized in Figures 6.15 and 6.16. The methods were
projected with the same subset of the training and test data vectors and the same initial-
ization (PCA). The SDA embedding managed to draw almost every elements into their
own cluster. Projecting new data points was more difficult: 30% of the test points were
projected close to their own class. The large number of input dimensions allowed SDA to
find this structure. The regularized method looks messier, but its generalization ability is
better. The clusters are on approximately the same locations in both methods, a result
of the initialization.

IVRun on 6-core Intel Xeon X5650 @ 2.67GHz. We acknowledge the computational resources provided
by Aalto Science-IT project.

IIDual formulation for SPCA used.
IIIDimension reduction done in a PCA reduced space, with the size 100.

CHAPTER 6. EVALUATION 76

Table 6.8: Three very high-dimensional datasets, 1-NN generalization accuracy (“mean
± std”) on test set. The datasets were reduced to two dimensions, except for None, in
which no dimension reduction was done.

Method Olivetti faces COIL-20 COIL-100
None 0.908± 0.023 0.999± 0.005 0.988± 0.006
SDA 0.393± 0.056 0.904± 0.035 0.277± 0.024
RSDA 0.562± 0.047 0.944± 0.026 0.605± 0.026
LDAIII 0.446± 0.039III 0.656± 0.079III 0.300± 0.054III

PLS-DA 0.310± 0.042 0.573± 0.042 0.481± 0.049
gKDR-v 0.210± 0.046 0.565± 0.057III 0.142± 0.038III

SPCA 0.325± 0.033 0.623± 0.152II 0.437± 0.061II

KSPCA 0.322± 0.037 0.567± 0.191 0.397± 0.055
PCA 0.289± 0.029 0.667± 0.046 0.288 + 0.036

CHAPTER 6. EVALUATION 77

Figure 6.15: A SDA linear embedding of the COIL-100 dataset. Each class has
a unique symbol and color combination. Filled markers denote learning points, hollow
markers denote test points.

CHAPTER 6. EVALUATION 78

Figure 6.16: A RSDA linear embedding of the COIL-100 dataset. Each class has
a unique symbol and color combination. Filled markers denote learning points, hollow
markers denote test points.

Chapter 7

Conclusions

In this thesis, we have investigated a new dimensionality reduction method, Stochastic
Discriminant Analysis. It has analogies with both the Supervised Distance Preserving
Projections (SDPP) and Linear Discriminant Analysis (LDA) and works with categorical
data in supervised classification problems. SDA and SDPP are connected through the
Bregman divergences.

The method relies on a non-linear transformation of point-to-point distances of the
low-dimensional projection space, obtained with a linear projection. The transforma-
tion matrix projecting the data from the high-dimensional space to the low-dimensional
space is optimized by minimizing the Kullback-Leibler divergence, leading to a nonlin-
ear unconstrained optimization problem. The projection maximizes class discrimination
by minimizing the Kullback-Leibler divergence (M-projection) between a model distri-
bution and a target distribution. Point-to-point distances in the low-dimensional space
are evaluated through the heavy-tailed t-distribution with one degree of freedom. The
cost function penalizes projecting points too close to points of another class, while at the
same time it penalizes projecting points too far away from points of the same class. The
distances between classes become constrained because of the zero-avoiding effect in the
M-projection, which builds a tension in the projection: classes need to be separated but
they cannot be too far away from other classes either.

The performance of SDA was compared against state-of-the-art supervised dimension
reduction methods by the means of projecting out-of-sample test points and labeling these
point with the 1-NN classifier. The performance is regularly better than state-of-the-
art methods have in extremely low-dimensional embeddings. The classification accuracy
increased until the dimension ν-1 was reached. The saturation is due to the defined
optimal embedding, which is a simplex structure that can be found in ν-1 dimensions.
The tests concluded that SDA works relatively better than other methods with very low-
dimensional embeddings of multiclass data data points (the target dimensionality is much
lower than the amount of classes), while the performance is similar to LDA and SPCA in
higher dimensions.

The SDA method was regularized with Tikhonov regularization. Regularization in-
creased the retrieval of meaningful low-dimensional embeddings in terms of out-of-sample
classification accuracy when reducing the dimension of very high-dimensional datasets,
such as images. For these datasets, the variables in the low-dimensional projection matrix
can be reconstructed as images, and the projection vectors form faces in a similar manner
as PCA or LDA projections form eigen- and fisherfaces.

79

CHAPTER 7. CONCLUSIONS 80

The experimental section evaluated different optimization algorithms and found the
LBFGS implementation to be an efficient choice in most tested cases. The LBFGS al-
gorithm is efficient at solving large unconstrained optimization problems. The spectral
gradient optimization algorithm, using the positive semidefinite partial Hessian, is effi-
cient at solving problems involving a smaller amount of input dimensions, such as found
in the USPS dataset.

Bibliography

[1] Ill-posed problems. Encyclopedia of Mathematics. Online, accessed 12.3.2015: http:
//www.encyclopediaofmath.org/index.php/Ill-posed_problems.

[2] MATLAB: Factorizations. Online, accessed 12.3.2015: http://se.mathworks.com/
help/matlab/math/factorizations.html.

[3] Adragni, K. P., and Cook, R. D. Sufficient dimension reduction and predic-
tion in regression. Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 367, 1906 (2009), 4385–4405.

[4] Alpaydin, E. Introduction to Machine Learning, 2nd ed. The MIT Press, 2010.

[5] Bache, K., and Lichman, M. UCI machine learning repository, 2013. Online,
accessed 12.3.2015: http://archive.ics.uci.edu/ml.

[6] Baker, K. Singular value decomposition tutorial. The Ohio State University
(2005). Online, accessed 12.3.2015: http://www.ling.ohio-state.edu/~kbaker/
pubs/Singular_Value_Decomposition_Tutorial.pdf.

[7] Banerjee, A., Guo, X., and Wang, H. On the optimality of conditional expec-
tation as a bregman predictor. IEEE Trans. on Inf. Theory 51, 7 (2005), 2664–2669.

[8] Barber, D. Bayesian Reasoning and Machine Learning. Cambridge Univer-
sity Press, 2012. Online, accessed 13.3.2015: http://www0.cs.ucl.ac.uk/staff/d.
barber/brml/.

[9] Barshan, E., Ghodsi, A., Azimifar, Z., and Zolghadri Jahromi, M. Su-
pervised principal component analysis: Visualization, classification and regression on
subspaces and submanifolds. Pattern Recognition 44, 7 (2011), 1357–1371.

[10] Barzilai, J., and Borwein, J. M. Two-point step size gradient methods. IMA
Journal of Numerical Analysis 8, 1 (1988), 141–148.

[11] Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. Eigenfaces vs. fish-
erfaces: Recognition using class specific linear projection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 19, 7 (1997), 711–720.

[12] Belkin, M., and Niyogi, P. Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Advances in Neural Information Processing Systems
14 (2001), T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds., pp. 585–591.

81

http://www.encyclopediaofmath.org/index.php/Ill-posed_problems
http://www.encyclopediaofmath.org/index.php/Ill-posed_problems
http://se.mathworks.com/help/matlab/math/factorizations.html
http://se.mathworks.com/help/matlab/math/factorizations.html
http://archive.ics.uci.edu/ml
http://www.ling.ohio-state.edu/~kbaker/pubs/Singular_Value_Decomposition_Tutorial.pdf
http://www.ling.ohio-state.edu/~kbaker/pubs/Singular_Value_Decomposition_Tutorial.pdf
http://www0.cs.ucl.ac.uk/staff/d.barber/brml/
http://www0.cs.ucl.ac.uk/staff/d.barber/brml/

BIBLIOGRAPHY 82

[13] Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Le Roux, N.,
and Ouimet, M. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and
spectral clustering. Adv. in Neural Inf. Proc. Sys. 16 (2004), 177–184.

[14] Bertsekas, D. P. Nonlinear programming. Athena scientific Belmont, 1999.

[15] Bingham, E., and Mannila, H. Random projection in dimensionality reduction:
applications to image and text data. In Proc. of the 7th ACM SIGKDD Int. Conf.
Knowledge discovery and data mining (2001), ACM, pp. 245–250.

[16] Bishop, C. M., et al. Pattern recognition and machine learning, vol. 4. springer
New York, 2006.

[17] Costa, S. I., Santos, S. A., and Strapasson, J. E. Fisher information distance:
a geometrical reading. Discrete Applied Mathematics (2014).

[18] Cover, T. M., and Thomas, J. A. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, 2006.

[19] Donoho, D. L., et al. High-dimensional data analysis: The curses and blessings
of dimensionality. AMS Math Challenges Lecture (2000), 1–32. Online, accessed
12.3.2015, http://statweb.stanford.edu/~donoho/Lectures/AMS2000/AMS2000.html.

[20] Ekedahl, E., Hansander, E., and Lehto, E. Dimension reduction for the
black-scholes equation. Department of Information Technology, Uppsala Uni-
versity (2007). Online, accessed 12.3.2015: https://www.it.uu.se/edu/course/
homepage/projektTDB/vt07/Presentationer/Projekt3/Dimension_Reduction_for_
the_Black-Scholes_Equation.pdf.

[21] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals
of Eugenics 7, 7 (1936), 179–188.

[22] Fujiwara, K., Sawada, H., and Kano, M. Input variable selection for pls
modeling using nearest correlation spectral clustering. Chemometrics and Intelligent
Laboratory Systems 118 (2012), 109–119.

[23] Fukuda, K. Computing the delaunay complex and the voronoi diagram. what
does it mean and how to do it with available software? Online, accessed 12.3.2015:
http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node31.html.

[24] Fukuda, K. What is the delaunay triangulation in Rd? Online, accessed 12.3.2015:
http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node30.html.

[25] Fukumizu, K., Bach, F. R., and Jordan, M. I. Kernel dimension reduction in
regression. The Annals of Statistics (2009), 1871–1905.

[26] Fukumizu, K., and Leng, C. Gradient-based kernel dimension reduction for
supervised learning. arXiv preprint arXiv:1109.0455 (2011).

[27] Guyon, I., and Elisseeff, A. An introduction to variable and feature selection.
The Journal of Machine Learning Research 3 (2003), 1157–1182.

http://statweb.stanford.edu/~donoho/Lectures/AMS2000/AMS2000.html
https://www.it.uu.se/edu/course/homepage/projektTDB/vt07/Presentationer/Projekt3/Dimension_Reduction_for_the_Black-Scholes_Equation.pdf
https://www.it.uu.se/edu/course/homepage/projektTDB/vt07/Presentationer/Projekt3/Dimension_Reduction_for_the_Black-Scholes_Equation.pdf
https://www.it.uu.se/edu/course/homepage/projektTDB/vt07/Presentationer/Projekt3/Dimension_Reduction_for_the_Black-Scholes_Equation.pdf
http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node31.html
http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node30.html

BIBLIOGRAPHY 83

[28] Hastie, T., Tibshirani, R., and Friedman, J. Datasets for the elements of sta-
tistical learning. Online, accessed 12.3.2015: http://statweb.stanford.edu/~tibs/
ElemStatLearn/data.html.

[29] Hastie, T., Tibshirani, R., and Friedman, J. The elements of statistical
learning, 2 ed. No. 1. Springer, 2009. Online, accessed 12.3.2015: http://statweb.
stanford.edu/~tibs/ElemStatLearn/.

[30] Haykin, S. S. Modern filters. Macmillan Coll Division, 1989.

[31] He, X., and Niyogi, P. Locality preserving projections. In Neural information
processing systems (2004), vol. 16, pp. 153–160.

[32] Hinton, G. E., and Roweis, S. T. Stochastic neighbor embedding. In Advances
in Neural Information Processing Systems 15 (2002), pp. 833–840.

[33] Hotelling, H. Analysis of a complex of statistical variables into principal compo-
nents. J. Educ. Psych. 24 (1933).

[34] Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. Extreme learning machine: theory
and applications. Neurocomputing 70, 1 (2006), 489–501.

[35] Huberty, C. J., and Olejnik, S. Applied MANOVA and discriminant analysis,
vol. 498. John Wiley & Sons, 2006.

[36] Imai, J., and Tan, K. S. Dimension reduction approach to simulating exotic
options in a Meixner Lévy market. IAENG International Journal of Applied Mathe-
matics 39, 4 (2009), 265–275.

[37] Jolliffe, I. Principal component analysis. Wiley Online Library, 2002.

[38] Jordan, M. I. University of california, berkley, statistical learning theory lecture
slides: The kernel trick, 2004. Online, accessed 12.3.2015: http://www.cs.berkeley.
edu/~jordan/courses/281B-spring04/lectures/lec3.pdf.

[39] Juha, K. Aalto university, Machine Learning and Neural Networks lecture slides
13, 2014. Online, accessed 14.3.2015: https://noppa.aalto.fi/noppa/kurssi/t-61.
5130/luennot/T-61_5130_lecture_13__black-and-white.pdf.

[40] Juuti, M. SDPP toolbox. Online, accessed 12.3.2015: http://users.ics.aalto.
fi/~mjuuti/sdpp/.

[41] Luenberger, D. G., and Ye, Y. Linear and nonlinear programming, vol. 116.
Springer, 2008.

[42] Maji, S., and Malik, J. Fast and accurate digit classification. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2009-159 (2009).

[43] Martin, C. D., and Porter, M. A. The extraordinary svd. The American
Mathematical Monthly 119, 10 (2012), 838–851.

http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://www.cs.berkeley.edu/~jordan/courses/281B-spring04/lectures/lec3.pdf
http://www.cs.berkeley.edu/~jordan/courses/281B-spring04/lectures/lec3.pdf
https://noppa.aalto.fi/noppa/kurssi/t-61.5130/luennot/T-61_5130_lecture_13__black-and-white.pdf
https://noppa.aalto.fi/noppa/kurssi/t-61.5130/luennot/T-61_5130_lecture_13__black-and-white.pdf
http://users.ics.aalto.fi/~mjuuti/sdpp/
http://users.ics.aalto.fi/~mjuuti/sdpp/

BIBLIOGRAPHY 84

[44] Miche, Y., van Heeswijk, M., Bas, P., Simula, O., and Lendasse, A.
TROP-ELM: a double-regularized ELM using LARS and tikhonov regularization.
Neurocomputing 74, 16 (2011), 2413–2421.

[45] Murphy, K. P. Machine learning: a probabilistic perspective. MIT press, 2012.

[46] Nayar, S. K., Nene, S. A., and Murase, H. Columbia object image li-
brary (COIL-100). Department of Comp. Science, Columbia University, Tech. Rep.
CUCS-006-96 (1996). Online, accessed 12.3.2015: http://www.cs.columbia.edu/
CAVE/software/softlib/coil-100.php.

[47] Nazareth, L. A relationship between the bfgs and conjugate gradient algorithms
and its implications for new algorithms. SIAM Journal on Numerical Analysis 16, 5
(1979), 794–800.

[48] Nene, S. A., Nayar, S. K., and Murase, H. Columbia Object Image Library
(COIL-20). Tech. rep.

[49] Pearson, K. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine 2 (1901), 559–572.

[50] Pérez-Enciso, M., and Tenenhaus, M. Prediction of clinical outcome with
microarray data: a partial least squares discriminant analysis (pls-da) approach.
Human Genetics 112, 5-6 (2003), 581–592.

[51] Rao, C. R. Some combinatorial problems of arrays and applications to design of
experiments. A Survey of Combinatorial Theory 349 (1973), 359.

[52] Rasmussen, C. E. MATLAB function: Nonlinear conjugate gradient mini-
mizer. Online, accessed 12.3.2015: http://www.gatsby.ucl.ac.uk/~edward/code/
minimize/.

[53] Rasmussen, C. E., and Nickisch, H. Gaussian processes for machine learning
(gpml) toolbox. The Journal of Machine Learning Research 11 (2010), 3011–3015.

[54] Reid, M. Meet the bregman divergences. Online, accessed 12.3.2015: http://mark.
reid.name/blog/meet-the-bregman-divergences.html.

[55] Roweis, S. Data for MATLAB hackers. Online, accessed 12.3.2015: http://www.
cs.nyu.edu/~roweis/data.html.

[56] Schmidt, M. minfunc: unconstrained differentiable multivariate optimization in
matlab. "Online, accessed 12.3.2015: http://www.di.ens.fr/~mschmidt/Software/
minFunc.html".

[57] Schölkopf, B., and Smola, A. J. Learning with kernels: support vector ma-
chines, regularization, optimization, and beyond. MIT press, 2002.

[58] Shewchuk, J. An introduction to the conjugate gradient method without
the agonizing pain, 1994. Online, accessed 13.3.2015: http://www.cs.cmu.edu/
~quake-papers/painless-conjugate-gradient.pdf.

http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.gatsby.ucl.ac.uk/~edward/code/minimize/
http://www.gatsby.ucl.ac.uk/~edward/code/minimize/
http://mark.reid.name/blog/meet-the-bregman-divergences.html
http://mark.reid.name/blog/meet-the-bregman-divergences.html
http://www.cs.nyu.edu/~roweis/data.html
http://www.cs.nyu.edu/~roweis/data.html
http://www.di.ens.fr/~mschmidt/Software/minFunc.html
http://www.di.ens.fr/~mschmidt/Software/minFunc.html
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

BIBLIOGRAPHY 85

[59] Shlens, J. A tutorial on Principal Component Analysis. arXiv preprint
arXiv:1404.1100 (2014).

[60] Toh, K. C., Todd, M., and Tütüncü, R. SDPT3 - a MATLAB software package
for semidefinite programming. Optimization Methods and Software 11 (1998), 545–
581.

[61] Van der Maaten, L., and Hinton, G. Visualizing data using t-sne. Journal of
Machine Learning Research 9, 2579-2605 (2008), 85.

[62] Vandenberghe, L., and Boyd, S. Semidefinite programming. SIAM review 38,
1 (1996), 49–95.

[63] Vladymyrov, M., and Carreira-Perpinan, M. Partial-Hessian strategies for
fast learning of nonlinear embeddings. arXiv preprint arXiv:1206.4646 (2012).

[64] Yang, J., and yu Yang, J. Why can LDA be performed in PCA transformed
space? Pattern Recognition 36, 2 (2003), 563 – 566.

[65] Yang, Z., Peltonen, J., and Kaski, S. Scalable optimization of neighbor embed-
ding for visualization. In Proc. of the 30th Int. Conf. on Machine Learning (ICML-13)
(2013), pp. 127–135.

[66] Zhu, Z., Similä, T., and Corona, F. Supervised distance preserving projections.
Neural Processing Letters 38, 3 (2013), 445–463.

	Cover page
	Contents
	1 Introduction
	1.1 Data
	1.2 Data Analysis
	1.3 Dimension Reduction
	1.4 Contributions of this thesis

	2 Background
	2.1 The curse of dimensionality
	2.2 Dimension reduction methods
	2.2.1 Principal Component Analysis
	2.2.2 Singular Value Decomposition
	2.2.3 Random projections
	2.2.4 Fisher's Linear Discriminant Analysis
	2.2.5 Laplacian Eigenmaps
	2.2.6 Locality Preserving Projections
	2.2.7 Stochastic Neighborhood Embedding
	2.2.8 t-distributed SNE
	2.2.9 Other supervised methods

	2.3 Machine Learning Concepts
	2.3.1 Bias-variance trade-off
	2.3.2 Regularization
	2.3.3 k-NN classification
	2.3.4 Kernel Trick

	2.4 Mathematical Optimization
	2.4.1 Optimality
	2.4.2 Gradient Descent methods
	2.4.3 The Newton methods
	2.4.4 The method of Conjugated Gradients
	2.4.5 Nonlinear Conjugated Gradients
	2.4.6 Quasi-Newton methods: BFGS
	2.4.7 Memoryless Quasi-Newton methods: LBFGS
	2.4.8 Linear and semidefinite programming

	2.5 Information Theoretical Concepts
	2.5.1 Entropy
	2.5.2 Cross-entropy
	2.5.3 Kullback-Leibler divergence

	3 Supervised Distance Preserving Projections
	3.1 Introduction
	3.2 Cost Function
	3.2.1 SDPP for classification data sets
	3.2.2 The neighborhood matrix G

	3.3 Optimization
	3.3.1 SQLP formulation
	3.3.2 Nonlinear Conjugate Gradient descent

	3.4 Evaluation of classification solutions with SDPP
	3.5 Personal work related to the SDPP
	3.6 Conclusions on SDPP

	4 Stochastic Discriminant Analysis
	4.1 Stochastic Discriminant Analysis
	4.2 Gradient
	4.3 Hessian
	4.4 A theoretical connection between the cost function in SDPP and SDA
	4.5 Embedding with the Iris dataset

	5 Datasets
	6 Evaluation
	6.1 Computational environment
	6.2 The Olivetti faces dataset
	6.2.1 Two-dimensional embeddings
	6.2.2 Regularization parameter search
	6.2.3 Comparative performance over a range of dimensions
	6.2.4 Prototype Faces

	6.3 The USPS dataset
	6.4 COIL-20 Object Images
	6.5 Computational complexity and runtime comparison
	6.6 Comparisons on more datasets
	6.6.1 UCI datasets
	6.6.2 Large datasets
	6.6.3 High-dimensional datasets

	7 Conclusions

